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ABSTRACT. It  i s  shown that a unique solution to  a nonlinear integral equation obtained 

from the heat equation with nonlinear boundary conditions, can be obtained by successive 

approximations in the spaces VeO, (0) . A natural extension is then considered in the final 

section. 

1. INTRODUCTION 

We consider initially, a problem involving the temperature of a semi-infinite heat

conducting solid occupying the half-space x 2 ° and satisfYing a nonlinear boundary 

condition at x = O. By letting T(x, t) be the temperature, the following initial value 

problem results. 

Tt(x, t) = T",,(x, t), x >  0, t > ° 
Tx(O, t) = aTn(O, t) - f(t), t >  ° 
T(x, O) = ° X 2 0  
T(x, t) --+ ° as x --+ 00 t 2 0  

where a is a given positive constant and n is a positive integer. 

( 1 . l ) 

( 1 .2) 

( 1 .3) 

( 1 .4) 

It could be observed that the case where n = 1 is equivalent to Newton' s Law of Cooling 

. and the case where n = 4 is equivalent to the Stefan-Boltzmann Radiation Law. This 

problem was considered by Keller and Olmstead [2], Mann and Wolf [4], Padmavally[5], 

and Roberts and Mann [6] . 

2. ESTIMA TES 

A solution T(x, t) of equations ( 1 . 1 ) to ( 1 .4) can be obtained in the form 

T(x, t) = ct rt eXPn -S)] T n (O, S) dS + c2 rt exp[ -x / 4(t - s)]
f(s) ds (2. 1 )  Jo (t - s) Jo �(t - s ) 
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where Cl and C2 are constants. 

By setting x = ° in equation (2 . 1 ), we obtain the integral equation 
t 1 t 1 

T(O, t) = c l r � r (o, s) ds + c2 r � f(S) dS Jo (t -s) Jo (t - s) (2 .2) 

A solution T(O, t) to equation (2 .2) will yield the solution T(x, t) of equations ( 1 . 1 ) to 

( l .4). Keller and Olmstead [2] showed the existence of this solution by successive 

approximations. In this note, we show that a contraction mapping does exist in an 

appropriate U(O, 00) space, namely, f; I lfl l p = ( f I f(t)I P dt l /p ] < oo where 1 sp < oo . 

This consequently implies the existence of a unique solution achievable by successive 

approximations. More precisely, we state the following theorem. 

Theorem 1 

Equation (2 .2) has a unique solution in the space VeO, 00), provided that tne function F2(t) 

t [ ] I/' = c2 i (t - s rl/2 f(s) ds satisfies the relation I IFz ll ,  = t" IF(s l ds < eo where 

EO = Eo(n, Cl,  C2) and r = 2(n - 1 ) .  The solution is obtainable through the iterations, 

Proof (A Version of the Contraction Mapping): 

Let us call cj>(t) = T(O, t) and define the mapping 
I 1 I 1 

A(</» =c¡ r � </>n (s) ds + c2 J r¡:-;::; f(s) ds J o ..; (t - s) o ..; (t - s) From the potential theorem 

(pages 1 1 9 and 120 of [7]), we obtain I IA(</>>II, SC l M: +C2 1 1FI I , where + =� - �- , 
p =� , r = 2(n - 1 ), and F = C2 1\ � f( s)ds Now, consider the convex function 

n . � -0 
y = clx" + Yo where Yo > ° and n > l . The equation x = Ca{D + yo possesses two positive 
roots if yo is small. Call Xl the smallest positive root . If O < X :s; XI ,  then we have 
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C1X" + yo S X I . Hence I IA(cf» II , � x ¡ if  M, � X I ' Secondly, if yo � O" then X l  -� O·. On 

the other hand, it can be readily seen that 

IA( cf>¡ ) -A( cf>2 )1 �nc ¡ rl � (1cf>¡ 1 + 1cf>2 1 )" -¡ Icf>¡ - cf>2 1 ds .  On applying the potential Jo ,, (t - s) 

theorem [7] again with ! = 

n - l +! - -.!. and r = 2(n - 1 ), we obtain 
r r r 2 

I IA( cf>¡ )-A( cf>z >lI , � 2ll -1 nC l x � -¡ I Icf>¡ - cf>z l l , . By selecting 2" -¡ nC ¡ X � -I < 1 , the mapping 

<1> � A(<I» becomes a contraction mapping in the ball {cf>; M, � x ¡ } Here it should be 

noted that Xl is a function Of Yl and moreover, Xl  � O' i fyo � O ' . Thus with the 

establishment of a contraction mapping, we note that if f E L4(0, (0) and <1> E L'(O, 00) with 

r = 2(n - 1) and q = �(n - 1) , then the solution will always be meaningful for n > 2 .  
n 

In the particular case of Stefan' s  Radiation Law, where n = 4, we obtain r = 6 implying 

that I IA(cf>t � C ¡M: + Cz I IFl ló ' The equation y = c ¡ xn + Yo then becomes x = C 1 X4 + yi) 

and Xl is its smallest positive root . Then for any <1>1 and <1>2, we can obtain 

contraction mapping. 

3. A NATURAL EXTENSION 

The problem in Section 1 can be stated in a more general context . Namely, to solve the 

integral equation; 

u(X) = c J ( 1 t -r; (u(y)y dy + f(x) 
p x - y 

(3 . 1  ) 

where p is the parabolic distance, that is, p is the unique root of the equation 

" �]Z � (p:' =1 . a¡ � 1 ,  la l =a ¡  + a z  + . . .  + an , and ° <(j <la! . Kemels of the type shown in 

equation (3 . 1 ) arise in the modeling of nonisotropic diffusion. The case where k = 4, as 
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indieated earlier, relates t o  the Stefan-Boltzmann Radiation Law. Equation (3 . 1 ) can be 
solved by using the method of sueeessive approximations. 

Due to the appearanee of a parabolie potential operator in equation (3 . 1 ) we invoke the 
following theorem, the proof of whieh can be found in [ 1 ] .  

Theorem 2 

Let u(x) = J __ l lal -¡Jv(y) dy, if v E LP(Rn) then u E C(Rn) where 1_ =! 
- 1

{3
1 '  p{x-y) . r p a 

1 {3 
1 >- --

1 1  
>0 , and I lul l s el lvl l (e does not depend on v). 

p a , r  p 

A eonsequenee of this theorem is the following: 

Theorem 3 

Let u(x) = J 1 ' a ! -¡J  vk (y) dy + f(x) p(x -y) . 
la l k lal k If i > k _ } , then for p = (k - })¡ we have that I lul l r s e I lvl l p + I lfl l p  . 

(3 .2) 

The proof of this theorem is a direet eonsequence of the tollowing theorem, the proof of 

whieh follows the same lines used in proving theorem 1 .  

Theorem 4 

Let fo =llfl l p and let Xl be the smallest positive root of the equation y = e� + fo when y = 

x. Ifv; I lvl l p s X I then I lu l l p s X I ' Furthermore, X l  � O ' as fo � O ' and if I lfl l p i s  small 

enough; then the mapping deseribed by equation (3 .2) is a eontraetion mapping in U(Rn) 

for p = (k - l)� . (3 
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