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Abstract

We consider the moment problem for the sequence {e_/\it}iEN in L2(0,7) (0 <
T < 00), being {A;};c asequence of positive real numbers such that 372, /\% <
0o. We prove properties of the moment space M of that sequence. In [K] it is
shown that M is a moment space. OQur main result is that M is a Hilbert space
and moreover, that is the image of ¢2 by the operator G*/2, the square root of
the Gram matrix G of the sequence. The operator G'/2 is proved to be the
limit in B(¢?) of a sequence of simple operators of finite rank. We also obtain
an upper bound for the norm of the operator . We find different expressions

for the solution of minimum norm of the stated moment problem, extending
some results of [Z].

1 Introduction

We consider the moment problem of the sequence:

{e—/\;t}iEN (1)

in L?(0,7)(0 < T' < o), being {A:},cy @ sequence of positive real numbers such
that:

21
;/\—i<00

Remark: This condition implies that the sequence (1) is not dense in L?(0,T).
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Our main goal is to characterize the moment space M of that sequence. In the
first section we introduce the moment problem and recall some well known results
about it. In the second section we prove the following properties of M:

*) M is a dense and proper subspace in £2.
*) M does not depend on T'. :
*) M is a Hilbert space, and there exists a continous inmersion in.¢2.

In the third section we obtain the operator G. It is defined by the Gram matrix
of the sequence (1) as the limit in B(¢?) of a sequence of simple operators of finite
rank. This allows us to show that G'/? is a compact operator.

In section four we prove that M is the image of £2 by the operator G'/2. In the
last two sections we find different expressions for the solution of minimal norm of the
moment problem of our interest.

2 The moment problem.

Let H be a real Hilbert space, provided by an inner product (-,-). Let {fi},cn a
sequence of elements of H such that any finite subfamily of this sequence is linearly

independent. We note by {ck},.y an arbitrary real sequence. So, the inner product
(f,fx) , k € N is called the nth. moment of f, arid the sequence {(f, fx)},cy Is the
moment sequence of f. Then in the theory of moments the following problem arises:

Does there exist an element f € Hsuch that : (f, fx) = ek, k = 1,2,...7

The moment space M of {fi} is then the collection of all the moment sequences
M = {(f, fx) : f € H}. Thus a numerical sequence {ck},. 5 belongs to M if and only
if there exist f € H such that ¢, = (f, fx), k = 1,2, ....

M is a Banach space with the norm defined by:

llell3, = sup Z U,kckc: = lim_ Z olkckc,
neN k=1 F k=1

where (fl(k is the (1,k) element of the inverse of the Gram matrix G, of {f1 ySay e fn}-
The last equality is valid because:

n
(n)
Uk,l CiCy

k=1
does not decrease as n increases [K]. It is easily proved that M is also a Hilbert space
(cf. Lema 2).

Remark: To avoid confussion we use a subscript denoting the space we are refering
to; for example (-,-)gor ||| -
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3 The moment space of a sequence of exponen-
tials. Some properties.

Let H = H(T) = L*0,T) ,0 < T < oo and let fi(t) = e™™! | k = 1,2,..., being
{Mk}ren @ sequence of positive real numbers such that A\; < Ay < ... < A\, < ... and

§ %k < 00. In what follows, we will call M (T") the moment space of (1) if 0 < T < o0,
k=1

and M if T = co. We will study properties of M and M(T).

IfT < o0 let
1— e—(/\i+/\j)T
A+ A 1<i,j<n

be the Gram matrix of {e_’\kt}KK ,m€ N, and
SKESN

G T) - 1— e—(z\;-{-z\j)T
( a Ai + ’\f i,jEN

be the Gram matrix of {e_’\kt}

keN
If T = oo ,then
G—[ ! ] neN G(T)—[ ! J
" Ai + A 1<4,j<n Ai + ’\J' i,jEN
PROPOSITION:

a) M(T) C £, M(T)# ¢3,YT > 0

b) M(T) = M ,NT > 0

c) M is dense in €% ,and the inmersion i: M—{? is continuous.
Proof:

a) Let 7"(T) be the greatest eingenvalue of G,,(T), and 7 (T') be the smallest
one. Then

(n) . (.’L‘, G"n (T).’L‘) _ .
" (T) - ZER,T#0 “.T“2 T = (ml)ISiSn
and
n 1 — e—(’\i+’\j)T n
Gn T = —I;T; < i =
(I’ ( )I) ijZZI )\i + A] z 'T] - iél /\i + )\J lx | |x]|

w (009)" il dml (Y’
> St <y (3 ) < rea e

S5 AN W) PO T ANE (W2

where Tr G, is the trace of G,. Then v"(T) < Tr G, , ¥n € N , (1) is a Bessel
sequence [Y], and M(T) C ¢2.
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Since
g
2\,
then ¥{™(T) — 0 if n — oo , and (1) is not a Riesz-Fischer sequence. Then M(T) #
2
b) (Gn = G(T));; = J e MtemMitdt then G, — Gn(T) is the Gram matrix of
’ T

{e”“'t}KKn in L?(T,00). So G, — G,(T) is positive definite. It follows that G, >
Gn(T).

In addition to this, the following result is valid
LEMMA 1: G;YT) > G
Proof:

Let L be a linear transformation such that [CH] LT G,.(T) L = Id and LTG,L =
D where D = (d; ;)1<i j<n is the diagonal matrix of order n such that

o eoi=g

s { 0 it |
Then G, —Gr(T') > 0 implies that p; > 1,1 <4 < n. Also LG YT (L")t = 1d

and L7'G;Y(T)(LT)"! = D, where D = (d; ;)1<i j<n is the diagonal matrix of order

n such that

) <

i Ue i=j
S U
Then Id — D > 0 and G\ (T)>G;!

As a consequence of Lemma 1, M(T) C M. Also, there exists a constant K =

K(T) such that:

1

In fact, let ¢ = (¢j)jen € w, and c(n) = (¢1, ¢, ..., cn) € R™

(el Guclo) = [ () (Z) @t~ 1P o
a5 \i=1 i=1 ,
where P(t) := i c;e~™t, In an analogous way,
i=1

(e(n), Gn (T) e(n)) = [IP(O) 20,7y
Acording to a result proved by Scwartz [S] there exists a constant K = K(T') such
that )
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I1P@) L2(0,00) < K(T) IP@)I 20,y -

Hence K(T)G < Gu(T) and G, }(T) < K(T)G;!. Therefore M C M(T).

c) Let z € £2 be such that (z,c)p = 0, Vc € M. Since ¢ € M there exists
VU (t) € L%(0,T) such that:

T
/ U (t) e Mtdt = c;,¥j € N.
0

00 00 T '
Then Y zic; = Y. z; [V (t) e dt = 0, VW (t) € L?(0,T). By the continuity of the
i=1 =1 0

inner product

lim (Zz, )\Il(t

N—boo

Since $X zie™ € L2(0,T), it follows that f (z et ) () dt = 0.

The sequence (1) is minimal in the sense that each element of the sequence lies
outside the closed linear span of the others. Then there exists a biorthogonal sequence
[Y] {gi(t)};cn such that taking W(t) = g;(t) will give z; =0, Vi € N. Then z = 0.

To show that the inmersion i : M — £2 is continuous, we shall show that:

llellz: < Tr G llelly, -

This is inmediate since

(e(n), Gle(n)) = lle(m)]? %‘)“_”2("_)2 > [le(n)|? (’Yl(n))ﬁl >

le@)*(TrGo)™ o

LEMMA 2: (M;||||5,) s a Hilbert space.

4 An approximation to the Gram matrix.

The Gram matrix:

1
G =
()‘i + ’\-‘i) 1<4,5<00
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generates a bounded operator on ¢2 because ||G|| < Tr G. This result is a particular
case of the following one:

LEMMA 3: If G = (i) 1<; j<oo 15 the Gram matriz of a system {fi}, y such that

2 9ii < 0o then |gi;| = |(fi, [5)] < NSNS < (9:4)"* (95,9)"% , 1 < 4,5 < 00 and
S gimz| < (ZI gi,i) (Z)I |~"7¢|2) - Henee |G| < 32 gi = Tr G.
i,j=1 i= i= i=

LEMMA 4: ||G|| < TrG.
Let G, be the nth. section of G, G,, =

(gi,j)lgi,jgn :
. . . A ~ i, 1<1,7<
Then the infinite matrix Gn =(ij)<; jc00 = { g"’i’> 7_12;"]j_>nn defines a
)

bounded operator G, #2 — £2,Yn € N

LEMMA 5: G, — G on B (%) if n — .
Proof: .
Let R, := G — Gy and let z € 2 | y = R,z. Then

00 00
E 9i;%; 1= 1,2,...,71 Yn+i — Zgn+i,jxj 1= 1,2,...
=1

j=n+1
thus, if 1 <1 <mn,

ie (£ i) (£ o) mais zg)(z)
j=n+1 j=n+1 j=1

)=

j=n+1 by e
i 1 X1
> y?sﬁf( > A)nacnﬁ
i=n+1 j=n+1 "7

Hence

- \;lst( 3 /\L) and G, — G on B (£2) if n — oo. .
j=n+1"7

Remark: It can be proved in a similar way that Lemma 5 is valid if G = (gi;1), i j<oolS
a Gram matrix such that § 9ii < 00
i=1
The operators G, are of finite rank and positive (recall that a bounded linear
operator T on a Hilbert space H is said to be positive if (T'f,f) > 0, Vf € H).
Therefore G is a compact and positive operator. Since
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oo [o o] oo
= 2
(5:6) = 3wy < (L) (S o) < 7ol
i,j=1 i=1 i=1

it follows that 0 < @; <7ld,Vne N ,and0<G<T Id’.jlence for every natural
number n there exists a unique operator T, such that 7> = G, and a unique operator
T such that T? = G. We will denote them by E;W and G'/? respectively. Now,
because of the uniqueness, it follows that

Qn .. 9

12

G, "=

where @, is the only matrix such that Q, > 0 and Q2 = G,,.

LEMMA 6: G,""* — GV/2 on B(£) if n — co.
Proof:

Let {Px (A)}rcn be a sequence of polinomials with real coefficients that converges
uniformly to the function p(A) = A2 | X € [0,7]. Let T be a selfadjoint operator
such that 0 < T < 7.Id. Then

Therefore {Px(T)},cn is a Cauchy sequence in B(£2). Accordingly, there exists an
operator T € B(f?) satisfying: '

i) Pp(T) > T , if m — o0

i) T2 =T

ii) T >0

w) T is the only operator with the properties %)-iii).
We note T2 = T.We choose an arbitrary positive small € and find an index k such
that

sup |Pe(A) — )\1/2’ < -g
A€0,7]
For that k we have: "Pk(G) — G1/2“ < ¢ and ‘ Pk(a;) _ 6;1/2.| < £. Let ng = no(e)
be such that HPk(’GT,) — Pk(G)H < §,Vn>mng Hence
H@;l/z - GY?| < €,Yn > ny. °
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5 A characterization of M.

THEOREM 1: M = G'/2(¢?).
Proof:
Let ¢ € M. Then (¢(n),G;'c(n)) < K ,Vn € N. We denote

NS
Hence ||z(n)|]| < K ,V¥n € N, and ¢(n) = G}/zr(n). We define the elements

o z; (n) ifl1<i<n
w10 ifi>n
and we denote T, = (Tn;), y - As ||Znllz = ||z(n)||zg= < K, V2 € N ,we can suppose

that {Z,}, v is weak convergent in £2 (if it is not the case, it is sufficient to consider
a subsequence with this property). Then

(Zn,y) = (z,y) if n— oo,Vy € 2.
Since G'/? is a compact operator G'/%%, — G2z if n — oo and GY%%, — c if
n — oo, then ¢ = G2z,

To show that G/2(¢2) C M , let ¢ be an element of G/2(£2). Then there exists
z € €% such that GV%zr =c . We now introduce the elements

ul® = 5’31/21:

We assume for an instant that 4¢®) € M | V¥n € N.. Then we have
172 (s)
}(G )

o) () -] s

neN

< "(Gn 1/2( (n) — uE:))H + K ,being K a constant. So

_1\1/2 _ . s
I(G’nl) c(n)“ < H ) (c(_n) ~ lim ugng) H P K=K
because u®) — cin £2 if s — oo. Thus ¢ € M.

To show that u(® € M , ¥n € N let’s introduce the set
Rs:{a:(ai)ieN€€2:a¢:0Vi>s}

and consider {g;}, 5 a biorthogonal sequence to the sequence (1). Next we define
g=01g1 +0g92 + ...+ asgs , g € L?(0,00). Then

gty _ ) i 1SS
e {5 i5s

and hence ﬁ’,s CM,VseN. °

Remark: Now the part a) of the proposition is obvious.
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6 Solution of the moment problem.

If @ (t) is the solution with minimun norm of the truncated moment problem

(‘Pn(t),e_)‘jt) =c¢; j=12,...,n
then [K]

en(t) =Y me™™
i=1

n
where 7v; = Y 0;;(n)c; and o; ;(n) is the (i,j)-element of G, 1. Tt can be proved that
i=1

ISV VRIS WS VRSP Vi Iy ¥

cri’-n = .
i(n) A+ A kl;ll)\k—/\i kl;[l/\k—/\j
ki k5
L VS ¥ 1

If we call a;(n) = 2\ H

a;(n)a;(n). The
k=1 Ak — Ai

we can write o; ;(n) = ——
W) =

k#i
moment problem has a solution if and only if there exist a constant K > 0 such that

[K] |len(®)|| < K ,VYn € N. Let D,, = (d;)1<ij<n be a diagonal matrix of order n
such that

d:: = ai(n) 1=
W70 i

then G,;! = D,,G,,D,, and

n n ai(n N n N
o) = 3 (32300 ) e = S e
j=1 \i=1 "™ J J=1

where d(n) = : = Gy Dnc(n).
dn(n)

The condition Z x < oo implies convergence of the infinite products r}im a;(n) =
i=1 i o
a; , Vi € N [C] . For every ¢ € N the sequence {d;(n)},.y has also a finite limit
when n — oo. Then we write d; = T}Lr& d;(n).

In fact, let P,(t) = i ci(n)a;(n)e=>* ; then | P (t)|| = llen(t)|| < K, Vn € N and
=1

P,, e')“‘t) = d;(n). This shows that {P,(t)}, . is a sequence of elements in L?(0, co)
such that the norms form a nondecreasing sequence of real numbers with K as an
upper bound. Then there exists P € L?(0, o) such that P, — P if n — oo.
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The following theorem is valid

THEOREM 2: If there exist a constant 8 > 0 such that A,y 1 — Ay > 3, Vn € N,

> 1
and Z — < oo then
k=1 k

p(t) = djaze ™t
j=1

is the solution with minimun norm of the moment problem

et)e ™ =¢;, i € N.

Proof:
First,

Z djaje_’\"t € LZ(O, OO),
7j=1

is a consequence of a theorem of Schwartz [S]. In fact, as @, (t) = 51_1“, di(n)a;(n)e >t
i=1

is the solution of minimun norm of the problem of order n:

pt)e M =¢,1<i<n,

there exists ¢(t) = lim fj a;(n)d;(n)e=** € L*(0,00), being ¢(t) the solution of
N0 4o

minimum norm of the moment problem [K]. Then ¢(t) belongs to the clausure of the
subspace of L?(0, 00) generated by {e"\“‘} . and can be written as a Dirichlet series
1

[S]
(p(t) = i_o: kie >t

As {e_’\i’}ieN is ‘a minimal system [S] it follows that k; = oyd; , Ve € N | i.e.:

At

o0
It remains to prove that 3~ d;ja;e™"" is a solution. As
j=1

1

o) o) )
diaie Mt e M) = N djay———

then we must prove that:
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ad 1
dio;——— =c¢,Vk € N.
,'ZZI '/\i I /\k k)
Itk <n, Y di(n)ai(n) g5 = (CaDaGoDnc(n)), = c then
i=1
R i e o~ A
'nh-?olo ;G,(n)adﬁ) R}“;‘;; =, VR < N,

But ,%j ade Mt e L?(0,00) then
i=1

7 Another expression for the solution

The solution of minimun norm of the problem of order n ¢, (t) = Z dj(n)a;(n)e~*t

iz
can be written as p,(t) = E vj(n)e~ %t with y(n) = (7i(n))1cicn = DnGnDnc(n).
=1 =
But D,Gn,D, = G;! , then
¥(n) = (7i(n))1gign = G:llc(n)'
The goal of this section is to find an analogue expression for the solution (). In
section 5 we proved that there exists P(t) € L%(0, oo) such that

P(t) = lim Py(t) = lim Zc, (n)ai(n)e ™t

Then P(t) belongs to the clausure of the subespace of L%(0,00) generated by the
system {e"\‘t}iGN and P(t) can be developed in a Dirichlet series

o0
P(t) =) hie ™.
i=1
But {e“.""t}ieN is a minimal system, then h; = a;c;, Vi € N,

P(t) =) cae e L%(0, 00).
i=1

Then (P(t)7 e"‘it) =3 .c.;a.' - converges and

c;a 2. CiQ;
~dim ) = Ji 2SR5
—1 M
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oo 00

. 00 ;0
Th t) = d,-aie Ait et
enelt) =4 Y—;Jz; N+

If we define the operator DGD as the one generated by the infinite matrix

Q;

/\i+)\j

Ai + A
it follows that ¢(t) = (DG’Dc) e Mt,

;05
( haac ) and the operator GD as the one generated by the infinite matrix
i/ J
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