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Abstract: In this note we study boundedness and convergence properties of the weighted
averages

X" Xiw

(" wi)t/e
for pairwise independent sequences of random variables and non-negative weight se-
quences {w;}.

§1. INTRODUCTION

Let {X;} be a sequence of identically distributed pairwise independent random vari-
ables. Let {w;} be a sequence of non-negative real numbers such that 552, w; = co. We
shall consider boundedness and limit properties of the weighted averages:

where S, = S0, Xiw;, Wo =Y, w;i and p> 1.

In [4], B. Jamison, S. Orey and W. Pruitt gave a characterization of the sequences
of weights for which the weighted strong law of large numbers holds for all sequences
of i.i.d.r.v. in L'. A new and elementary proof of the non-weighted strong law of large
numbers has been given by N. Etemadi in [2]. In a more recent paper, [1], C. Calderén
gives a proof of the maximal inequality associated with Etemadi’s theorem. In that
paper, C. Calderdn also consider the maximal function of the averages
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and proves the corresponding weak type inequality for symmetrically distributed random
variables.

The purpose of this note is to give necessary and sufficient conditions on the sequence
of wieghts, {w;},in order to get weak and strong type inequalities for the maximal oper-
ator of averages, and weighted strong laws of large numbers. It is worthy of notice that
the condition for p = 1 is the same as the condition of Jamison-Orey and Pruitt, and
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that we can get their result by applying Etemadi’s method for pairwise independent
random variables.

All the results are stated and proved in §3. In section 2 we introduce the weight
sequences and prove some elementary lemmas concerning their behavior.
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§2. PRELIMINARY LEMMAS

Given a subset of Z* we shall denote the number of elements of E by |E|. Ifris a
real number, [r] in the largest integer less than or equal to ». Let p>1 be given.

(2. 1) Deﬁnltlon Let {w;} be a sequence of non-negative numbers such that YR iw =
oo. Let W, = Y0, w; and let vy(n) = w, Wi P We say that {w;} satisfies the property
Ap, or breifly {wi} € A,, if there exists a constant C-such that the inequality

[n op(m) > A} < 1

holds for every A > 0.

(2.2) Lemma: Let {w;} € A, and o > 1. Then, there exists K = K(a,p) such that for
every k > K there is an integer m satisfyng ‘

(2.3) [e*] < W/P <[]

Proof: Assume that there exists a sequence of integers, {k;} such that (2.3) does not
hold for any integer m. Since {W,} is a divergent sequence, it is possible to choose
integers m; verifying '

Wll.p < [ef] < [@F ) < WI/P

Thus, we get
Win; = Win, = Win,—1 > (@1 — 1P — ofP

and

(a"'“ _ 1)” _ okir

- =af(l-a " 1y ~ 1
™

W, W' -1 >
Therefore, for large values of k;, we have
wn Wil > (e? —1)/2.

Since
Wen, Win, -1 = v1(mi)(1 = vi(my)) ™,

it follows that vi(m;) > &=L for infinitely many m;. On the other hand w,(n) > vi(n).
Therefore

l{n : vp(n) > = —1y-

of +1
and consequently {w;} ¢ Ap.  #
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In the sequel, X shall denote the constant in Lemma (2.2).
Now, for a > 1 fixed, set

(e, p; k) = min{j : W}'P > [o*]}

Lemma: Let {w;} € A, . Then

(2.4) ¢(a,p;k) is a non-decreading function of k, and is one-to-one for k > K,

(2.5) if ki = min{k : p(a,p;k) > i}, we have the inequality WP < o*+!, for every i >
¢(a,p; K). - . _ v ‘

Proof: Let ¥’ >k > K and let m be given by lemma (2.2), then
[o*] < WalP < [@**] <[],

Therefore p(a,p;k) < ¢(a,p;k'). To prove (2.5), observe that wir < wile and that

wla,p;ki)?
W;{ppk ) < [aki+l] < ak'+l. #
a,piki -

If (H,M,v) is a o-finite measure space and f is a measurable function defined on H,

such that . c

viz: |f(2)] > N} < 5

for p < 2, we have

/ F@F v <2 [ dwfe: |7 > A}
{z:|f(z)I<r} 0

2C
-Pp

2-p

r

< 20/ AP d) =
A 2

In particular, if # = Z* and v is the counting measure we have the following lemma.

(2.6) Lemma: Let {w;} € A, and p< 2, then

T ) < s,

{nwwp(n)<r}

(2.7) Lemma: Let {w;} be a sequence of positive real numbers such that {w;} ¢ A,.
Then there exist an unbounded sequence of integers {m;} and a decreasing sequence of
positive real numbers {);}, such that ‘

(_2‘8) fifg.o /\fl{] : 'Up(j) > z\,-mj}| = 00
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Proof: Let E) be the set {n : v,(n) > A}. From the fact that {w;} ¢ A, we have that
M|E,| is an unbounded function of A close to zero. Assume that |E)| < oo for every A.
Choose 7, such that 1f|E,,| > 1. Assume that v;,_; has been chosen. Since for 0 <y < 7;_;
we have the equality

VP |Ey| =97 |Ey = By | + 7P |Eqi,y |,

then there exists ¥; such that
: ‘ﬁlEva =By, 2 #H

Once the sequence {v;} is constructed, define A; = % and m; = i for j € E,,— E,,_;. Then
XU 2 0p(3) > Dems} 2 (BPIG 7m0 2 0() > W)

Yi .
= (T)IJ'E‘Y-' - E‘Y.‘—xl >1

Let us now suppose that there exists A, > 0 such that |E, | = co. Write E,, = {n(z)} with
n(i) < n(i + 1) and take X; = } and m; = logi for n(i - 1) < j < n(i).#
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§3. THE RESULTS

Let {w;} be a sequence of weights and X; be a sequence of random variables on the
probability space (R, F,P). We define the maximal function

n . )
o*(y) = sup iz Xi(®)lwi
n21 i=1 Wi
The main result concerning the behavior of o* in relation to the sequence of weights, es
the following

(3.1) Theorem: Given a sequence of weights {w;}, there exists a constant C such that
the inequality

(32) P(o* > ) < Se(Xa)

holds for every A > 0 and every sequence of integrable, pairwise independent i.d.r.v., if
and only if {w;} € A;. ~
Proof: Let us show first the “only if” part. Let {w;} ¢ A;. By lemma (2.7) there exist
two sequences {\;} and {m;} satisfying (2.8). We are going to construct a sequence of
identically distributed, pairwise independent random variables such that the associated
weighted maximal function is infinity on a set of probability one. Let v; = v,(i). Since
the following inequalities

<2

(33) Xalun < 2l 4 ol

n-1

hold, we have

limsup{|X;|v; > m;} C {¢* = o0}.
Therefore given an integrable random variable X such that 322, P(I1X| > mjv;!) = oo,
via the product theorem and Borel-Cantelli lemma, it is possible to find random vari-

ables X;, with distributions identically that of X, pairwise independent and verifying
P(limsup{|X;|v; > m;}) = 1. Let us produce such an X. Let

b,‘ = /\,l{] 7 > /\;m]-}|.

Since b; is unbounded, we can find a sequence {a;} of non-negative real numbers such
that 3 e; = 1'and Y a;b; = co. Let X be a random variable which takes the value ;!
with probability );a;(i € Z*) and is zero otherwise. Then, clearly, X € L! and

EP(X > m;v; 1) > E E dia;
i=1{;: A7I>m; v 1y

= E/\;a,~|{j tvjfmi > A} = Zagb; =00
i=1

i=1
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To prove sufficiency let us suppose that {w;} € A;. Observe that it is enough to show
the inequality
P(o" > 1) < Ce(X1),

for ¢(X,) < & and non-negative X;’s. Let u be the distribution of X;. Following C.

1
Calderdn, [1], let us introduce the exceptional set
E = U?‘?:lE,', where E; := {’U,‘X,' > 1}
and let Y; := X;xq_p,. Using the fact that {w;} € A; we obtain P(E) < Ce(X;). In fact

© i+l
E)<ZP(E 32 Z/ dp

i=1j=p)

<340 [ a0

We need now to get an estimate of o* on Q@ — E. Let y ¢ E and p(k) = ¢(2,1;k), then by
(2.4), for every n > N = p(K) there is an integer k > K such that p(k —1) < n < p(k) and
2k-1 < sz(k—l) < 2%, Set S, = Z?—l Yiw;, then

IS (y) < 4W, ()c)Scp(k)(y)
<A v(k)l o (k) (¥) — €(Speny)| + £(X1)]-

Consequently we have the following estimate for the maximal function on Q@ — E

ot (y) < D WS, +4 sup w oS (®) = e(Shy) + 4e(X).

Hence

N
(0" > 1) U@= B) C (L WS, > 3)

n=1
1
-1 o _ ’ 1
u {:fzz; W 2y Sy (W) — €(Spy)l > 12}
= A1 U A2

Since it is clear that P(A;) < 3Ne(X;), it remains only to prove a similar estimate for
P(A;). By Chebishev’s inequality we have

P(A;) < C E (k)f 1Stk — €(Spi)l?)

w(k)

i —2k Z E(Y
k=K
<Yoe(¥iwi oy 2
i=1 (k> K p(k)>i}

N 00
< C{Ee()fﬁ)(w,-‘z"‘)2 + 3 6(1/,»2)(10.‘2"“)2},

i=1 i=N+1
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where &; is that of (2.5). Then

42) <C i

X i+l
SCZ/ Izd}l Z v2.

j=0"J Aivig i)

By Lemma (2.6) we have that
0 j+1
P(A;) <CY (5+1)” / £2dp < Ce(X)),
j=0 J

which finishes the proof of the theorem.  #

(3.4) Corollary If {w;} € A1,1 < r < 2 and {X;} is a sequence of L", pairwise indepen-
dent i.d.r.v., then there exists C depending only on r such that

e(o™") < Ce(1Xa ).

This corollary follows from the theorem by interpolation.

Applying Etemadi’s method in the weighted situation we get the theorem of Jamison-
Orey and Pruitt in the pairwise independent case:

(3.5) Theorem: Let {w;} be a sequence of weights. Then, the weighted strong law
of large numbers holds for every integrable, pairwise independent sequence of i.d.r.v. if
and only if {w;} € A;.

Proof: Let {w;} € A;. We can assume that X;’s are non-negative random variables.
Define Y; as in theorem (3.1) and p(«, k) := p(x, 1;k), for « > 1. The same computation
as in theorem (3.1) proves the estimate

o

Since, on the other hand W, , ¢
we have

‘"
qz(u k) ‘(‘Sr,a(u,k))
Wp(u,l:)

> 6) < Cle,m)e(Xy).

£(Syui)x) converges to £(X;), by Borel-Cantelli lemma

S
lim Zelak) = E(Xl) a.c..

k00 W(,(,,'k)
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The sequences {X;} and {Y;} are equivalent, i.e. Y o, P(X; # Yi) < oo, then we have the
almost everywhere convergence of the weighted averages W;(L, kySe(ak) t0 €(X1). Now, for
every n > p(a, K) there exists k such that ¢(a,k) < n < p(a,k+1) and [a*] < Wi(ax) < [eFH].
Then for those valuis of n we have

11 ) S(ak) < S_,,< a? Sep(a,k+1)
ot af ) Woary) = Wa = \1=a™*) Wegaesn)’

"hence
1 .. S . Sn 2
;5(}(1) < Izmzann < Izmsup—W: < a‘e(Xy)
almost everywhere, for every o« > 1. Then the strong law of large numbers holds. Let
now {w;} be a weight sequence such that {w;} ¢ A;. The first inequality in (3.3) shows
that ‘
limsup{|X;|v; > m;} C Iimsup{wj'1|5j[ > %}

Then the same example as in theorem (3.1) shows that {w;} € A, is also necessary.  #

Let us now consider the p* weighted maximal function

Sn(9)]

o (y) = su,
»(¥) Sup e

where 1 < p < 2,S:(y) = Y, Xi(y)wi and W, = Y i, wi. This maximal function is the
weighted extension of that of C. Calderén and corresponds to the strong law for the
averages -2»- whose non weighted analogues can be found in [5], page 255.

In order to prove the weak type (p,p) of o} in the independent case we shall use a
Kolmogorov type inequality, more precisely the following extension, proved by J. Hajek
and A. Rényi in [3]:

If¢),65,83,...,&,... is an L? sequence of mutually independent random variables, each
with mean value zero, and C is a non-increasing sequence of positive numbers, then the
inequality '

1 = 2 .2
P{mag Ciler+&+ .. +&| 2} < ;;Ck” (Xi)

holds for every ¢ > 0 and any positive integer n.

(3.6) Theorem: Given a sequence of weights {w;}, there exists a constant C, such that
the inequality ,

(37) P(oy > ) < SEe(lXiP)

holds for every A > 0 and every sequence of L, independent symmetric i.d.r.v., if an
only if {w;} € A,.
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Proof: Since all the lemmas in section 2 hold for 1 < p < 2, the proof of the “only if”
part follows the same pattern as in theorem (3.1).
If {w:} € A,, as before, it is enough to prove the following inequality

P(o} > 1) < Cpe(IX1 7).

Let us define E; = {v,(i)|X;| > 1}; E = UR,E; and Y; = Xixa-g,- Since the X;’s are
symmetrically distributed, e(Y;) = ¢(X;) = 0 for every i. The estimate P(E) < Ce(|X1|P)
can be obtained as in theorem (3.1) taking into account that {w;} € A,. Let

S = sup WiP|Sy

1<k<n

and
S™ = suka l/’D|S R

where S, is the weighted k™ sum of the ¥;’s. Applying Hajek-Rényi inequality to & = Yiw
and C, = 1/ P we obtain

P(Sr>1) Zv
Then -
P({o} > 1}n{Q~ E}) = P(S" > 1) Zv (De(¥?) < Coe(1Xal),

the last inequality follows from the fact that {w;} € A, as in theorem (3.1).  #

(3.8) Remark: The corresponding strong law

Sn
7} 7 0 a.e.
holds if {w;} € A,.
In the pairwise independent case we can consider the following weighted analogue
of the diadic maximal studied by C. Calderdn:

* IS‘P(C‘ P; k)l

ap 1/p
€21 Wotapn)

Etemadi’s method used in theorem (3.1) allows us to obtain the following result:

(3.9) Theorem: Let 1<p<2, {w} €A, and {X;} be a sequence of symmetrically and
identically distributed pairwise independent L? random variables, then

Plog,p Dre(1XaP).  #
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