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Abstract : In this note we study boundedness and convergence properties oí the weighted 
averages 

Em X¡w¡ 
CEm W¡) 1 /p , 

íor pairwise independent sequences oí random variables and non-negative weight se
quences {w¡ } .  

§ I .  INTRODUCTION 

Let {X¡ }  be a sequence oí identically distributed pairwise independent random vari
ables. Let {W¡ }  be a sequence oí non-negative real numbers such that !:�1 W¡ = oo. We 
shall consider boundedness and limit properties oí the weighted averages :  

A - � n
,p - W�/p ' 

where Sn = E�=1 X¡W¡ ,  Wn = E�1 W¡ and p � 1 .  
In [4] , B .  Jamison, S .  Orey and W. Pruitt gave a characterization o í  the sequences 

oí weights íor which the weighted strong law oí large numbers holds íor a11 sequences 
oí i . i .d .r .v .  in L1 • A new and elementary prooí oí the non-weighted strong law oí large 
numbers has been given by N. Etemadi in [2] . In a more recent paper , [1 ] , C .  Calderón 
gives a prooí oí the maximal inequality associated with Etemadi's theorem. In that 
paper , C .  Calderón also consider the maximal íunction oí the averages 

2" 1 
2k/p E Xi 

i= 1  

and proves the coiresponding weak type inequality íor symmetrically distributed random 
variables . 

The purpose oí this note is to give necessary and sufficient conditions on the sequence 
oí wieghts ,  {w¡ } ;in order to get weak and strong type inequalities íor the maximal oper
ª'tor oí averages , and weighted strong laws oí large numbers . It is worthy oí notice that 
the condition íor p = 1 is the same as the condition oí Jamison-Orey and Pr'uitt ,  and 
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that we can get their result by applying Eternadi 's rnethod for pairwise independent 
randorn variables .  

AH the results are stated and proved in §3 .  In section 2 we introduce the weight 
sequen ces and prove sorne elementary lernrnas concerning their behavior . 
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§2. PRELIMINARY LEMMAS 

Given a subset of ;z+ we shall denote the number of elements of E by I E I . If r is a 
real number, [rJ in the largest integer les s than or equal to r. Let p � 1 be given. 

(2 . 1 )  Definition: Let {w¡ }  be a sequen ce of non-negative numbers such that L:�¡ Wi = 
oo. Let Wn = L:7=¡ Wi and let vp (n) = Wn Wn- ¡ !p . We say that {w¡ }  satisfies the property 
Ap , or breifly {w¡ }  E Ap, if there exists a constant C such that the inequality 

holds for every A > o .  

(2 .2)  Lemma: Let {w¡ }  E Ap and a > 1 .  Tben, tbere exists K = K (a , p) sucb tbat far 
every k � K tbere is an in teger m satisfyng 

(2 .3 )  

Proof: Assume that there exists a sequence of integers , {k¡ }  such that (2 .3) does not 
hold for any integer m. Since { Wn }  is a divergent sequence, it is possible to choose 
integers mi verifying 

Thus , we get 

and 

Therefore, for large values of ki , we have 

Since 

wmi Wm . - ¡  = v¡ (mi ) ( l - V¡ (mi ) )-
¡
, 

it follows that V¡ (mi ) > �::¡:� for infinitely many mi . On the other hand vp (n ) � v¡ (n ) . 
Therefore 

aP - 1  
I { n :  vp (n) > -- } I = 00 , aP + 1 

and consequently {Wi } !f- Ap . # 
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In the sequel, K shal1 denote the constant in Lemma (2'. 2). 
Now, ror Ot > 1 fixed, set 

ep(a ,p; k) :== min{j : W/1p � [ai:n 

L.ernma: Let {w¡}  E Ap . TAen 
(2.4) tp(Q ,p; k) is a non�decreading iU1!).ction al k, and is one·t�one ior k � K, 
(2.5) if k. == min{k : ep(a, p; k) � i} , we nave tne inequaJ:ity w.1/P � ai:(+l , for eve!'Y i � 
cp(a, p; K} . .  

Proof: Let k' > k � K and let m be given by lemma (2.2), then . 

!ai:) � W;,!P < [al;+l )  � (ai:' l . 

Therefore ep{a, p; k) < ep(a , p; k' ) .  To prove (2 .5), observe that W¡llp �. W�f:,p;j:;p a.nd that 
W1/, < !Qi: ,+ tl < a t , H . #: rp( .. ,p;J: ,}  t -

Ií (H, 1t, JI) is a IT-finite ineasure space and f is a mea.surable function defined on JI,  
such that 

. 
C 

JI{� : I f(�) 1 > �} ::; �P 
for p < 2, we have 

{ ' lf(�)I� el" � 2 r �,,{� : If(�) 1  > �} d� J{ .. : I/( .. )I;5;r} Jo 
< 2C r �l-P d� = 2C r2-p • - Jo 2 - p 

In particular; if H = z+ and JI is the counting measure we have the following lemma. 

( 2 .6) Lemma: Let {w¡ } E Ap and p< 2, tnen 

(2.7) Lemma: Let {W¡} be a sequeilce oi positive real numbers such tnat {W¡} rt Ap . 
Tnen tnere exist an unbounded sequence oi integers {mj }  and a decreas¡ng sequence oi 
positive real numbers Pi } ,  sUch tnat 

. 

(2 .8) ,lim �f I {j : vp (j) > �¡mj } 1 = 00 
' -> 00  
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Proo'f: Let E>. be the set {n : vp (n) > A} .  From the fact that {Wi} f/. Ap we have that 
AP IE>. I  is an .unbounded fundion of A close to zero. Assume that IE>. I  < 00 for every A .  
Choose ' h  such that rf lE-Yt l  � 1 .  Assume that 1i_ 1  has been chosen. Since for 0 < 1 < li- 1 
we have the equality 

rP IE-y 1  = rP IE-y - E-Yi_t l + rP IE-Yi_ t l , 
then there exists ri such that 

r1' IE-Yi - E-Yi_ t l  � ip+1 . 

Once the sequence {,¡ } is constructed, define Ai = f and mj = i for j E E-Yi - E-Yi - 1 .  Then 

Af l {j : vp (j) > Aimj } 1 � (�)P I {j : ri- 1  � vp (j) > rd l 1 

= (�)P IE-Yi - E-Yi_ t l  � i 
1 

Let us now suppose that there exists Aa > O such that IE>.. I = oo. Write E>.. = {n(i)} with 
n(i) < n(i + 1) and take Ai = t and mj = log i for n(i - 1) < j :s n(i) .#  
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§3. THE RESULTS 

Let {w¡}  be a sequence of weights and X¡ · be a sequence of random variables on the 
probability space (n, :F, p) . We define the maximal fundion 

The main result concerning the behavior of u" in relation to the sequence of weights,  es 
the following 

(3. 1 )  Theorem: Given a sequence of weights {W¡ } ,  there exists a canstant e such that 
the inequality 

(3 .2) 

halds far every � > o and every sequence af integrable, pairwise independent  i . d.r. V. , if 
and anly if {W¡} E A l ' 

. 

Proof: Let us show first the "only if" part o Let {w¡} rt Al . By lemma (2 .7) there exist 
two sequences {Ad and {mi }  satisfying (2 .8) .  We are going to construct a sequence of 
identically distributed, pairwise independent random variables such that the associated 
weighted maximal fundion is infinity on a set of probability one. Let V¡ = vl (i) . Since 
the following inequalities 

(3.3) 

hold, we have 

IX I 
< ISn l + ISn- l l < 2 • n Vn -

Wn Wn-l _ (T 

limsup{ lXj lVj � mj } e  {u" = oo}.  

Therefore given an integrable random variable X such that ¿� l P( lX I � mj v¡ l ) = 00 ,  
via the product theorem and Borel- Cantelli lemma, it is possible to find random vari
ables Xj , with distributions identically that of X ,  pairwise independent and verifying 
P(limsup{ IXj lvj � mj }) = 1 .  Let us produce such an X.  Let 

b¡ = �¡ I {j : Vj > �¡mj } l ·  

Since b¡ i s  unbounded, we can find a sequence {a¡} of non-negative real numbers such 
that ¿a¡ = l and ¿ a¡b¡ = oo. Let X be a random variable which takes the value �¡ 1 
with probability �¡a¡ (i E Z+) and is zero otherwise. Then, clearly, X E Ll and 

00 00 ¿ P(X � mj v¡ l ) � ¿ ¿ �¡a¡ 
j=l  j=l {¡ :>.¡ l >mi"¡ ' }  

00 00 
= ¿ �¡a¡ I{j : vj /mj > �¡ } I = ¿a¡b¡ = 00 ¡=l ¡=l  



1 79 

To prove sufficiency let us suppose that {w; }  E Al ' Observe that it is enough to show 
the inequality 

P(O'* > 1 ) ::; C€(XI ) , 
for €(X¡ ) < f2 and non-negative X¡ 's .  Let Ji. be the distribution of Xi ' Following C .  
Calderón, [ 1 ] , let us introduce the exceptional set 

E = U�I Ei , where Ei : = {ViXi > 1 }  

and let Y; : =  XiXn- E, . Using the fact that {w;} E Al we obtain P(E) ::; C€(X¡ ) .  In  fact 

P(E) ::; Ep(E; ) ::; E f [+1 dJi. 
i= 1  i= 1  j= [V , l j  J 

00 li+ 1 1 1 
::; 2)j + 1 ) dJi. -. -1 1 { i :  Vi > -. -1 } 1 

j=O  j J + J + 
::; Cf(X¡ ) . 

We need now to get an estimate of 0'* on O - E. Let y í. E and cp(k) := cp(2 , 1 ;  k) , then by 
(2 .4) ,  for every n > N = cp(I{)  there is an integer k >  f{ such that cp(k - 1 ) ::; n < cp(k) and 
2k- 1 ::; W<p(k _ l ) < 2k . Set S� = ¿�=I Y; Wi ,  then 

W; I Sn (Y) ::; 4W;(i)S�( k) (Y) 
::; 4[W;(i )  IS�(k) (Y) - €(S�(k) ) 1  + €(X¡ )] .  

Consequently we have the following estimate for the maximal function on O - E 
N 

Hence 

0'* (y) ::; ¿ W; I Sn + 4 sup W;MS�(k) (Y) - €(S�(k) ) 1 + 4E:(XI ) .  n= 1  k?,K 

N 
. 1 {O'* > l } U (O - E) e (l: w;I Sn > 3 } 

n= l 

U {:�k w.;(i) IS�(k) (Y) - 1:(S�(k) ) 1 > 1
1
2 } 

= : Al  u A2 
Since it is clear that P(A 1 )  ::; 3N€(XI ) , it remains only to prove a similar estimate for 
P(A2 ) .  By Chebishev 's inequality we have 

00 

P(A2 ) ::; C L w;(i/( IS�(k )  - €(S�(k)W) 
k=K 

00 <p(k) 
::; C L 2- 2k L €(Y/ )w; 

k=K i= 1  
00 



where k; is that of ( 2 . 5 ) .  Then 

By Lernrna ( 2 . 6 )  we have that 
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i = l  
00 [V ; I J  j + 1 �L' ¿ v; ¿ j x2 dp. 

; = 1  j =O } 

� cf:  [+ 1 x2 dp. ¿ v; .  
} = o } { ; ; v . :s m }  

oc j + 1  
P(A2 ) � C ¿(j + 1 ) - 1 j x2 dp. � CE(XI ) ,  

j = O  } 

which finishes the proof of the theorern. # 

(3 .4 )  Corollary If { w¡ }  E A l ,  1 < r < 'Xl an d {X; }  is a sequen ce of L" , pairwise in depen
dent i . d .r. L then there exists C depending only on r such that 

This coro11ary fo11O\\'s from the theorern by interpolation . 

Applying Eternadi 's  rnethod in the weighted situation we get the theorern of Jarnison
Orey and Pruitt  in the pairwi se independent case: 

(3 .5 )  Theorem: Let { w¡ }  be a seq uen ce of weights. Then, the weighted strong law 
of large n um bers holds for every integrable, pairwise independen t sequen ce of i . d . r. v. if 
an d only if { wd E A l '  

Proof: Let { w¡} E A l ' We can assurne that Xi 'S  are non-negative randorn variables . 
Define Y; as in theorern (3 . 1 )  and <p(u , k) : =  'p(u ,  l ; k ) ,  for u >  1 .  The sarne cornputation 
as in theorern (3 . 1 )  proves the estirnate 

Since, on the other hand W;(�" k/(S�(" , k JK )  converges to E(XI ) ,  hy Borcl-Cante11i lernrna 
we have 
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The sequen ces {Xi l  and {Y; } are equivalent , i .e .  L:�l P(X¡ i= Y;) < 00 , then we have the 
almost everywhere convergence of the weighted averages W;(�,k)S'I'(",k) to é(X¡ ) . Now, for 
every n :::: 'P(a , I<) there exists k such that 'P(a , k) ::; n < 'P(a , k + l )  and [ak

] ::; Wy,(a,k) < [aHl] .  
Then for those valuis of n we have 

, hence 
�é{X¡ ) ::; liminl T�; ::; limsuP T�; ::; a2é{X1 ) 
Q YVn YY n 

almost everywhere, for every a >  1 .  Then the strong law of large numbers holds . Let 
now {w;} be a weight sequen ce such that {w;} rf- A¡ . The first inequality in (3 .3)  shows 
that 

limsup{ IXj l Vj :::: mj } e limsup{w¡ I ISj l :::: �j } . 

Then the same example as in theorem (3 . 1 )  shows that {wi l E Al is also necessary. # 

Let us now consider the pth weighted maximal function 

where 1 < p < 2 , Sn {Y) = L:�=l X¡ {Y)Wi and Wn = L:7=1 W¡ . This maximal function is the 
weighted cxtension of that of C. Calderón and corresponds to the strong law for the 
averages sr/. whose non weighted analogues can be found in [5] , page 255. 

Wn 
In order to prove the weak type (p , p) of up in the independent case we shall use a 

Kolmogorov type inequality, more precisely the following extension, proved by J .  Hájek 
and A .  Rényi in [3] : 

If 6 , 6 , 6 , . , .  , ek , . . .  is an L2 sequence of mutually independent random variables , each 
with mean value zero; and Ck is a non-increasing sequence of positive numbers , then the 
inequality 

holds for every é > O and any positive integer n .  

(3.6) Theorem: Given a sequence af weigbts {Wi } ,  tbere exists a canstant Cp sucb tbat 
tbe inequality 

(3 .7 )  

balds far every .A > O and every sequence af LP , independent symmetric i. d.r. v. , if an 
only if {W¡} E Ap . 
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Proof: Since all the lemmas in section 2 hold for 1 ::; p < 2 ,  the proof of the "only if" 
part follows the same pattern as in theorem (3 . 1 ) .  

If { W¡ } E Ap , as before, i t  i s  enough to  prove the following inequality 

Let us define E¡ := {vp (i ) IXi l > 1 } ;  E = U�I Ei and Y; = X¡xn-E; ' Since the X¡ 's are 
symmetrically distributed, é(Y;) = é(X¡ ) = O for every i .  The estimate P(E) ::; Cé( IX1 IP ) 
can be obtained as in theorem ( 3 . 1 )  taking into account that {w¡} E Ap . Let 

and 

S�· :=  sup W; I IP IS� 1  
l ;<; k;<;n  

S'· W- l IP IS' 1 := sup k k , k ;<; 1  

where S� is the weighted kth sum of the Y; ' s .  Applying Hájek-Rényi inequality to  �k = Yk Wk 
and Ck = W; llp , we obtain 

n 
P(S�· > 1 )  ::; L V; (i)é(Y/ ) .  

i= l 
Then 

00 

P( k; > 1 )  n {n - E})  = P(S'· > 1 )  ::; L V; (i)é(Y/ ) ::; Cpé ( lX1 jP ) , 
i= l  

the last inequality follows from the fad that {w¡} E Ap as in  theorem (3 . 1 ) .  # 

(3 .8 )  Remark: The corresponding strong law 

a . e .  

holds i f  {w¡ }  E Ap . 
In the pairwise independent case we can consider the following weighted analogue 

of the diadic maximal studied by C. Calderón: 

• 
I S'I'(a ,p ;k ) I 

Ua p = sup 1 1  ' k � 1 W'I'(� ,p ;k )  

Etemadi ' s  method used in theorem (3 . 1 )  allows us to obtain the following resu1t : 

(3.9) Theorem: Let 1 ::;  p < 2 ,  {w; }  E Ap and {X; }  be a sequence af symmetrically and 
identically distributed pairwise índependent LP randam variables, tben 

P(u� ,p > A) ::; C;;a é( IX1 jP ) .  # 
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