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ON THE SUFFICIENT CONDITIONS OF MONOGENEITY FOR
FONCTIONS OF COMPLEX-TYPE VARIABLE

SORIN G. GAL

ABSTRACT. The theories of functions of hyperbolic and dual complex variable were
deeply investigated between 1935 and 1941 as parallel theories with the classical complex
analysis (see e.g. [2-6], [13-20]).

In some recent papers [7-8], [10-11], these theories present interest by some applications
in the interpretation of physical phenomenoms.

In this spirit of ideas, the purpose of this paper is firstly to prove by counter-examples
that the sufficient conditions of monogeneity in [5, p.148] and in [14, Theorem V, p.258] are
false and secondly, to consider new correct conditions of monogeneity which moreover have
the advantage of an unitary presentation.

1. INTRODUCTION
It is well known that a two-component number system forming an algebraic ring can be

written in the form z=a+qb, a,b € R, where ¢ satisfies the equation ¢° = ag+ B with fixed

a,f € R. An important result states that all the systems Cq ={z:a+qb;a,beR} are ring
isomorphic with one of the following three types (see e.g. [9]):

() C, with q—’ = -], called the system of usual complex number, if a’ld+ B <0;

(i) C, with ¢°=0, called the system of dual complex numbers, if a’l4+ B =0,

(i) Cq with ¢7=+1, if a’ld+ B >0. In this case, a number in Cq is called binary [9],
or double [21], or perplex [7-8], or anormal complex [1], or hyperbolic complex [4-6], [13].

While the theory of functions of usual complex variable is well known and does not
represents the aim of the present note, the teory of functions of hyperbolic complex and dual
complex variable was deeply investigated between 1935 and 1941 in e.g. [2-6], [13-20] (see
also the more recent monograph [12] for generalisations to functions of hypercomplex
variables). .

In some recent papers (see e.g. [7-8], [10-11]), these theories were been taken in
attention by some applications in the interpretation of physical phenomenoms.

In this spirit of ideas we firstly prove by counter-examples that the sufficient conditions
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of monogeneity in [5, p.148] and that the Theorem V in [14, p.258] are false and secondly,
we consider new correct conditions of monogeneity which present the advantage that all the
three cases ¢°= -1, ¢°=0 and ¢°=+1 can be more unitaryly treated.

Throughout in this paper we will consider ¢g°=+1, or ¢°=0, or ¢°= -1 and a number
z=a+qb will be called q - complex number.

2. CONDITIONS OF MONOGENEITY
Keeping the notations in Introduction we can consider the following

DEFINITION 2.1 ([13], [14]). If z=a+bq € C, then |2|= Va® +b> represents the
modulus of the q - complex number z, in all the three cases ¢°=+1, ¢°=0 and ¢°= -1. Also,
N, (2)=a* —¢'b* represents the q - norm of the q - complex number z.

THEOREM 2.2 ([13], [14]). If ¢°=0 or ¢°= +1 then the set of all divisors of 0 in C,is

given by Z, = {: =a+gb,N,(z) = O}. Also, if z € Cq \Zq then z is invertible.
REMARK. If ¢’= -1 then Z ={0} and C_is even a field.
Let DcC, beand f:D—>C, . Then we can write: f(z) =u(x,y) +qv(x,y), for all

z=x+qy € D, where v and v are real functions of two real variables.
DEFINITION 2.3 ([5], [14]). fis called q-monogenic in z, € D.if there exists the limit

. !
LHT} [/ (2)=f (20 (z=z20) = [ (20)
i}
Concerning this concept, the following results are known.

THEOREM 2.4 ([5, p. 147]). Let g’=+1. If f is g-monogenic in z, = x, + qy, € D, then
u and v have partial derivatives of order one in (x,,y ) and the equalities

() [ a(x,.5,) = (&1 B)(x0.30). [an/ B)(x0.30) = [/ &[0, )

hold.

THEOREM 2.5 ([S, p. 148]). Let ¢’=+1. If u and v have continuous partial derivatives
of order one in (x,,y,) which satisfy (1), then is g-monogenic in z =x +qy,

THEOREM 2.6 ([14, Theorem V, p.258]). Let ¢°=0. The function f is g-monogenic in
20 =X, +qYy € D if and only if u and v are differentiable in (x .y ) and satisfy

@) [l B(x0.,) =0, L&) &)(x0,50) = [ (%0, 35) -

Firstly, we will prove by counter - examples that the Theorems 2.5 and 2.6 are false.

Indeed, let us define u(x,y)=x+)? v(x,y)=0 and f(z)=u(x,y)+qv(x,y)=u(x,y), for all
z=xtqy.

Obviously # and v have continuous partial derivative of order one in (0,0), which implies
that u is differentiable in (0,0). Also, we immediately get

[/ &x)(0,0) =[v/ 3](0,0)=0, [a/ &](0,0) =[&/&](0,0) = 0.
Let ¢g’=+1. We have
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lim [f(2)-f(0))/ z= lim u(x,y)/(x+gy)= lim (x +y2)(x - qy)/(x ¥ =
z2z x,y—0 x,y—0
zeZg IXI¢|y| Ixl)y]

lim x(x2+y2)/(x -y )—q lim y(x2+y2)/(x2—y2).
x,y—0 x,y—0

]y lxl=)3]

But if we choose, for example, x, = I/s/rr;, Y, =1/¥n+1 we get x, >0, y, >0,

and

#(y, |
(x +yn)/( ) (1/J_) (1/n+1/(n+1))/[1/n—1/(n+1)]=

n(n+1)-(2n+ 1)/[n(n +1)\/17] =(2n+ 1)/\[)1— —) +00, for n — +<0.

Analogously,

Yn(Xe? + 3,2 (5,7 = 3,2) = (@2n+DVn+1 — +oo, for n— +e0.

As conclusion, f is not monogenic in z=0 although # and v satisfy the conditions in

Theorem 2.5. This means that Theorem 2.5 is false.
Now, let °=0. We get

11m [f(z) f(O)]/z— llmou(x W) (x+qy) =

7y
zeZ x=0
’ 2., .2 2 - 2, .2),.2
lim (x +y )(x—qy)/x = lim (x +y )/x q- lim (x +y )/x
x,y—>0 x,y—>0 x,y—>0
x#0 x#0 x#O

But choosing x=)°, y#0, we obtain

(x*+y?) /x = y*+y* /P = y*+ 1/y - +o, for y >0

and

YO+y?) /x2 = y+y o= y+ 14 - +o, for y — 0.

As conclusion, f is not monogenic in z=0, although u and v are differentiable in (0,0)
and satisfy the relations (2) in Theorem 2.6. This means that the sufficient conditions in
Theorem 2.6. are false.

Now, let f(z) = u(x,y)+qv(x,y), z =x+qy, ¢°=0, where

) x,x#0,y€ R {y,x;t(),yER
ux,y)= v(x, =
|y|,x=0,yeR ’ (x.7) 10,x=0,ye R

We have #(0,0) = v(0,0) = f(0) = 0 and
1im0 [f(z)-/(0)])/z= lim 0[”(" Y)+Hgv(x, )]/ (x+qy) =
z—>

X,y
z¢ Zq x#0
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lim (x+gqy)/(x+qy)=1= f'(0)

x,y—>0
x=0

i.e. fis monogenic in z=0. _

On the other hand, (&¢/ 3)(0,0) does not exists because

lim[#(0, )~ u(0,0)]/ y = limy|/ y
y—0 »—0

y=0 v#0

As conclusion the necessary conditions in Theorem 2.6. also are false.

In the sequel we will give correct versions for the above Theorems 2.5. and 2.6.

Firstly, we will introduce the following.

DEFINITION 2.7. Let u:M —> R,M © R be and (x0,y0) € M . We say that u is g-
differentiable in (x .y ) if there exist A,B € R and w=w(x,y) with

Iim  w(x,y)=w(xg,¥0) =0 where == x+qy, zo = xo +qyq such that
XX,
.v_)Avo

-z, &7 q

u(x,y)-u(xy, o) = A(x—xg)+ B(y—yp) + @(x,)- Ng(z-2z)/ z—zo|,f0r all (x,y)e M
with z—z, ¢ Zq. '

REMARKS. 1). Obviously we have

Nq(:—:o)/‘: - :OI =[(.\:—x0)2 —qz(y—yo‘)2 }/\ﬂx - .vco)2 +(y—yo)2

2). If ¢ = -1 then the Definition 2.7 becomes the usual definition of differentiability in
(x,,y,). Concerning the q - differentiability we can prove the following.
LEMMA 2.8. (i) Let q° = + 1. If u is q - differentiable in (x,y ) then there exists

[Ail &x](x,,y,) = A and [dl/@z](xo,yo) =B.
(ii) Let ¢’ = 0. If u is q - differentiable in (x,y,) then there exists [/ &](x,,¥,)=A.
If moreover there exist 6 >0 such that I'(x) = u(x,y) is continuous as function of x in
10,\71 iy_)"o

PROOF. (i) Taking in Definition 2.7 x = x,, and y # y, (which implies z -z, ¢ Z,), we

<&, then there exists [az /(2\.'](.\'(,,),’0) =B.

obtain

u(Xg,y) = (x5, ) = B(y = yy) + o(xy,) -[—(y—yo)~ }/ \y—yo\‘

Dividing by y -y, # 0 and then passing to limit with y =y, we get

lim [u(xg,y)—u(x0y0)l/ (¥ - y0) =B~ lim w(xo,y)(y—yo)/\y—yo =B
Y—=)o0 , Y=o
Y#Yo Y#£Yo
since '
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lim  o(xy)= lm o(x,))=0

X—=X0 y=30
=)0 y#30
z—20¢Zy

Analogously, taking in Definition 2.7 y=y, and x # x and reasoning as above, we get
that there exists [A/¥](x,,¥,) = B.

(i1) Taking in Definition 2.7 y = y, and x # x, (which implies z-z, ¢ Zq), we obtain

u(x,yy)-u(xy,¥y) = A(x-xy)+w(x,y,)- |x—x0‘, Vx # X,

Dividing by x-x,#0 and passing to limit with x — x, we immediately get
[/ &)(xy,5,)= 4"

Now, let b}—y0 <&, Y# ), be fixed. Passing to limit with X — X, X # X, in

Definition 2.7, we obtain

5
u(xg,v)—ulxp, o) = B(y—yp)+ lim axXx, v)(r to /\/x xo +(y—y0)"
x—)\o
X#X()

~ forall |[y—y, <6, y#Yy.

Butby lim @(x,y)= 0 follows that for &>0, there exists 5, >0 such that |o(x, )| <, for
.\‘—).\'0
»=¥
.\‘¢.\'0

<6, x#x, and all {)J—)b)«)}

nd le |

i 66} a Lv v0|<00 V#E V.

{
um
We get Ahm ‘a)(

x# ‘O

<€ forall ‘v—v <8, y#Y,. Since

‘, we obtain

(=) o= 3t = e o) ) <

lim ‘(o(x,y)‘-(x-Jco)2 /\/(x—xo)2 +(y—y0)2 <g- lim |x—x0|:0 for all LV‘.V0‘<50> yEy,
x—=>xq X—>xq
X#X() X#X(Q

As conclusion,

ule, ) - Ul y) = BOv). N ¥# v [y-yo| <8y

Therefore, dividing with y — y, # 0 and then passing to limit with y — ¥, we obtain

[dl/ @](xo,yo) = B, which proves the lemma.
A correct version of Theorem 2.5 is the

THEOREM 2.9 Let ¢’= +1 be and S D>CDcCy, f(z) = u(xy) + qv(x.y),
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z=x+qyeD zg=xy+qy, €D

If u and v are q - differentiable in (x,y,) and satisfy the relations (1) in Theorem 2.5,
then f is g-monogenic in z,,

PROOF. By hypothesis and by Lemma 2.8, (1) we get

)l x0,30) =l +Hy=30) +ea(x.3) | (=30 =30 Jex— s 2+ 3002,

W)~ {xp30) =8x )+l y—yo) + e )| (=50 =3 Jl=50) +(-30)

forall x—x,+q(y—y))=z2-2z,¢ Zq, where  lim w;(x,y)=0, =1,2.
x—Xx()
V=M
o) ey

By simple calculus we obtain

5

f(z)ff(:()) = (a+bq)(:—zo)+[(ul(x,y)+q(oz(x,y)] -|:(x—x0)2 4(,\.'—,v())2]/\/(x—x0)2 +(y—y0) .

Dividind by z -z, ¢ Z, and then multiplying by /=/(x-x )-q(y-y,) ] [(x-x,)-q(y-y,)] on the
right hand, the above equality becomes

[f(z)~f(:o>]/(:~zO>:a+bq+[(x—xo)—q(y—yo)]-[w.(x,y)+cm<x,y)]/\/(x—xo)2+(x—xo)2

= @+ bg+(x—x0) (e Y)Y (= x0)2 + (= 30)* ~ (- 30) @ (e p) ) (= xp)2 + (- yo): +

5

c{(x~x0)~(oz(x,y) /‘/(x—xo)2 +(y—3.'0)2 —(y—yo)-(o](.\'.).')/J(x—xU)2 +(y—_vn)' }

2

By |x—x0|/‘/(x—x0)2 +(y—y0)' <1 and '_\,'—_vo‘/vr(x-xo)

with z — z,, =—z, ¢ Z, (which is equivalent with x = x,,y — y, Ix —x”|¢ iy—y(,

5

+(y—y0)' <1, passing to limit

), we

immediately get that there exists  lim [_f(:)~.f'(:())]/(:~:(,) =a+qgb which proves the
Z=2(0 :
I-I(€2g

theorem.
Now, a correct version of Theorem 2.6 1s the

THEOREM 2.10. Let ¢°=0 and D —>C,, DcC C,. f(z) = ulx,y) + qv(x,y),

z=x+qye D, z,=x,+qy, € D, such that I(x) = u(x,y) and G(x) = v(x,y) are continuous as
Junctions of x in x,, for all y belonging to a neighbourhood of y,, denoted by V(y ).

If f is q-monogenic in =, then u and v satisfy the relations (2) in Theorem 2.6.

Conversely, if u and v are q-differentiable in (x,.y) and satisfy the relations (2) in
Theorem 2.6, then f is g-monogenic in =,

PROOF. Let suppose that f is g-monogenic in =,

Letus denote #4z) =[/(z)~ S (zp)l/(z-z0) - f'(-”o) =
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=L/ (D) - S (2N (z-zp) —(a+bg) = h(x,y)+qh(x,y), z—2y & Z,(i.e. X # X;).

By hypothesis we get lim A(x,»)=0, i= 12 and
x—xQ

y=y0
xX#£XxQ
by (6, 1) iy (X, y) = [1(x, ) =100, ) +q(AX, ) =W X0, YV [(x %) +9(y = yp)]~ (@ +gb), x 7 ;.
By simple calculus, for all x # x,, and all y with z,z,,z-z, € D, we obtain

B)  ulx,y)~ulx, ;) = ale—x,)+ b (%, y)x-%,),
(4) v(x,y)— V(xoayo) = b(x—xo)+a()’—)’o)+hz(x,)’)(x— x0)+h1(x,y)(y—~yo)

Taking y=y, in (3), dividing with x-x#( and then passing to limit with x — x,,x # x,,
it follows that [/ &](x,,y,) = a, since \-inlo hy(x,v) = rinlo h(x.vp)=0 .

y=> 0 x£XQ
X£X(Q

Then, passing with x — x; in (3) and taking into account that F(x)=u(x,y) is continuous
in x,, we get :
(5) Ulxo,y)—ulxg,yp)= lim Ay(x,y)-0,Vy eV(yp).
x—>x() ‘
X#X()
But reasoning exactly as in the proof of Lemma 2.8, (11), (for w(x,y)= h,(x,y)), there
exists a neighbourhood V (y,) such that | lim A (x.v)|= lim [h(x.v)[<e. forally eli(yo)
x—xQ xX—xQ
X#X() X# X0
Combining with (5) we obtain
u(xg, ¥)=u(x,30) = 0,9y € V(3) Wi(3).
This obviously implies (/&) x,,y,) = 0.
Analogously, taking y=y, in (4) as above we have [/ &](x,,y,) = b.
Then passing to limit with x — x, in (4) and taking into account that G(x)=v(x,y) is

continuous in x, it follows

v(X0,¥)=V(%0,¥p) = a(y = yy) + lim hy(x,»)-0+ Lim Ay (x,p)-(y—-,), for all
X=X, XX,

XX, XX,

yeV(y,).
Reasoning as above, there exists ';(y, ) such that
v(xg,¥) = v(x0,¥0) = a(y - yo)+ lim h(x,3)-(y=30). ¥ yeV ) Vi)
x
Dividing by y — y, # 0 and then passing to limit with y — y, we get
[&/3N(x0,y0)=a+ lim h(x,y)=a+0=a |

x—>xQ

y—=>30
X£X(0,YEV()
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As conclusion, [At/ F](x,,y,) =0 and [Ae/ &](x,,y,) =[N/ F1(x,,,).

Now let suposse that # and v are g-differentiable in (x,,y,) and satisfy the relations )
in Theorem?2.6.

By Lemma 2.8, (ii) and by hypothesis we get

U(X, )~ 1(X0, ¥o) = A(x = X,) + @ (%,)- (X=X ) 1] (x =%, + (v = 2)*,

v(x,1) = (X, 3,) = A(x = Xp) +a(y = y,) +@,(x,3) - (1= %,)* [ (x =%, + (y-y,)?, for
all x # x,, y,such that z,z,,z-z, € D, where
lim @;(x,»)=0, j=1,2 and a =[] X](xy,y,), A=[H,&](x,,¥,)

x> x0

y=y0
X#X()

By simple calculus we get

S £ o) = (@A) (2= 2)+ (v = x) [0y (2.) + g, e, I (= xp)” + (= 3o

Dividing by z—z, ¢ Z, and then multiplying with 1=[(x—x,)—q(y—y,)V/ [(x—x%,)—q(y—¥,)]
on the right hand, we arrive at

L (D)= GV (2 2) =a+qA+a,(x,y) (x= %) (x = %,) +(¥=y,)" +

g-[@,(6,) (1= %)/ Y (x =% + (¥ = 3o’ =@ (£,2)- (7= ¥o) (X = %)’ + (=3, )’]

Passing to limit with :Q—ézo,:—zOéZq (which is equivalent with

X=X,y = Y,.x #x,) by

‘x_ x0|/ \/(x_ Xo):Z +(y—yo)2 < 1=
on @, (x,y) we immediately get

lim [f(2)- f(z9)]/(z—zp) = a+qA, which proves the theorem.
Z—2Z .

z—zo% Zy

REMARKS. 1). If g>= -1 it is known that the q-differentiability of # and v in (x,,y,)
together with the Cauchy-Riemann conditions in (x,,y,) is even equivalent with the
monogeneity of fin z,=x +qy,.

2). In the cases when q’=+1 or ¢°=0, there exist functions f=u+qv with # and v gq-
differentiable in (x,y,) and satisfying (1) or (2), respectively.

Indeed, for g°=+1 let us define

- 0‘/\/(x—xo)2 +(y-y,)’ <1, and by the hypothesis

0,lx|=]/ ) Weh
u(x,,V): 2 2 :V(x:J’)=O,f(z)z_”(X,}’)73:x+q.V~ € have
A =52 bl 2y |

[6u/dx}(0,0) = lim [u(x,0) - u(0,0)]/x = lim x2/x =0
x—0 0
x#0 x#0
[du | 6y1(0,0) = 11m [0, )~ u(0,0)/ y = lim y2/y=0,
y=t0 \’*0
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[&V/%](0,0) = [ov/ 6y](0,0) = 0.
Also, u(x,y)—u(0,0)=0-x+0-y+ a)(x,y)-‘x2 —yzf/ W for all |x|= M where
o(x,y) = m satisfies xli_::xo @ (x,v)= 0,1e. uis g-differentiable in (0,0).
MM
Analougously, for ¢°=0 we define
sz,x #0,ye R

0 0 R V(x,¥) =0, f(z)=1(x,y),z=x+qy. It is easy to check that
JX: aye

u(x,y)=
[/ &](0,0) =[A1/ 3](0,0) =0 and w is g-differentiable in (0,0) with @(x,y)=~/x>+)".

3). Let ¢?=+1. The sufficient conditions of q-monogenity in Theorem 2.9 however are
not necessary. Indeed, let us define f(z)=u(x,y)+q(x,y),z=x+qy,z, =0,

x(x* +y7),[x] # |y ¥+ 7). =y

u(x,y)= (x,y) =
0.Jx =y 0.lx =]y

We have

f'(O) = lim [f(z)- f(0)]/z= lim [u(x,y)+qv(x,y)]/(x+qy)=
z—>0 x,y—>0
|.\‘l¢ v |x|¢|y

lim (x2 + )/2 ) (x+gy)/(x+gy)= Ilim (x2 + yz )=0,
x,y—>0 x. v 0
I.r\¢[_v| [x] |y

wich means that f is monogenic in z,=0.

On the other hand u is not g-differentiable in {0,0). Indeed, let suppose that u is q-
differentiable. We easily get [A1/ &](0,0) =[A+/ 3](0,0) = 0 and therefore by Lemma 2.8, (i)
we get

u(X,y) = a)(x’y) . [x2 _y"’]/ \/X: +y: R for all ,X' * ‘y‘, with llm( a)(x,y) =0.

)

x>
Il
It follows x(,\’2 —+—y2) = (U(X,y) . [x2 —y:]/ sz +;'T, which imp]ies

o(x,y) = x(x* + )" /[x* - y*], for all |x]=|y

Now, choosing for example x, =1/v/n.y, =1/Jn+1 =0,
we obtain

x"’ # ly,, , by simple calculus

n-y+u

a(x,,y,)=(2n+1)** /[ndn+1] — 2, contradiction.
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