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ON THE REPLICA OF LINEAR PRODUCTION GAMES WITH NON 
ADDITIVE RESOURCES 

RUBEN OSCAR PUENTE and EZIO MARCHI 

Abstract. The replica of the Owen-Granot market linear production 
game is studied. A suitable way oí replicating is devised. The standard 
convergen ce oí the replica's eore to a competitive solution is obtained . 
The approaeh presented here could be of wide eeonomie applieability, 
sinee it depellds on a proper vector in the eore of resouree games . 

1. INTRODUC TION. The linear production game introduced by Owen [3] is atype 
of market game, whieh is generated by linear prograrnming optimization problems. In 
this game it ls important the relation between the eore and the competitive seto The 
competit ive set is always contained in the core of an LP-game, but both sets are not 
identical. However, if the set of players is l'eplieated many times , the eore of replicated 
games converges to the competitive set , i.e . ,  the vectors belonging to the core of all 
replicas of linear production games are the eompetitive vectors. This result can be 
considered a consequenee of a well-known theorem of Debreu and Scarf [ 1 ]  whieh states 
this convergenee in the area of economies. Owen has also proved a special result for 
linear production games: the convergence after a finite number of replieations when the 
dual optimal set is a single. Samet and Zemel [5] provide a neeessary and suffieient 
eondition for finite convergen ce in LP-games. Granot [2] generalizes this market model 
dea.ling with non additive resource vectors. 

In this paper we study the replicas of Granot's model. As it is usual in this subject we 
obtain the convergen ce of the replica's coreo This is done in a very general way, which 
depends upon an election of \JI in the cores of the resource games. In a large collection 
of cases \li may be taken either as Shapley value or as the nucleolus. A convergen ce to 
that competitive payoff 18 obtained. 
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2. NOTATIONS AND PRELIMINARY. For any finite sets N and M, N e M 
means non strict inclusion, M \ N means Boolean subtraction , INI is the cardinal 
number and 2N is the power set of N. We shall often use the natural numbers to name 
the elements of these sets .  The symbol R denotes the real numbers and RN denotes the 
N-dimensional Cartesian spaee whose eoordinates are indexed by the elements of N. If 
x, yE RN then x � y means Xi � Yi for all i E N and 1 denotes the vector ( 1 , 1 ,  . . .  , 1 ) .  
A cooperative game with transferable utility i s  a pair (N, v ) , where N i s  a nonempty 
finite set and v : 2N ---+ R is a set function that satisfies v(0) = O. The elements of N 
are the players; a coalition is a subset of 2N and v is the characleristic fun clion of the 
game. A game is super additive if one has v (S) + v(T) � v (S U T) whenever S n T = 0; 
if the inequalities hold with the equal signs, the game is additive. x.l � v(N). An 
imputation is a vector x E RN that satisfy x.l = v (N), and Xi � v (  {i}) for all iE N. 
The core of (N, v) is the set of imputations so that ¿iES Xi � v(S), for all S e N. A 
game is balanced if its eore is non empty. 
In the lineal' produclion game [3] to produce a unit of j-th good (j = 1,2, ... , m ) , requires 
akj units of the k·th' resource (k = 1,2, . . . ,p) and it can be sold at a price ej. The set of 
players is denoted by N. As in [2] we will assume that there is a function b : 2N ---+ RP 
that assigns a resouree vector to eaeh eoalition , b(0) = O .  A eoalition S possesses a 
total of bk(S) units of the k-th resouree as a whole . A function bk can be thought of as 
the characteristic function of the k-th resource game. The generalized lin ear p1'Oduction 
game (GLPG) is defined by the characteristic function v given by the program 

(1) v(S) = max{c.x} ,  s.t. a.x � b(S) , X � O. 

We assume that the program (1) is feasible and bounded fOl' all S e N. Therefore , the 
following dual program defines the same characteristic function. 

(2) min{b(S) .y} , S.t. y.a � c, y � O .  

A GLPG with additive resouree function bis a linear production game, taking the vector 
b( {i}) as initial resources of the i-th player, i EN. 

Theorem A (Granot (1986)). In a linear produclion situation as above, if al! resource 
games are balanced, then  the corresponding GLPG is also balanced. 

Moreover, a GLPG is super additive if aH resouree games are super additives , although , 
neither balance nor super additivity conditions of the resource games are necessary to 
obtain this property in a GLPG [4] . 
If the resource games are balaneed, let w [bk] be a vector in the core of the resouree 
game (N, bk ) , (k=I,2, .. . ,p). Let y* be an optimal solution to (2), with S = N (the grand 
coalition) . An imputation u is named competitive if it is defined by 

(3) Ui = w; [b].y*, i E N. 
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Theorem B (Granot (1986)). In a linear production situation as already described, a 
competitive imputation is in the core of the GLPG. 

3. RESOURCE FUNCTION EXTENSION. REPLICATED GAME. For each 
player in the original set N, there are l' players of the same type in the r-replica of a 
game, where l' is a positive integer. The symbol l' N denotes the set of aH players. A 
suitable extension of the resource function is required. 

Definition 1. The profile of a coalition S e l' 1V is the vector x( S) = (Zi), i EN, where 
Zi is the number of i-type players in S. 

Definition 2. The representation of a e�alition S e r N with respect to iN is the set: 
SjtN = {i E N : Zi ::::: i}. 
Definition 3. Let W be as in (3 ) . The W-extension of a resource funetioll b, is the 
function b* defined by 

[0,]+ 
= 
{ 0,0 :� a ::::: (O) }, 
� __ a < _ 

Definition 4. Let W be as in (3 ) . A W-convergent extension be is a set function that 
satisfies: 
1) be(S) = b(SjN), if x(S) :::; 1, 
2) be(S) = rb(N), if x(S) = r 1, 
3) be(S) :::; b*(S), for all 5, and 
4) limx(s)->oo be(S) = b*(S), [x(S) -t 00 if min{zi I x(S) = ( zi), i E N} -t 00]. 

Definition 5. Given a GLPG, let W be as in (3), and let be be a W-convergent extension. 
The game (r N, ve) is defined by the program (1), w here the resource vector is be. 

We assume in the sequel that for eaeh eoalition S e r N, the linear program (1) is feasible 
and bounded so that the optimal objective function values for the various coalitions are 
finite. It is immediate that if x(S) :::; 1 then ve(S) = v(S), and that v e(rN) = rv(N). 
So, the eharacteristie function Ve of a replieated game, will be simply denoted by v. 

Any imputation in the eore of a r -be
-repliea , assigns an equal payoff to the same type of 

players (analogous to Theorem 2 in [3]). Therefore, core imputations can be represented 
by n-dimensional vectors. The following results should be interpreted in this way. 

Theorem 1. A W -competitive imputation belongs to the core of a W -convergent r-be_ 
replica, for all r. 

Proof. We will prove that w[bkl belongs to the core of b'k (k = 1, 2, . . . ,p). Because 
w[bkl belongs to the core of each bk, we have 

(4) 

(5) 

- ��--- ----- ------- "---
.� . .  
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Using (4 ) and Definition 4 .2 ,  we obtain llJ[bk].r1 = bk(rN). 

Now consider S e rN. Using (5), Definitions 3 and 4.3 , we have 

Theorem B completes the proof. 

Theorem 2. Given a GLPG, [et llJ be as in (3), and [et be be a llJ -convergent extension. 
A n imputation u is llJ -competitive if it belongs to the core of the r_be -replica, for al! r 2: 1. 

Proof. Let u be a vector in the core of all replicas. Consider the system: 

(6) llJi [b].y ::; Ui , i E N , 

( 7 ) y .a 2: c , 

(8) y 2: O. 

Suppose that this system has a solution. Adding (6) for i E N, results that y is an 

optimal solution to (2). Hence, (6) holds with the equal signs .  We condude that u is a 

llJ-competitive imputation . 

If the system (6)-(8) has no solution, consider the dual program of a trivial objective 
function subject to these constraints : 

max {c .x - uz} ,s . t .  a.x -1lJ[b].z::; O, X,z 2: O. 

This program is feasible and unbounded. Thus, there will exist vectors x,:; such that 

(9) c.x> uz ; 

(10) a.x < llJ[b].z , 

(11 ) x 2: O , 

.. .. . ···�""··":'"·'·i.-.. ··'·· �r-' ;.o,,'.. . .ói .•... • 
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(12) Z > O. 

The vector Z can be chosen with rational numbers so that the strict inequalities (10) 
and (12) hold. Multiplication of x and z by the common denominator makes Zi positive 
integer , i E N. Now, multiplication by a positive integer t produces another solution 
which slackens inequalities in (10). In brief, for any positive integer t, there exists a 
solution x, Z of (9)-(12) such that Zi is positive integer and Zi > t, for i E N. 

Then, consider a coalition 5 with X(5) = Z , so that 5/tN = N, where t is a positive 
integer such that 8 = b'k(5) - bk(5) is small , 8 ::::: O (See Definition 5 ) . Then 

(13) 

For a sufficientIy small 8, from (10) and (13) we obtain 

(14) a.x � be(5). 

Now, (11) and ( 1 4) are the program (1) constraints .  Therefore, x is a feasible solution 
of (1). So , 

(15) v(5) ::::: c.x. 

However, since u belongs to the core of all r-replica, 

(16) H.Z ::::: v(5). 

But (9), (15) and (16) are contradictory. Therefore, the system (6)-(8) has a solution 
and the proof is complete .  

Theorem 3. Le t  be be a W-convergent extension of a non  negative GLPG, which 
converges al finite steps at the W -extension b*. Jf y* is the only optimal solution of (2) 
for the coa litio n N, then, for a sufficiently large r, the core of the r_be -replicated game 
contains only the W -competitive solution. 

Proof. Let 1'1 be an integer large enough so that be(5) = b*(5) if 5/(1'1 - l)N = N. 
Consider 8 = min{b(N).y -,- v(N)} > O, where the minimal value is taken into the finite 
set of extreme solutions of the program (2) constraints, such that y i- y*. Let 1'2 be 
an integer large enough so that (1'2'-- 1)8 > v(N). Let l' = max{r1,r2}' and, for any 
io E rN, let 5 be the coalition 5 = rN - {io}. 

We will prove that the optimal solution y' for the coalition l' N, is also optima.l for 5. 
Let y8 be optimal fol' the program (2). If y8 i- y* then 
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be(S) . yS = b*(S) . yS = {(r -l)b(N) + L;éio w;[b]} . yS 
� (r -1)b(N) . yS > r v(N) . 

On the other hand, v(S) < v(rN), since the core of (rN, v) is nonempty and v is 
nonnegative . This fact contradicts (17) . So, y. is optimal for S. 
Let u be an imputation in the core of the r-be-replica. Then 

ru. l  = v(rN) == r b(N) . y* , and 
ru. l -Uio � v(S) = be(S) . p* = [(r -l)b(N) + Li;éio W;[b] ] . y*, 

from where 

(18) Uio:::; [b(N) - 2::: W;[b]] . y* :::; wio[b] . y* . 
';é'o 

Adding (18) for io E N we obtain v(N) = u . l  :::; LEN Wi[b] . y* = b(N) . y* = v(N) . 
Therefore, (18) holds with the equal signo So that u is the W-competitive solution. 

4. EXAMPLES. The three following examples show extensions of a same resource 
function. 
Example 1. Consider a GLPG with two players, two resources and two goods, b( {1}) = 
(3, 1), b({2}) = (2, 4), b({1, 2}) = (5, 7) and programs: 

max{XI + X2} = v(S) = min{bl(S)Yl + b2(S)Y2} 
S . t .  Xl + 2X2 :::; b1(S) Yl + 2Y2 � 1 

2Xl + X2 :::; b2( S) 2Yl + Y2 � 1 

The dual program has three extreme points: (1, 0), (0, 1) and (�, �). However it has 
one optimal only for the grand coalition: y* = (�, �). 
The characteristic function is v({l}) = 1, v({2}) = 2, v({1, 2}) = 4 and the core is 
C(v) = {(U¡,U2) I Ul + U2 = 4 , 1:::; Ul:::; 2}. 
The core of the resource games areC(b1) = {(3, 2)} , C(b2) = {(1+t, 6-t) I O:::; t:::; 2}. 
The competitive set is D(v) = {(Ul, U2) I Ul + U2 = 4 , .� :::; Ul :::; 2}. 
For the 1"t resource, w[b1] = (3, 2) and for b2 the Shapley value is chosen : W [b2] = (2,5). 
Hence, the associated competitive solution is: (�, D. 
Consider the trivial W-extension be = b* that depends only on the profile : 

bi(z¡, Z2) = 3z1 + 2z2, 
b2(z¡, Z2) = sgn(zl) + 4sgn(z2) + 2sgn(zlz2) + 2[Zl -1]+ + 5[Z2 -1]+. 
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The following table summatizes the impottant cote data. 

r ZI Z2 bi(S) b2(S) v(S) core condition 
1 1 O 3 1 1 1 ::; Ul 
1 O 1 2 4 2 Ul ::; 2 
1 1 1 5 7 4 Ul + U2 = 4 
2 2 1 8 9 II Q < Ul 3 3 -
2 1 2 7 12 12 < 5 3 Ul _ ;) 

The 2-replica core is C2 (V ) = {(�, �)}. Theorem 3 guarantees equality for r 2: 6. 

In the next example, the extension of the resource function is not W-convergent, as 
in the strong sen se of Definition 4.4. However, examining the Theorem 3 proof, it is 
concluded that the condition to the convergen ce may be weakened. For instance, to 
each S e rN and E > O if x(S) > 1 then b'k(tS) - b%(tS) < tE for aH sufficiently large 
integer i. 
Example 2. Consider another W-extension be of Example 1 function : 

bHzt, Z2 ) = 3z1 + 2z2 , 
if ZI < Z2 
if ZI > Zz 

if ZI = Z2 } 
The following table summarizes the important core data. 

r ZI Z2 bí(S) 
1 1 O 3 
1 O 1 2 
1 1 1 5 
2 2 1 8 
2 1 2 7 
3 3 2 13 
3 2 3 12 

r r r-1 5r -2 
r r -1 r 5r -3 

b2(S) 
1 
4 
7 

9-! 
12 - 1 2 
16 _1 3 
19 _1 3 

7r -5 - 1 r 
7r - 2 _! r 

v(S) 
1 
2 
4 

17 1 
"3- 6 
19 1 
"3- 6 29 1 "3- 9 
31 1 
"3- 9 

4r - 1 - .!. 3 3r 
4r - Q - .!. 3 3r 

core condition 
1 ::; Ul 
Ul ::; 2 

Ul + Uz = 4 
Q -1 < Ul 3 6 -
Ul < Q + 1 - 3 6 
Q - 1 < Ul 3 9 -
Ul < Q + 1 - 3 9 

Q _ ..!.. < Ul 3 3r -
Ul < Q +..!.. - 3 3r 

The next example shows that the replica's core can be empty, when the W-convergence 
condition be(S) ::; b*( S) is not satisfied fOf all S (See Definition 4.3 and Theorem 1 ) . 
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Example 3. Consider the W-extension of the example 1 function given by: 

b1(zI, Z2) = 3z1 + 2z2, { 7Z1 + ¿i;�11{5 + D ' bí(Zl, Z2) = 7z2 + ¿i;�21{2 - H 
bi(Zl' Z2) 

if 1 S; Zl < Z2 } 
if Zl > Z2 � 1 . 
otherwise 

The following table summarizes the important core data. A column b2( S) is added. 

r Zl Z2 bí(S) bí(S) 
1 1 O 3 1 
1 O 1 2 4 
1 1 1 5 7 
2 2 1 8 8 
2 1 2 7 13 
3 3 ' 2 1 3  15 + ! 2 
3 2 3 12 19 + 1 2 

bi(S) 
1 
4 
7 
9 

12 
16 
19 

v(S) 
1 
2 
4 
� 3 
:N 3 � + ! 3 6 

2! +! 3 6 

core condition 
1 S; Ul 
Ul S; 2 

Ul + U2 = 4 
i < Ul 3 -
Ul < i -3 
2 < Ul 2 -
Ul < 2 - 2 

The 3 -replica core is empty, because the last two inequalities contradict the others , but 
b2(1, 2) > b;(l, 2), for instance. 

FINAL REMARK. We would like to emphasize that our results of convergen ce 
present certain 'duality'. By this , we mean that the theorems depend upon the choice 
of W. But , on the other hand, the applicability of the main theorems is powerful since 
the new agents introduce their resources in a coordinated way measured by W, thus 
making our results potentially applicable to economic models . 
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