
Revista de la 
Union Matematica Argentina 
Volumen 40,1996. 

ON THE STRUCTURE OF THE CLASSIFYING RING OF 

SO(n,l) AND SU(n,l) 

JUAN A. TIRAO 

15 

Pri'sentado por R. Panzone 

ABSTRACT. Let Go bea non compact real semisimple Lie group with finite center, 
and let U(g)K denote the centralizer in U(g) of a maximal compact subgroup Ko 
of Go. By the fundamental work of Harish-Chandra it is known that many deep 
questions concerning the infinite dimensional representation theory of Go reduce to 
questions about the structure and finite dimensional representation theory of the 
algebra U(g)!\, called the classifying ring of Go. To study the algebra U(g)](, B. 
Kostant suggested to consider the projection map P: U(g) -> U(t)<2>U(a), associated 
to an Iwasawa decomposition Go = KoAoNo of Go, adapted to Ko. When P is 
restricted to U(g)K P becomes an injective anti-homomorphism of algebras. In this 
paper we use the characterization of the image of U(g)](, when Go =SO(n,l) or 
SU(n,l) obtained in Tirao [11], to prove that U(g)]( ~ Z(g) <2> Z(£), where Z(g) and 
Z(t) denote respectively the centers of U(g) and of U(t). By a well known theorem 
of Harish-Chandra these two centers are polynomial rings in rank(g) and rank(t) 
indeterminates, respectively. Thus the algebraic structuTe of U{g)K is completely 
determined in this two cases. 

1. INTRODUCTION 

Let Go be a non compact real semisimple Lie group with finite center, and 
let J{o denote a maximal compact subgr.oup of Go. If l: C g denote the respective 
complexified Lie algebras, let U(g) be the universal enveloping algebra of g and let 
U(g)K denote the centralizer of J{o in U(g). 

By the fundamental work of Harish-Chandra it is known that many deep ques
tions concerning the infinite dimensional representation theory of Go reduce to 
questions about the structure and finite dimensional representaton theory of the 
algebra U (g)K, called the classifying ring of Go (cf. Cooper [2]). Briefly, the reason 
for .this is as follows: To any quasi-simple irreducible Banach space representation 
7r of Go there is associated an algebraically irreducible U (g )-module V which is 
locally finite for J{ 0 and which determines 7r up to infinitesimal equivalence. In fact 
one has a primary decomposition V = EB Vb, where the sum is taken over the set 
ko of ail equivalence classes {j of finite dimensional irreducible representations of 
J{o, and the multiplicity of {j is finite for any {j E k o . Then, in particular, any Vb 
is finite dimensional and hence, a finite dimensional U(g)K-module. The point is 
that V itself as a U(g)-module is completely determined by Vb as a U(g)K-module 
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for any fixed 8 when Va # 0. See Lepowsky and McCollum [10] and Lepowsky [9] 
for a nice exposition of this. See also Dixmier [3] an~ Wallach [12]. 

When Vb o # 0, where 80 is the class of the trivial representation of K 0, then 
7f is called spherical. The approach above has been quite successful in dealing with 
spherical irreducible representations of Go (see e.g. Kosiant [7]). Indeed, we may 
take 8 = 80 and thus we have only to consider a quotient U(g)K / I instead of 
U(g)K. Here I is the intersection of U(g)K with the left ideal in U(g) generated 
by ~. Now by a theorem of Harish-Chandra, U (g)K / I is not only commutative but 
also isomorphic to a polynomial ring in r variables, where r is the split ranll·of Go. 
More precisely one has an algebra exact sequence 

(1) 

where 0 is the complex abelian Lie algebra associated to an Iwasawa decomposition 

Go = KoAoNo of Go adapted to Ko, and U(o)W is the ring of W-invariants in 
U(o), W being the translated Weyl group. 

To investigate the general (not necessarily spherical) case along these lines one 
must look at U(g)K itself, not just U(g)K / I. It is known (see e.g. Kostant and 
Tirao [8]) that the map (1) may be replaced by an exact sequence 

where U(e)M denote the centralizer of Mo in U(~), Mo being the centralizer of Ao 
in [(0 and U(~)M ® U(o) is given the tensor product algebra structure. Moreover 
P is an antihomomorphism of algebras. In order to generalize (1) it is necessary 
t.o determine the image of P. Towards this end we introduced in Tirao [11] a 
sub algebra B of U(~)M ® U(o) defined by a set of equations derived from certain 

imbeddings among Verma modules and the sub algebra BW of all elements in B 
which commute with certain intertwining operators. Such operators are in a one to 
one correspondence with the elements of the Weyl group Wand are rather closely 

relatecl to the Kunze-Stein intertwining operators. In fact the relation of BW to B 
may be taken as the generalization of the relation of U(o)W to U(o). In Tirao [11} 

it is proved that the image of P lies always in BW, and that when Go =SO(n,l) or 

SU(n,l) we have p(U(g)K) = BW. 
In this paper we use this result to exhibit the structure of U (g)K in this two 

cases. In fact we shall prove that U(g)K ::::: Z(g) ® Z(~), where Z(g) and Z(~) 
denote respectively the centers of U(g) and of U(~). By a well known theorem 
of Harish-Chandra these two centers are polynomial rings in rank(g) and rank(~) 
indeterminates, respectively. Thus our work is finished. 

Nowadays there are several proofs that U(g)K is a polynomial ring (Cooper 
[2], Benabdallah [1], Knop [6]), nevertheless our approach should prove to be useful 
to attack the general case, or at least the case when Go is any real rank one group. 

2. THE ALGEBRA B 

Let to be a Cartan suhalgebra of the Lie algebra mo of Mo. Set ~o = to if) 0 0 

and let ~ == t EEl 0 be the corresponding complexification. Then ~o and ~ are Cartan 
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subalgebras of go arid g, respectively. Now we choose a Borel subalgebra t EEl m+ 
of the complexification m of mo and take b = b EEl m+ EEl n as a Borel sub algebra 
of g. Let ~+ be the corresponding set of positive roots, put g+ = m+ EEl n and 
g- = L:O'E~+ g-O'. Also put p = ~ L:O'E~+ a. Set (,) denotes the Killing form of 
9 and (p,a) = 2(p,a)/(a,a). For a E ~+ let HO' E b be the unique element such 
that (p,a) = p(HO') for all p E b*. Also set HO' = yO' + ZO' where yO' E t and 
ZO' E o. Let p+ = {a E ~ + : ZO' -# O}. 

Let 9 = ~ EEl P be the complexified Cart an decomposition, associated to Ko, 
and let () denote the corresponding Cartan involution. Also let M~ den.ote the 
normalizer of Ao in ](0' Let a E p+ be a simple root such that yO' -# O. Set 
EO' = X-O' + (}X_O' where X_O'is a non zero root vector corrresponding to -a. 

When Go == SO(n, l)e (n -# 3) there is only one simple root a1 E p+ (ifn = 3 
there-are two simple roots al,a2E P+). When Go == SU(n, 1) (n ~ 2) there-are 
exactly two simple roots al, an in P+. Set El = EO'l (n -# 3) and El = Eetl , E0'2 
when n = 3 in the first case, and E2 = E 0I1 , Es = EO'n in the second case. We 
shall also use E to designate anyone of the vectors E l , E2 orEs and a for al, 
(al or (2), al or an, respectively. Moreover Yo' -# 0 if Go = SO(n, l)e n ~ 3 or 
Go = SU(n, 1) n ~ 2. From now on we shall take for granted that we are in one of 
these cases. 

From (8) and (9) of Tirao [11] we know that the algebra B is the set of all 
b E U(~)M ® U(o) such that for all n E N 

(2) 

holds for (E,a) = (El,at} and (E,a) = (E2, at},(Es, an), respectively. Also 

(3) B W = {b E B: Ow *b(.-\ - p) = b(w(.-\) - p) *ow for all w E M~,.-\ E o*}. 

The algebraic structure of U(g)K when- Go =SO(n,l) or SU(n,l) n ~ 2 will be 
determined by induction on n. The case SO(2,1) is quite simple and will be con
sidered later. Thus we shall take up now the case Go = SU(2, 1). If u is any Lie 
algebra z(u) will denote the center of u and Z(u) will denote the center of U(u). 

Lemma 1. If Go = SU(2, 1) set Y = YO'l = - Y0'2' Also let 0 -# D E z(~) and let 
( denote the Casimir element of[~,~]. Then {(iDjyk};,j,k~O is a basis ofU(~)M. 
Moreover the canonical homomorphism p : Z(~) ® Z(m) -+ U(~)M is a surjective 
isomorphism. 

Proof The set {E2' Es,D, Y} is a basis of~. Therefore the monomials E~E~Djyk 
form a basis of U(~). Now m is one-dimensional and Y E m. From Lemma 29 
of Tirao [11] it follows that [Y, E2] = -(3/2)E2 and [Y, Es] = (3/2)Es. Hence 
{E~E~Djyk};,j,k~O is a basis of U(~)M. Now (= aE2Es + by2 + CD2 + dYD + 
eY + JD, a,b,c,d,e,! E C, a -# O. Thus {(iDjykh,j,k~O is a basis of U(~)M. 

Since {(i Djh,j~o is a basis of Z(~) and {ykh~o is a basis of U(m) = Z(m) 
the first assertion of the lemma implies the second. 

Proposition 2. For j = 2, 31et 

Bj = {b E U(~)M ® U(o) : EJb(t - (-l)iy - 1) = b( -t - (-l)iy - l)EJ, tEN}. 
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Then Bi, as an algebra over C, is generated by the algebraically independent 
elements(01,D01,(Y01+(-1)i 0Z+(-1)i)2,Y01-3(-1)j 0Z and 1. 

Proof If b E U(~)M 0 U(a) then by Lemma 1 b can be written uniquely as b = 
"\' i'k I .,] 3· 
L..J ai,j,k,l( DJY 0 Z , ai,i,k,1 E C. Smce [( -I)JY, Ej = -2Ej () = 2,3) from 
Lemma 18 (vi) of Tirao [11] we get 

Ejb(t - (-I)jy - 1) = L: ai,j,k,l(i DiBjyk(t - (-I)jy - 1)1 
i,j,k,1 

i,j,k,l 

Thus b E Bj if and only if for all i, j, tEN we have 

'"""' '3 k t . I '"""' k . I L..,.a;,j,k,I(Y + (-I)32t) (-2 - (-l)Jy -1) = L..,.ai,j,k,IY (-t - (-l)3Y -1) . 
k,l k,1 

Hence the problem of characterizing all b E Bj is equivalent to determine all f E 
C[XI,X2] such that 

(4) f(y+ (-I)j ~t, -~ - (-I)jy - 1) = fey, -t - (-I)jy - 1) 

for all t, Y E C. 
For j = 2,3 let fj E C[XI, X2] be defined by 

(5) f(XI,X2) = fj(XI + (-I)i(x2 + I),XI - 3(-I)i(x2 + 1)). 

Then f satisfies (4) if and only if h((-I)jt,4y + 3(-I)jt) = fj(-(-I)jt,4y + 
3( -I)jt) for all t, y E C. Equivalently if and only if 

'"""' . 2k . 1 (6) f= L..,. ak,l(xl + (-1)3 (X2 + 1)) (Xl - 3(-I)J(x2 + 1)) . 
k,l 

From this it follows that Bj is generated by (0I,D 0I,(Y 01 + (-I)j 0 Z + 
(_1)i)2, Y 0 1 - 3( -I)i 0 Z and L Clearly these elements are algebraically inde
pendent. 

Now we want to determine the algebra B = B2 n B3 . Given f E C[XI, X2] 
let a(f) E C[Xl,X2] be defined by a(f)(xI,X2) = f(V3xI,X2 - 1). Also let Tj 
(j = 2,3) be the automorphism of C[XI,X2] induced by the linear map: 1j(xt} = 

I 'f<) l'f<») -2(Xl + (-I)J y 3x2)' Tj (X2) = -2((-I)J y 3xl - X2 . 

Lemma 3. An element f E C[XI, X2] satisfies (4) if and only if Tj (a(f)) = a(f) 
(j = 2,3). 

Proof First of all for j = 2,3 we compute 1j(V3XI +( -I)i X2) = -(V3XI +( -I)j X2) 
and Tj (V3XI - 3(-I)j X2) = V3XI - 3(-1)j X2. If we use the notation introduced 
in (5) we get 

a(f)(XI, X2) = fj(V3xI + (-I)j X2, V3Xl - 3( -I)j X2), 

1j(a(f))(xl' X2) = fj( -(V3Xl + (-I)j X2), V3XI - 3( -I)i X2)' 

Therefore 1j (a(f)) = a(f) if and only if fj is even in the first variable. This is the 
same as saying that f has the form stated in (6), which was shown to be equivalent 
to (4). 
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Proposition 4. Let W denote the group of automorphisms of C[X1, X2] generated 
by T2 , T3 . Then: 
(i) W is isomorphic to the Weyl group of5u(2, 1). 
(ii) The algebra C [Xl, X2]W of all W -invariants is generated by the algebraically 
independent polynomials xi + x~, xl(xi - 3x~) and 1. 

Proof. Let us consider on RXI EB RX2 the inner product defined by requiring that 
Xl, x2 be an orthonormal basis. Then the restriction of 1j to RXI EB RX2 is the 
reflection on the line generated by ~(Xl- (-1)jV3x2) (j = 2,3). Moreover, if we 
identify ~it with RXI EB RX2 by the linear map t: ~it --+ RXI E& RX2 defined by 
teal) = ~(V3Xl +X2), l-(a2) = ~(-V3Xl +X2), then the simple reflections S"" and 
Sa, correspond respectively to T2 and T3 . This establishes (i). 

To prove (ii) we just need to recall how one ~ets the Weyl~roup invariants 
on-OR :r:et el; e-2, eabe -the- can~~ic~ basi~ ~f R 3 and let H be the orthogonal 
complement of R(e1 + e2 + e3)' Then the inclusion map j: ~it --+ R3 defined by 
j(aI) = e1 - e2, j(a2) = e2 - e3 identifies hit with H. Also the action of the Weyl 
group on fJit corresponds to the restriction to H of the action of the symmetric 
group 53 on R3 defined by (T(ei) = ea(i), 0" E 53; i = ],2,:3. If Yl,Y2,Y3 denote 
the coordinate functions on R3 then it is well known that the 53 -invariants on 
R3 are generated by the elementary symmetric polynomials P1 = Yl + Y2 + Y3, 
P2 = yi + y~ + Y5, P3 = yr + y~ + yg and 1. Moreover the restrictions of P2 and ])3 to 
H together with 1 generates all 53-invariants on H. Since j(xI) = (el -2e2+e3)/V3 
and j(X2) = el - e3 we get 

But W is contained in the orthogonal group of RXI EB RJ:2 therefore xi + ;d, 
Xl (xi - 3x~) and 1 generate C[a::l> X2PV . 

Theorem 5. If Go = SU(2, 1) tilen the algebra B is generated by the aJg;ebraically 
independent elements (01, D 01, y2 01 + 3 0 (Z + 1)2, y3 @ 1- 9Y 0 (Z + 1)2 

and 1. Moreover B W = B. 

Proof From Proposition 2 and Lemma 3 we know that all elements b of Bare 
precisely of the form b = Li,j ((i Dj 01)J;,j (Y 0 1,1 0Z) where a (ji ,j ) E C[Xl, X2]W . 
Now Proposition 4 tells us that a(xi+3(x2+1)2) = 3(xi+x~), a(Xr-9Xl(X2+1?) = 
3V3xl (xi - 3x~) and 1 generates C[ Xl, X2]W, The first 'assertion is proved. 

It is well known that there is an element w in the center of Ko such that 
Ad(w)la = -1. Then (3) implies that BW = {b E B : b(,\ - p) = b( -). -
p) for all), E a*}. Using Lemma 29 of Tirao [11] we obtain: al(Za,) = Cq(H",,)
al(Y",,) = 2-3/2 = 1/2, thusp(Z) = 2a1(Za.) = 1. Ifb = Lbj 0Zj E U(e)@U(a) 
let b = L bj 0 (Z - l)j. Then b(). - p) = b( -). - p) if and only if b()') = b( -).) 

(>. E a*). Now B = B W is a direct consequence of the first assertion. The theorem 
is proved. 

:3. THE STRUCTURE OF U(g)K 

Proposition 6. Ifu E Z(g) then P(11) E U(m)M 0 U(a). 
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Proof Let 9 = n E& m E& a E& n, where n = 2:::>.>og>. and n = 2:::>.>og->.. We 
enumerate 6.(g,a)+ as {Al, ... ,Ap }. Let Xj,l, ... ,Xj,m(j) (resp. Yj,l, ... ,Yj,m(j)) 
be a basis of g>.; (resp. g->.J. Then set Xf = (Xj,d k1 ... (Xj,m(j))kmU) and 
~I = (Yj,d' ... (Yj,m(j))im(j), where K = (k1, ... km(j)) and I = h, ... im(j)). 
Then the PoincarEf-Birkhoff-Witt Theorem implies that U E U(g) can be written in 
a umque way as 

(7) U = 2)Yi)!, ... (Yp)IpUj,k(XdK, ... (Xp)Kp, Uj,k E U(m E& a), 
j,k 

where J = (h, ... ,Ip) and k = (Kl, ... ,Kp). If U E Z(g) then Hu - uH = 0 
for all H E a, therefore the sum (51) is restricted to all pairs J, k such that 
2::: IIj IAj = 2::: IKj IAj, which clearly implies that P(u) = u66 E U(m E& a) or more 
precisely that P(u) E U(m)M ® U(a). The proposition is p~oved. 

Since m = m- E& t E& m+ we have 

U(m) = U(t) E& (m-U(m) E& U(m)m+). 

Let q denote the projection of U(m) onto U(t) corresponding to this direct sum 
decomposition and set Q = q ® id : U(m) ® U(a) ~ U(t) ® U(a). Since t E& a is 
abelian, we shall use U(t) ® U(a) and 5(t) ® 5(a) = 5(t E& a) interchangeably. 

Recall the following not.ation: if 0' E P+ is a simple root such that Y", i- 0 
(H", = Y", + Za, Y", E t, Za E a) set Ea = X-a + eX-a where X-a i- 0 in g-a' 
Also we put 

Ba = {b E U(t)M 159 U(a) : E~b(n - Ya - 1) == b( -n - Ya - 1)E~, n EN}. 

Let f,., er E (twa)* be defined by Vlt = O'lt, v(Z",) = -O'(Ya ) and erlt = 0, er(Z",) = 1. 

Lemma 7. All element bE U(m)M ® U(a) belongs to B", if and only if 

(8) Q(b)(t.er + p + ti) - er) = Q(b)( -ter + p - er) 

for all ji E (t EEl a)* such that p(Za) = -P(Yo:) and al1 tEN. 

Proof We enumerate 6.(m, t)+ = {,8I, ... ,,8q} and choose a basis X 1, ... , X q of 
m + with Xj E mpj . Also let Y1 , ... , Yq be a basis of m - with Yj E m_,6j' Moreover 
let H1"",Hz be a basis of t. If I,K E N6 then set XK = (Xdk1 .. ·(Xq)kq, 
yI = (Yd i , " . (yq)i q. If J E N~ then put H J = (HJ)it ... (H/)iI. Then the 
PoinearEf-Birkhoff-Witt Theorem implies that the elements yI H J XK 159 Z~ form a 
basis of U( m) 0 U(a). 

Now if bE U(m)M ® U(a), b = 2:::aI,J,K,8yIHJXK ® Z~ then aI,J,K,s i- 0 
and I I- 0 imply K i- O. Therefore b E B", if and only if for all tEN 

L aI,.J,K,8E~yI H J XK (t - Yo: - 1)8 == L aI,J,K,8yIHJ XK (-t - Y", - 1)" E~ 

which is equivalent to 
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because [m+,E",] = O. Using Lemma 18 (vi) of Tirao [11] repeately (9) can be 
written as 
(10) 

E~ L aO,J,o"HJ (t - Y", - I)' == E~ L aO,J,O,s 

x (Hl - ta(Hl ))i1 ... (HI - ta(HI))j, ( - t - Y", + ta(Y",) - 1)'. 

By Lemma 20 of Tirao [11] E; can be cancelled in both sides of (10) and then 
clearly the equivalence sign can be replaced by an equal sign. Thus 
(11) 

L aO,J,o"HJ (t - Y", - I)S = L aO,J,O,s (Hl - ta(Hl))i1 ... (HI - ta(HI))j, 

.. x ( ~~ -:X£Y± t~D':",l_-_I)' ."._ 

If we evaluate both sides of (11) at p, E t* we get 

(12) 
L aO,J,o,sH J (p,)(t - p,(Y",) - 1)' = L ao,J,o,sHJ (p, - ta) 

x ( - t - p,(Y",) + ta(Ya ) - 1)'. 

Let jj E (t EE! a)* be defined by jjlt = p, and jj(Z",) = -p,(Y",). Then t - p,(Ya) - 1 = 
(tIT + jj - IT)(Za) and -t - p,(Ya ) + ta(Y",) - 1 = (-tIT + jj - tv - IT)(Za). Therefore 
(12) is equivalent to 

If we change jj by jj + tv and since Q(b) = "L ao,J,o,sHJ 1/9 Z~ we get that bE Ba if 
and only if (8) holds for all jj E (tEE! a)* such that jj(Z",) = -jj(Y",). This completes 
the proof of the lemma. 

To make things more transparent we recall some basic facts about the structure 
of Go = SO(n,l)e or SU(n, 1). Let F denote either the reals R or the complexes 
C and let x 1-+ X be the standard involution. For x E F set IxI 2 = xx. 

Consider on F n +l the quadratic form q( Xl, ... , X n +1) = IXll2 + ... + IXn 12 -
IXn+112. Then Go is the connected component of the identity in the group of all 
F-linear transformations 9 of Fn+1 preserving q and such that det(g) = 1. Then 
Go = SO(n, l)e or SU(n, 1) according as F = R or C. If we set 

where I denotes the n x n identity matrix, we have 

Go = {A E GL(n + 1,F): tAQA = Q,det(A) = 1}o. 

Here the subindex "0" in the right hand side denotes the connected componet of 
the identity. We also have 

go = {X E glen + 1, F):t XQ + QX = 0, Tr(X) = O}. 
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The Lie algebra go has a Cartan decomposition go = to EB Po where 

to = { (~ ~): t X + X := 0, w + Th(X) = 0 } 

and 

In each case the Cartan involution () is given by (}(X) = _tX. 
Let Ei ,j E £I [( n + 1, F) denote the matrix with a one in the (i, j) entry and zero 

otherwise. Set Ho = E1,n+1 + En+1,1 and let 0 0 = {tHo: t E R} in both cases. 
As we know 0 0 is a maximal abelian subspace of Po. Let A be the complex linear 
functional on 0 defined by A(Ho) = 1. Then, we have A(g,o) = {±A} if F = R 
and A(g, ll) = {±A, ±2A} if F = e. In both cases we choose II = {A} as a set of 
simple roots. Now consider the following Cartan sub algebra of m: 
ifF = R 

(13) 

ifF= e 

p-1 

t = {T = L itj+1(E2j,2j+1 - E2j+1,2j) : tj E e}, 
j=1 

n 

(14) t = {T = t1(E1,1 + En+1,n+d + LtjEj,j : Th(T) = 0, tj E e}, 
j=2 

where p - 1 = [(n - 1)/2]. Then as we know ~ = t EB 0 is a Cartan subalgebra of g. 
Now according as F = R or e we define linear functionals Aj on ~ as follows, 

(15) Aj(H)={t, ~=1 
tj, J = 2, ... ,p 

respectively. Here H = T + tHo where T is as in (13) and (14). Now a positive 
root system of m with respect to t can be discribed as follows: 
ifF = R 

(16) A(m,t)+ = {{Ai±Aj ~2~~<~~P}U{Ai :2~i~p}, n=2p 
{Ai ± Aj . 2 ~ Z < J ~ p}, n = 2p - 1, 

ifF = e 
A(m,t)+ = {Ai - Aj : 2 ~ i < j ~ n}. 

If A(g, ~) denotes the root system of g with respect to ~, we define a positive root 
system A(g, ~)+ compatible with A(g,o)+ and A(m, t)+, as follows: we say that 
a E A(g,~) is positive if, whenever ada -# 0 then ala E A(g, 0)+ and if a is such 
that. ala = 0 then alt E A(m, t)+. A straightforward computation shows that: 
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ifF = R 

ifF = C 
~(g, ~)+ = {Ai - )..j : 1::; i < j :s: n + I}. 

The corresponding sets of simple roots are: 
ifF = R 

{
{ab ... ,ap }, n=2p,p~2 

II(m,t)= {a1, ... ,ap }, n=2p-1,p2:3 

0, n = 3; 

ifF = C 

n = 2p 

n = 2p-1, 

II(g,~)={a1, ... ,an}, ai=)..i-)..i+1(i=l, ... ,n), 

( ) { {a2, ... ,an-d, n2:3 
II m,t = 

0, n = 2. 

In ,vhat follovls Vle shall consider Q as a linear map from U(mJ Q9 U(a) onto 
S(~). Also if wE W(g,~) we set 

S(~)W = {pE S(~) : p(w(J-L) ~ p) = p(J-L - p), for all J-L E ~*}. 

Proposition 8. Let Go = SO(n, l)e or SU(n, 1). If a E P+ is a simple root then 
an element b E U(m)M ® U(u) belongs to Ba if and only ifQ(b) E S(~)s<>. 

Proof We shall consider three cases according to: (i) Go = SO(2p - 1,1), p 2: 2, 
(ii) Go = SO(2p, 1), p 2: 2 and (iii) Go = SU(n, 1) n ~ 2. 

(i) If p 2: 3 then a1 = ).1 - )..2 is the unique simple root in P+. When 
p = 2, a1 = )..1 - )..2 anda2 = )..1 + )..2 are both in P+. We shall only consider 
the case a = aI, leaving the other to the reader. A simple computation gives: 
Ha, = Ho - i(E2,3 - E3,2); hence Ya, = -i(E2,3 - E3,2) and Za, = Ho. Now 
ji E ~ * satisfies ji( Za,) = - ji(Ya,) if and only if ji = X().l + ).2) + X3).3 + ... + XpAp, 
X, X3, ... , xp E C. We have iJ = -).1 - ).2and cr = ).1 (see the definitions given 
right before Lemma 7). Also p = (p - 1) .. 1 + (p - 2) .. 2 + ... + )..p-1. 

We shall identify p E S(~) with the polynomial function on CP defined by 
p(X1"'" xp) = p(X1)..1 + ... + xp)..p). Then (see (8)) the following equation 

(17) 

for all ji E ~ * such that ji( Z a,) = - ji(Ya,) and all tEN, can be rewritten as 

(18) p(x - 1, x - t, X3, ... , xp) = p(x - t - 1, X, X3,"" xp) 
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for all X,X3, ... ,Xp E C and all tEN. For P E S(~) let p E S(~) be defined by 
p(/-!) = p(/-!- p), /-! E ~*. Then it can be easily seen that (18) is equivalent to 

(19) p(X,X +t,x3, ... ,xp) = p(x +t,X,X3, ... ,xp) 

for all x, X3, ... , xp E C and all t E Z. Let 8: CP ~ CP be the symmetry given 
by 8(Xl, X2, X3, ... , xp) = (X2, Xl, X3, ... , Xp). If P satisfies (19) then the zero set of 
p 0 8 - P contains an infinite number of parallel hyperplanes. Hence p satisfies (17) 
if and only if p08 = p. But 8"" (Ad = A2 and 8"" (Aj) = Aj for 3 ~ j ~ p. Therefore 
8 corresponds precisely to 8"" under the identification of ~* with CP defined above. 
Thus if p = Q(b), b E U(m)M ® U(o), then b E B"" if and only if (Lemma 7) 
p E S(~)8", as we wanted to prove. 

(ii) The cases Go = SO(2p, 1) p ~ 2, are completely similar to those considered 
in (i) and are left to the reader. 

(iii) Now we take Go = SU(n, 1) n ~ 2. In this case there are two simple roots 
al = Al-A2 and an = An-An+l in p+: H"" = ~(El,1+En+l,n+d-E2,2+~Ho and 
H"'n = -HE1,1 + En+l,n+t) + En,n + ~Ho; hence Y"" =~(El,l +En+l,n+d-E2,2, 
Y"'n = -~(El,l + Enfl,n+d + En,n, Z"" = Z"'2 = ~Ho, P = ~ Ej~-;(n - 2j + 2)Aj. 

Any /-! E ~* can be written in a unique way as /-! = X1Al + ... + Xn+1An+lwith 
Xj E C and E Xj = O. We shall identify /-! with (Xl, ... , Xn+l) E cn+l and ~* with 
the corresponding subspace of C n+l . 

Let us consider the case a = al. Then {.t E ~* satisfies {.t(Z",,) = -{.t(Ya.) if 
and only if {.t = X(Al + A2) + X3A3 + ... + Xn+1An+l. We have II = -Al - A2 + 
2An+l and rr = Al - An+l. We shall identify the restriction to ~* of an element 
p E C[Xl, ... , Xn+l] with the corresponding p E S(~) by setting p(Xl, ... , xn+d = 
p(X1Al + ... + Xn+1An+l), Xj E C and EXj = O. Then the equation (17) can be 
written as 

(20) p(x-1, x-t, X3, ... , Xn , Xn+l +t+ 1) = p(x-t-1, X, X3, ... , Xn, Xn+l +t+ 1) 

for all X, X3, ... , xn+1 E C such that 2x + Ej,;!"i Xj = 0 and all tEN. For 
p E C[Xl, ... , Xn+1] let p E C[Xl, ... , xn+d be defined by p(Xl, ... , xn+d = p(Xl -
n/2, X2 - (n - 2)/2, ... , Xn+l - (-n)/2); in this way p(/-!) = p(/-!- p) for all/-! E ~ •. 
':I'henit can be easily seen that (20) is equivalent to 

(21) p(X, x + t, X3, ... , Xn+l) = p(x + t, x, X3, ... , xn+d 

for all x, X3, ... , Xn+l E C, t E Z such that 2x + t + X3 + ... + Xn+l = O. As before 
this implies that 

for all Xl, ... , Xn+l E C such that E Xj = O. But the symmetry (Xl, X2,···, Xn+1) 
1-+ (X2, Xl, ... , Xn+l) of cn+1 when restricted to ~* coincide with 8"". Therefore if 
p = Q(b), bE U(m)M ® U(o), then b E B"" if and only if (Lemma 7) p E S(~)·"'. 

When a = an the proof is exactly the same. The proof of the proposition is 
now complete. 
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The following choice of a representative in M~ of the non-trivial element in 
W = W(g, a) will be convenient. Let 

_ { D~ag(=l, 1, .. ~ 1, -1,1), for Go : SO(2p -1: 1),~ 2: 2 
w- Dlag( 1, ... , 1,1), forGo -SO(2p,I),p2:L. 

Diag(~, ... ,~, -~), for Go = SU(n, 1), n 2: 2,~n+1 = -1. 

Then w E M~ and Ad( w )Ho = - Ho. Moreover in the first case we have 

p-l p-2 

Ad(w) L itj+l(E'2j,2j+l - E'2j+l,2j) = L itj+l(E'2j,2j+l - E'2j+l,2j) 

j=l j=l 

- itp (E'ZP-:2,2p-l -- E3p - 1,2p-7), 

Therefore (see (13)) the Caftan sub algebra t ofm is Ad(w)- stable, W(Aj) = Aj 
(j = 2, ... ,p-l) and W(Ap) = -AI' (see (15)). Hence ~(m,t)+ is also stable under 
the action of w (see (16)). In the other two cases it is clear t.hat Ad( w) restricts to 
the identity on t. Thus in all cases Ad(w)lb defines an element in W(g, ~), which 
we shall also denote by w. 

Proposition 9. Let Go = SO(n, l)e or SU(n, 1). An element b E U(m)M ® V(a) 

belongs to (U( m)M ® U( a)) W if and only if Q(b) E S(~)tV. 
Proof. When Go = SO(n, l)e or SU(n, 1) we have 

(U(m)M ® U(a)) W = {b E U(m)M 0 U(a) : Ad(w)(b('\ - p)) = b( -A - p), A E a*}. 

(See (3), also Kostant, Tirao [15, Corollary 3.3].) If b E U(m)M ® U(a) let bW E 
U(m)M ®U(a) be defined by bW(A-p) = Ad(w- 1)(b(-,\-p)) for all A E a*. Then 

b E (U(m)M ® U(a)) W if and only if bW = b. The projection q: U(m) --+ U(t) 
commutes with Ad( w) because m + and m - are Ad( w )-stable. Therefore if b E 
U(m)M ® U(a) 

(22) Q(bW)(I/,>. - p) = Q(b)(w(v),>. - p) 

for all v E t*, ,\ E a*. If we replace in (22) v by v - Pm and take into account that 
w(Pm) = Pm we see that 

(23) Q(bW)(v - Pm, A - p) = Q(b)(w(v) - Pm, >. - p) 

for all v E t*, >. E a*. Now from the explicit description of ~(fl, ~)+ and of ~(m, t)+ 
it follows that pit = Pm. Then (23) is equivalent to 

(24) 

for all J-l E ~*. Therefore Q(b) E S(~)'ii if and only if Q(b) = Q(bW). Since 
Q: U(m)M ®U( a) --+ S(~) is one-to-one (cf. Wallach [22, Theorem 3.2.3]) we finally 

have: b E (U(m)M ® U(a)) W ¢=> b = bW ¢=> Q(b) = Q(bW) ¢=> Q(b) E S(~)tV, 
for all bE U(m)M ® U(a). 
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Proposition 10. If Go = SO(n, 1)e or SU(n, 1). Then (U(m)M ® Uta)) n BW = 

(U(m)M ® Uta)) n B and Q((U(m)M ® Uta)) n B) = S(~)W(9,ij). 
Proof If c E U(m)M it is well known (cf. Wallach [22, Theorem 3.2.3]) that 
q(c)(v - Pm) = q(c)(w(v) - Pm) for all v E t*,w E W(m, t). By extending each 
wE W(m,t) to ~ by making it trivial on a we can consider W(m,t) as a subgroup 
of W(g, ~). Then for all bE U(m)M ® Uta) we have 

Q(b)(v - Pm, >. - p) = Q(b)(w(v) - Pm, >. - p) = Q(b)(w(v) - Pm,w(>') - p) 

for all v E t* , >. E a* , w E W( m, t). Equivalently 

Q(b)(l-t - p) = Q(b)(w(J-!) - p) 

for all J-! E ~*,w E W(m,t). Hence Q(U(m)M ® Uta)) C S(~)W~l). 
From the explicit description of the corresponding sets of simple roots given 

before we see that: 

{ 
(Sl,""Sp), forF=R,n=2p 

W(g,~)= (Sl""'Sp), ~orF=R,n=2p-1 

(Sl, ... , sn), for F = C; 

W(m,t) = 

(S2""'Sp), 
(S2,""Sp), 
(e) 

(e) 

where Si = SOli in all cases. 

for F = R, n = 2p,p ~ 2 

for F = R, n = 2p - 1, p ~ 3 

for F = R,n = 3 

for F = C,n ~ 3 

for F = C, n = 2, 

If Go = SO(2p, 1)e,P ~ 2 or Go = SO(2p - 1, 1)e,P ~ 3, then a1 is the unique 
simple root in P+. If Go = SU(n, 1), n ~ 2, then a1 and an are the unique simple 
roots in P+. While if Go = SO(3,1)e then a1 and a2 are in P+. In any case 
we see that W(g,~) is generated by W(m, t) and {SOl: a E P+ is a simple root}. 
Thus ~ Proposition 8 and from what was observed above it follows that Q(b) E 

S(~)W(g,~) for all bE (U(m)M ® U(a)) n B. 

Conversely if p E S(~)W(9,ij) there exists a unique b E U(m)M ® Uta) such 
that Q(b) = p (see Wallach [22, Theorem 3.2.3]). Now Propositions 8 and 9 imply 
that bE (U(m)M ® Uta)) n BW. This completes the proof of our proposition. 

Theorem 11. If Go = SO(n, 1),e or SU(n, 1) then P(Z(g)) = (U(m)M ®U(a)) nB. 

Proof From Theorem 37 of Tirao. [11] and Proposition 6 it follows that P(Z(g)) C 

(U(m)M ® Uta)) n B. If b E (U(m)M ® Uta)) n B then Q(b) E S(~)W(9,ij) 
(Proposition 10). Now Q 0 P: Z(g): -+ S(~)W(9,ij) is the Harish-Chandra isomor
phism (see Wallach [22, Theorem 3.2.3]). Hence there exists U E Z(g) such that 
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Q(P(u)) = Q(b). Since Q: U(m)M ® U(a) ---> Sib) is injective we get P(u) = b, 
proving what we wanted. 

To prove that when Go = SO(n, l)e or SU(n, 1) we have U(g)K :::: Z(g) C?,l Z(e) 
it will be convenient to begin discussing the following concept. 

Let 6.(e, j)+ be a choice of a positive root system of e and let A be the corre
sponding set of all dominant integral linear functions on j. Also let Q be the set 
of all dominant integral linear functions on t, with respect to 6.(m, t)+. A subset 
X C j* (X C t*) is a separating set of S(j)1 (S(t)l) if for any .f E 50)1 U E S(t)l) 
.fIx = 0 implies .f = O. (S(b)1 denotes the subspace of S(I1) of all elements of 
degree st.) For A E A (w E Q) let 'Il" (lY",,) be a finite dimensional irreducible 
e-module (m-module) with highest weight A (w). If wED set 

A(w) = {A E A: HOlTIm(W"", VA) f O}. 

When Go = 50(n,l)e (5U(n, 1)) the algebra e :::: !loin, C) (g[(n, C)) and 
m :::: !loin - 1, C) (g[(n - 1, Cl) corresponds to the sub algebra of all matrices in 
!lo(n, C) (g((n, C)) with all zeros in the first row and in the first columll. Let A' 
(D') be the set of all A E A (w E [n such that there Rxists a represelltation of 
50(n,C) or GL(n,C) (50(n - I,C) or GL(n -l,C)) of highest weight A (w). 
according to Go = 50(11, I)" or Go = 5U(n, 1). 

For the proof of the following proposition we need to recall how a represRntation 
I";, of 50(n,C) or GL(n,C) decomposes as a rRpresentation of SO(l1 - I,C) ()f 

GL(n - I.C), respectively. We need to distinguish three cases: 50(2// + I,C), 
50(2//, C) or GL(lJ, C). In any of these cases a basis AI,"" All of j ran be chosell 
in such a way tbat any A E A' c'an be writen as ), = mlAJ + .... + m ll \/ where 

{ 

1111 ::: ... ::: 1TIu ::: 0, 7ni all integers or half-integers, 

1711:::"'::: 7J1 11 -1::: Imlll, mi all integers or half-integers, 

7nl ::: ... ::: 111,11 ::: 0, Tni all integers, 

for SO(2// + 1, C) 

for 50(2//, C) 

for GL(//, C). 

Now the following branching formulas hold (see Foulton, Harris [4,§25.:3]). 
The restriction from SO(2//+ 1, C) to 50(2//, C) is determined by the followiHg 

spectral formula 
... ~ 

(25) \~m}"rnv) = L Till("""v) 

the sum over all (PI, ... ,PII) with ml ::: PI ::: 1712 ::: ])2 ::: ... ::: ])11- [ 2:: mil ::: I]J/I I, 
with the Pi and mi simultaneously all integers or all half-integcrs. 

When we restrict from SO(2/l, C) to 50(2//- J, C) we have 

Vcm".,mV) = LTV(p}, ,P,,-I! 

the sum over all (PI, ... , PII-t) with ml ::: ])1 ::: m2 ::: P2 ::: ... ::: ])11-[ ::: Imv I, with 
the Pi and mi simultaneously all integers or all half-integers. 

For GL(// -l,C) C GL(lJ,C) the restriction of VA A = (ml,.··,m/l) frolTl 

GL(//, C) to GL(// - 1, C) is given by 

t,(m}, .. ,m v ) = LW(Pl' ,l'v-I! 

the sum over all (PI, ... ,Pv-d with ml ::: PI ::: m2 :::]}2 ::: ... ::: ]}v-l ::: mv ::: 0, 
with the Pi and mi all integers. 



28 

Proposition 12. Let Go = SO(n, l)e or SU(n, 1). The set YI of all w E Q such 
that A( w) is a separating set of S(j)1 is a separating set of S( t)n for all n EN. 

Proof. If w E [2' let A'(w) = {A E A' : Homm(Ww , VA) # O} and Y/ = {w E 0' : 
A' (w) is a separat.ing set of SO)r}. Then clearly A' (w) C A( w) and Y/ C 'Ii for all 
wE Q',I E N. Thus it will be enough to prove that.~' is a separating set of $(t). 

If Go = SO(2// + 1, l)e and w = (PI, ... ,PII),PI ~ ])2 ~ ... ~ P,/-l ~ !])v!, 
Pi simultaneously all integers or all half-integers, then from (25) it follows that 
A/(Pl"",PII) = {A = (ml, ... ,rTl.v ): ml ~ PI ~ m2 ~])2 ~ ... ~ PII-l ~ mil ~ 
!PII!,Pi and 1I7i all integers or all half-integers}. Now we claim that A'(Pl, ... ,Pv) is 
a separating set of S(j)1 if and only if I(Pl, ... , Pv) = min {PI - P2, P2 - P3, ... , PII-l -
!])1I1} ~ I. In fact, if ;rl,' .. , XII is the dual basis of AI, ... , All then any element of 
SO) can be viewed as a polynomial in Xl'''''XII' Thus if I(Pl,,,,,PII) ~ I, f = 
f(:I:1, ... ,;I: II ) E S(j)1 and f(ml, ... ,m,l) = 0 for all (ml, ... ,1nIl ) E A'(pl,""Pv) 
then clearly f = 0, i.e. A'(P1,'" ,PII) is a separating set of S(j)I. Conversely, if 
Pi-l -iPi! < I for somei = 2, ... ,// then f(Xl, ... ,xv) = TI(:rj -In.i) (t.he product 
over all mi such that }7i-l ~ 1ni ~ !Pi! Pi and mi both integers or both half
integers) is a nonzero element in S(j)1 which vanishes on A' (PI, ... ,P/I)' Therefore 
Y/ = {w = (PI,'" ,PI/) E Q' : I(PI,'" ,Pv) ~ l} which obviously implies that }/ is 
a separating set of Set). 

In a completely similar way the proposition is proved when Go = SO(2JJ, 1) or 
Go = SU(//, 1). 

Corollary 13. Let al, ... ,(lm be a.linearl'y independent 8Ilh.'wt o( Z(l') iiJu/let 
PI,'" ,Pm E U(t). Then Li (liP, == 0 mod (U(e)m+) implif's Pi = O. i = 1, ... ,111. 

Proof. Let I = max{cleg(ai), deg(Pi) :i = 1, ... , m}. Given w E Y/ and ..\ E A(w) 
let 0 # v E 1/~ be a highest weight vector of m of weight w. Let ,: (! (t) ~ (! (i ) 
be the Harish-Chandra projection defined by the direct sum deCOIllposit.ioll If (n = 
U(j) EB (1'- U(l') EB U(t)t+). Then an element a E Z(t) acts on l'A by IlmltipJicatioll 
by ~l(a)(A). Therefore 

(
m ) m L l'(ai)(A)pi(W) v = L aiPi . v = 0, 

,=1 ,.=1 

hence Li~l(ai)(A)pi(i.I.)) = 0 for all A E A(w),w E YI. Now we claim that the linear 
span L of {(-y(a1)(A), ... , Im(A)) : A EA(w)} is em. In fact, let ~ = (~l"" ,~m) 
be an element in the annihilator of L. Thus 61'( ad (A) + ... + ~m 1'( am) (A) = 0 for 
all A E A(w). Since A(w) is a separating set of SO)I it follows that ~l/(ad + ... + 
~m~(((lm) = O. But 1': Z(t) --+ U(j) is injective, therefore ~1al +-. '+~mam = 0 which 
implies that ~ = 0, because by assumption a1,' .. ,am are linearly independent. 
From this we get that Pi(W) = 0 for all wE }i, i = 1, ... , m. Since YI is a separating 
set of S(t)1 we finally get that Pi = 0, i = 1, ... , m, as we wanted to prove. 

Proposition 14. Let Go = SO(n,l)e or SU(n, 1). Take a linearly independent 
subset a1, ... ,am ofZ(t) and elementsci E Z(m)0U(a) fori= 1, ... ,m. 
(i) IfLi (/,iCi E B then Ci E B for i = 1, ... ,m. 

(ii)Jf Li aici § B W then Ci E B W for i = 1, ... , m. 
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Proof· We enumerate .6.( m, t)+ = {,8I, ... ,,8q} and choose bases YI , ... , Yq of m - , 
Xl,'" ,Xq of m+ with Yj E m_pj, Xj E mPr Also let HI,,'" HI be a basis of t. 
Let E = Eex> Y = Y"" Z = Z"" where 0: E P+ is a simple root. If I,]{ E Ng set yI = 
(Yd' ... (yq)i q , XK = (XI)kl ... (Xq)k q • If J E N~ put H J == (HJ)it ... (HI)jl. 
Then the Poincare-Birkhoff-Witt Theorem implies that the elements yI H J XK ®Zs 
form a basis of U(m) ® U(a). Let Ci = Li,s,I,J,K Ci,s,I,J,Ky I H J XK ® zs. 

The element b = Li aici E B if and only if (see (2)) 

Enb(n - Y -1) == b(-n - Y -1)En 

Now, using Lemma 18 (vi) of Tirao [11] and the hypothesis, we obtain 

(26) 

-En La' yIHJ - iGi s I J K ) , ) ) 

i,s,/,J,K 

x (n - Y - 1 + (kl ,81 + ... + kq{3q)(Y))' Xl( 

==En L aiCi,s,O,J,oH J (n - Y - 1)' .. 
i,s,J 

Similarly, and taking into account that [m+, E] = 0, we get 

(27) 

i,s,I,J,K 

i',s,I,J,K 

x ( - n - Y - 1 + (kl {31 + ... + kq,8q)(Y))' En XK 

== L aici,.,O,J,oHJ (-n - Y - 1)' En 
i,s,J 

=En L aici,s,O,J,o(H - no:(H))J (- n - Y - 1 + no:(Y))' . 
. {,$)J 

Hence if bE B, from (26) and (27) and using Lemma 20 of Tirao [11], we get 

L aici,s,O,J,oHJ (n- Y _1)8 == L aiCi,.,O,J,O (H _no:(H))J (-n- Y -l+no:(Y))"'. 
i;s,J i,s,J 

If we set Pi = Ls,J Ci,s,O,J,O [HJ (n- Y -1)' -(H -no:(H))J (-n- Y -1+no:(YW] E 
U(t) and apply Corollary 13 to Li aiPi == 0 we get that Pi = 0 for i = 1, ... , m. 
Therefore 

(28) L c;,8,o,J,oHJ (n-Y _1)8 = L C;,8,o,J,o(H _no:(H))J (-n-Y -1+no:(Y))' 
.,J .,J 
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for i = 1, ... , m. If we multiply (28) on the left by En and follow the steps leading 
to (26) and (27) backwards, we see that 

i.e. Ci E B for i = 1, ... ,m, proving (i). 
To prove (ii) we just need to observe that for W E M~ -Mo, >. E 0* (see (3)) 

Ad(w)(b(>'-p)) = b( ->.-p) is equivalent to Li aiAd(w)(Ci(>'-p)) = Li aici(>'-p) 
which implies that Ad(w)(cj(>, - p)) for all i = 1, ... , m, because Z(t)Z(m) ~ 
Z(t) 129 Z(m). This finishes the proof of our proposition. 

Theorem 15. If Go = SO(n, l)e or SU(n, 1) then fJ: Z(g) 129 Z(t) --+ U(g)K is a 
sUljective isomorphism. 

Proof Let us first consider the case Go = SO(n, l)e. The proof will be by induction 
on n ~ 2. For n = 2 an s-triple {H, X, Y} can be chosen in g with H E t. 
Set ( = H2 - 2H + 4XY. Then Z(g) = C[(), Z(t) = C[H] and {XiyiHj} 
is a basis of U (g)K . From this it is clear that fJ: Z (g) (9 Z (t) --+ U (g)K is a 
surjective isomorphism. For n ~ 2 let J{n = SOC n) x SOC 1) ~ SOC n), Mn = 
SO(1)xSO(n-l)xSO(l) ~ SO(1)xSO(n-1) and let gn, tn, mn denote respectively 
the complexifications of the Lie algebras of SOC n, l)e, J{n and Mn. Also let 'TJ be 
the automorphism of glen, C) which interchanges the first and the last row and 
the first and the last column of a matrix. Since 'TJ is given by conjugation by an 
orthogonal matrix it dearly restricts to an automorphism of tn. 

N ow assume the theorem has been already proved for Go = SOC n - 1, l)e, 
n ~ 3. Then 

Let us return to our old notation for Go = SO(n, 1)e. Given U E U(g)K set 

b = P(u) E BW C U(t)M 0U(o). Then we can write (see (29)) b = L7:1 aici where 
a1, ... , am are linearly independent in Z(t) and Ci E Z(m) 129 U(o) for i = 1, ... , m. 

From Proposition 14 we know that Ci E BW. Now by Theorem 13 there exist 
Ui E Z(g) such that Ci = P(Ui). Then Li aiui E U(g)K and P(Li ajUi) = P(u), 
hence U = Li aiUj E Z(~)Z(g). This proves that fJ: Z(g) 129 Z(t) --+ U(g)K is 
surjective. As we pointed out in the introduction this establishes the theorem for 
Go = SO(n, l)e. 

The proof for SU(n,l) will be also by induction on n ~ 2. For n = 2 we 

have U(~)M = Z(~)Z(m) (Lemma 1). Given U E U(g)K set b = P(u) E BW C 

U(~)M 129 U(o). Then b = L7:1 aici where a1, ... ,am are linearly independent in 
Z(t) and Cj E Z(m) 129 U(o) for i = 1, ... , m. As before from Proposition 14 and 
Theorem 11 it follows that U E Z(t)Z(g), proving the theorem for SU(2, 1). For 
n ~ 2 let J{n = S(U(n) x U(I)) and 
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Also set fin, ~n, mn denote respectively the complexifications of the Lie algebras 
of SU(n,l), Kn and Mn. Now take n 2 3 and assume the theorem has been 
proved for Go = SU(n - 1,1). Then ~n ~ g[(n, C) = 3(g[(n, C)) EEl .s[(n, C) = 
3(g[(n, C)) EEl £In-I. Let 

Mn={(~ ~) :aEU(1),AEU(n-l),a2 detA=1} 

Kn- I = {( ~ ~) ': a E U(l),A E U(n -l),adetA = I} 
and observe that 

U(~n)Mn ~ U(3(g[(n, C)))U(gn_dWn 

= U(3(g[(n, C)))7](U(gn_I)Kn-l) 

= U(3(g[(n, C)))rJ(Z(gn-d)rJ(Z(~n-t)) 

= U(3(g[(n, C)))Z(fln-I)Z(mn) 

~ Z(~n)Z(mn). 

From this the proof is completed in the same way as in the case of Go = SO(n, l)e. 
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