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Abstract: In this paper the continuity of the solutions of a mathematical model 
of thermoviscoelasticity with respect to the model parameters is proved. This was 
an open problem conjectured iIi [27J and [28]. The nonlinear partial differential 
equations under consideration arise from the conservation laws of linear momen
tum and energy and describe structural phase transitions in solids with non-convex 
Landau-Ginzburg free energy potentials. The theories of analytic semigroups and 
real interpolation spaces for maximal accretive operators are 'used to show that the 
solutions of the model depend continuously on the admissible parameters, in par
ticular, on those defining the free energy. More precisely, it is shown that if {qn}~=l 
is a sequence of admissible parameters converging to q, then the corresponding so
lutions z(tj qn) converge to z(tj q) in the norm of the graph of a fractional power of 
the operator associated to the linear part of the system. 

1. INTRODUCTION 

The conservation laws governing the thermomechanical processes in a one-dimensional 
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Cientificas y Tecnicas of Argentina and UNL, Universidad Nacional del Litoral through project 
CAl+ D94-00 16-004-023. 
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shape memory solid 0 = (0, 1) with Landau-Ginzburg free energy potential \lI. give 
rise to the following initial-boundary value problem. 

(1.1 ) 

pUtt - (Jpuxxt + 'YUxxxx = f(x, t) + :x [~\lI(ux,uxx,O)] , 

CvOt - kOxx = g(x, t) + 20'.20UxUxt + (Jpu;o 
u(x, 0) = uo(x), Ut(x,O) = Ul(X), O(x,O) = Oo(x), 
u(O, t) = u(l, t) = uxAO, t) =uxx(l, t) = 0, 
Ox(O, t) = 0, kOx(l, t) = kl (Or(t) - 0(1, t)), 

x E 0,0 :S t :S T, 

x E 0,0 :S t :S T, 
x E 0, 
o :S t :S T, 
o :S t :S T. 

The functions, variables and parameters involved in (1.1) have the following physical 
meaning: u(x, t) = displacement; O(x, t) = absolute temperature; p = mass density; 
k = thermal conductivity coefficient; Cv = specific heat; (J = viscosity coefficient; 
f(x, t) = distributed forces acting on the body (input); g(x, t) = distributed heat 
sources (input); uo(x) = initial displacement; U1(X) = initial velocity; Oo(x) = initial 
temperature; Odt) = temperature of the surrounding medium (input); kl = positive 
constant, proportional to the rate of thermal exchange at the right boundary, and T 
is a prescribed final time. The function \lI, which represents the free energy density 
of the system, is assumed to be a function of the linearized shear strain E = ux , the 
spatial derivative of the strain Ex = U xx and the temperature 0, and is taken in the 
Landau-Ginzburg form 

\lI(f, Ex, 0) = \lIo(O) + 0'.2(0 - (1)E2 - 0'.4E4 + 0'.6E6 + ~E;, 

\[10(0) = -CvOlog (:J + CvO + C, 
(1.2) 

where 01 , O2 are two critical temperatures and 0'.2, 0'.4, 0'.6, 'Yare positive constants, 
all depending on the material being considered. Note that for values of 0 close to 
()1 andEx fixed, the function \lI(E, Ex, 0) is a nonconvex function of t:. This property 
is related to the hysteresis phenomenon which caracterizes this type of materials 
ill the low and intermediate temperature ranges. The stress-strain relations are 
strongly temperature-dependent. The behavior goes from elastic, ideally-plastic at 
low temperatures, to pseudo elastic or superelastic at intermediate temperatures, to 
almost linearly elastic in the high temperature range. Shape memory and solid-solid 
phase transitions (martensitic transformations) are other peculiar characteristics 
of these materials whose dynamical behavior is described by system (1.1). For a 
detailed review of these and other properties and the derivations of the equations 
in (1.1) we refer the reader to [25] and the references therein. 

The boundary conditions mean that the body is clamped at both ends, thermally 
insulated at the left end and, at the right end, the rate of thermal exchange is 
prescribed. The nonlinear coupled equations in (1.1) are sometimes referred to as 
the equations of thermo-visco-elasto-plasticity. In particular, the first equation in 
(1.1) can be regarded as a nonlinear beam equation in u, while the second is a 
nonlinear heat equation in O. 

Initial boundary value problems of the type (1.1) have been studied by several 
authors ([15], [16], [21], [27], [28], [32], etc.; see [25] for a review). Initial efforts to 



113 

prove existence of solutions for this type of systems considered the heat flux in the 
form q = -kOx - akOxt , with a > 0, instead of the classical Fourier law (a = 0). 
This assumption introduces the additional term -akOxxt on the left hand side of the 
second equation in (1.1). Although this was done merely for mathematical reasons 
so that existence theorems could be proved ([15], [16], [21], [22]), it turns out that 
the second law of thermodynamics is not satisfied if Q: > 0, as it can be easily verified 
by checking the Clausius-Duhem inequality for the entropy production. Therefore, 
the case a > 0 has no physical meaning. The first results on existence of solutions 
for the case a = 0 are due to Sprekels ([27]). However, he imposed very strong 
growth conditions on the free energy Ill. In particular, those conditions excluded 
the physically relevant case in which III is given in the Landau-Ginzburg form (1.2). 
Later on, Zheng ([32]) derived certain apriori estimates from which he concluded 
that, if the initial data is smooth enough, then any local solution of (1.1) with W 
as in (1.2) can be extended globally in time. This result was later generalized by 
Sprekels and Zheng ([28]) to include more general free energy functionals. More 
recently, using a state-space approach ([25]) it was shown that system (1.1)-(1.2) 
has a local solution for a much broader set of initial data than the one considered 
in [28] and [32]. 

From a practical point of view it would 'be very important to find the values of all 
the parameters in (1.1)-(1.2) that "best fit" experimental data for a given material. 
This is called the parameter identification problem (ID problem in the sequel). 
Once this problem is solved, the next step is to determine how well this model can 
predict the dynamics of a given shape memory material which is subjected to certain 
external inputs. This is called the model validation problem. Although numerical 
experiments performed with system (1.1) have shown that physically reasonable 
results can be obtained for certain values of the parameters (see [4] and [19]), the 
ID problem still remains open. 

In order to establish the convergence of computational algorithms for parameter 
identification, one needs to show first that the solutions depend continuously on the 
parameters that one wants to estimate. As we shall see in the following section, 
system (1.1)-(1.2) can be written as a semilinear Cauchy problem of the form .i(t) = 

A(q)z(t)+F(q, t, z), z(O) = Zo, in an appropriate Hilbert space Zq, where q is a vector 
of admissible parameters, A( q) is a certain differential operator associated with the 
linear part of the partial differential equations in (1.1) and F(q, t, z) corresponds 
to the nonlinear part of the system. In [26] it was shown that the nonlinear term 
F(q, t, z) is locally Lipschitz continuous in the state variable z in the topology of 
the graph of (-A(q))'S, for any fJ > ~. Although this result is necessary to show the 
continuous dependence of the solutions of (1.1) with respect to the parameter q, it 
is not sufficient. In fact, it turns out that a key step in achieving this result involves 
proving that if {qn};::O=l is a sequence of admissible parameters converging to q, then 
the associated analytic semigroups T(tj qn) converge strongly to T(tj q) in the norm 
of the graph of ( - A( q))o. This is a much stronger result than the one obtained by 
using the well known Trotter-Kato Theorem (see [25], Theorem 4.1). 
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2. PRELIMINARIES AND STATE-SPACE FORMULATION 

In the sequel, an isomorphism will be understood to denote a bounded invertible 
operator from a Banach space onto another. 

Let X be a Banach space and X* its topological dual. We denote with (x*, x) ~ 

or (x, x*) the value of x* at x. For each x E X we define the duality set S(x) == 
{x* E X* : (x*,x) = 
IIxl12 = IIx*112}. The Hahn-Banach theorem implies that S(x) is nonempty for every 
x E X. If A is a linear operator in X with domain D(A), we say that A is dissipative 
iffor every x E D(A) there exists x* E S(x) such that Re(Ax,x*) ~ O. We say that 
A is strictly dissipative if A is dissipative and the condition Re(Ax, x*) = 0 for all 
x* E S (x) implies that x = O. If X is a Hilbert space then S (x) = {x} and therefore 
A is dissipative iff Re(Ax, x) ~ 0 for every x E D(A). We say that the operator A 
is maximal dissipative if A is dissipative and it has no proper dissipative extension. 
We say that the operator A is (maximal) accretive if -A is (maximal) dissipative. 
If the operator A is strictly dissipat~ve and maximal dissipative, we will simply say 
that A is strictly maximal dissipative. 

If A generates a strongly continuous semigroup T(t) on X then the type ofT is de

fined to be the real number wo(T) == inf !l~g IIT(t)ll. It can be shown that the type 
t>o t 

of a semigroup is either finite or equals -'-00. Moreover, wo(T) = lim! log IIT(t)lI. 
t-+co t 

Also, the semigroup T(t) is of negative type iff T(t) is exponentially stable, i.e., 
wo(T) < 0 iff 3M ? 1, a >0 such that IIT(t)1I ~ Me-at for all t > 0 (see [1, 
pp 17-21]). If the semigroup T(t) generated by A is analytic and u(A) denotes the 
spectrum of A, then wo(T) = sup Re). provided that u(A) i= 0 and wo(T) = -00 

AEt1(A) 

if u(A) = 0 (see [1]). 

Let us return now to our original problem (1.1)-(1.2). We define the function 
L(x, t) == or(t) cos(27rx) and the transformation O(x, t) = O(x, t) - L(x, t). We also 

define the stat, spa" Z = HJ(O, 1) n H'(O, 1) x L'(O, 1) x L'(O, 1), z = (;) E Z 

and the admissible parameter set 

Q == {q ~ (p,CV ,(3,a2,a4,a6,Oll'Y) I q E IR~o}' 

Next, we define in Z an inner product (., ')q depending on the parameter q as follows 

((n, (1)). =~ l' u"(x)u"(x)dx+p l' v(x);'(x)dx+ ~. l' w(x)w(x)dx 

and we denote by Zq the Hilbert space Z endowed with the inner product (., ')q. The 
norm induced by ("')q in Zq will be denoted by 1I·lIq' Note that these norms are all 
equivalent and, moreover, they are uniformly equivalent on compact subsets of Q. 
Then the initial boundary value problem (1.1) with \II as in (1.2) can be formally 
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written as an abstract semilinear Cauchy problem in Zq as follows 

( .i(t) = A(q)z(t) + F(q, t, z(t)), 

l z(O) = Zo, 

( 
U(X,t)) 

where z(t)(x) = ~t(x,t) , 
B(x,t) 

(2.1 ) 

. {( U) U E H:(O, 1), u(OJ = u(l) = 0 = u"(O) = ul/(I), } 
D (A(q)) = v E Zq v E Ho(O, 1) n H (0,1), , 

w wE H2(0, 1), w'(O) = 0, ';;w'(1) = -klW(I) 
(2.2) 

and fo, (~) ED (A(q)), 

A(q) (~) === (fJVII.~;UIIII') = (-l::. 
w ); w" 0 

(2.3) 

''''''''1.1 / , 

The element Zo is defined by 

zo(x) = ( ~~~~~ ) 
Bo(x) - Br(0)cos(2'7rX) 

and the nonlinear mapping F( q, t, z) : Q x [0, TJ x Zq --t Zq is defined by 

F(q,t'Z)=F(q,t,(~)) === (h(q~t,Z))' 
w !3(q,i,z) 

(2.4 ) 

where 

P!2(q, t, z)(x) = !(x, t) 

+ :x [2o:2(w(x) + L(x,t) - Bl)U'(X) - 4a4u'(X)3 + 6a6u'(X)5] , 

Cvh(q, t, z)(x) = g(x, t) + 2a2 (w(x) + L(x, t)) u'(x)v'(x) 

+ fJpV'(X)2 - CvBHt) COS(27TX) 

- 4k1r2 L(x, t). 

The following results can be found in [25J and [26J. 

Theorem 2.1. ([25]) Let q E Q and the operator A(q) : D (A(q)) C Zq --t Zq as 
defined by (2.2)-(2.3). Then 
i) A( q) is strictly maximal dissipative; 
ii) The adjoint A*(q) is also strictly maximal dissipative and is given by D (A*(q)) = 

D(A(q)), and fo, (n E D(A"Cq)) 

A*(q) (~) = (fJVII +V;UIfIf
) = 

W ..!!..w" 
Cu 

o 
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iii} 0 E p (A(q)), the resolvent set of A(q); 
iv) The spectrum 0' (A( q)) of A( q) consists only of eigenvalues, 0' (A( q)) = 0' P (A( q)) = 

P~'-, an}::"=l where A~'- = ffn (-r(q) ± Jr2 (q) - 1), an = -~, with Pn = 

,n47r4 () (3..jP d {}OO 11 th . . 1· f h . , -p-' r q = 2yf1 an Tn n=l are a e posItIve so utlOns 0 t e equatlOn P 

kl 
tan T = kT. The corresponding set of normalized eigenvectors in Zq is given by 

{ (;~~n ), (k:Xo~~n), UJ } ~~" 
whete en(x) = (p (Pn : I.\;t 12)) t sin( 7rnx), Xn(x) = (Cv forn ~::2(O d~) t cos( Tn X ) 

and P = I'n+I>.;t12. 
n I'n+l>'n F 

v) The operator A(q) generates an analytic semigroup T(t; q) of negative type which 
satisfies II T( t; q) Ilc(zq) ~ e-w(q)t, for t 2: 0, where w( q) is given by 

{ . (!:2I f!!i:..) 
ffiln C.' 2 ' 

w(q) = kr2 (3 2 2 

min ( ~, + - 2~ J (32 P - 4,) , 
if (32p ~ 4, 

if (32p > 4,. 

It will be useful to introduce some notation for certain interpolation spaces. If X 
is a Banach space and p 2:. 1 , L~(X) will denote the Banach space of all Bochner 

measurable mappings u : [0,00) -t X such that IlulljJ~(x) ~ fooo Ilu(t)ll~ '¥ < 00. Let 
X o, Xl be two Banach spaces with Xo continuously and densely embedded in Xl, 
p 2: 1 and () E (0,1). We shall denote by (Xo,Xl)e,p the space of averages (or "real" 
interpolation space) 

Endowed with the norm 

(Xo, Xl)e is a Banach space. In the particular case when p = 2 and X o, Xl are 
,p 

Hilbert spaces, we shall denote (Xo, Xde 2 = [Xo, Xlle· 

Since 0 E p(A(q)) and A(q) generates an analytic semigroup T(t;q), the fractional 
8-powers (-A( q))O of -A( q) are well defined, closed, linear, invertible operators for 
any 82:0 (see [23, pp 69-75]). Moreover, (-A(q)fO has the representation 
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where the integral converges in the uniform operator topology for every () > 0. Since 
A(q) is closed and ° E p(A(q», the operator (_A(q»5 is also closed and invertible 

for each () > O. Therefore, D (( _A(q))t) endowed with the topology of the graph 

norm is a Hilbert space. Since (( -A(q»O is boundedly invertible, the norm of the 
graph of (( _A(q»6 is equivalent to the norm Ilzllq,D ~ II( -A(q))6zllq. We shall 

denote by Zq,5 the Hilbert space D ((_A(q»)5) endmved with the 11·llq,s-norm. 

Theorem 2.2. ([26]) Let q E Q, A(q) : D (A(q» c Zq -+ Zq as defined by (2.2)
(2.3), 0 < () < 1 and Zq,S as defined above. Then 

i) Zq,o = [D (A(q» , Zq]l_O' in the sense of an isomorphism; 

ii) The norms IIZllq,o, Ilzll(D(A(q)),Zq),_6,2 and IIZllq + IllI-OA(q)T(t; q)zIIL~(Zq) arc 

all equivalent in D ((-A(q)~). 

The next lemma shows some relations between the spaces Zq,6 for different q's. 

Lemma 2.3. ([26]) Let () E (0,1). Then, 

i) For any pair q, q* E Q the spaces Zq,o and Zq',o are isomorphic. 
ii) Moreover, for any compact subset Qc of Q the norms {II' Ilg,s : q E Qc} 

are uniformly equivalent, i.e., there exist positive constants m, M such thai 

mllzll q,5:::; Ilzllq.,5 :::; MIIZllq,6 for every q, q* E Qc and all zED (( _A(q»)D) n 

D (( -A(q*»o). 

Consider the following standing hypotheses. 
(HI' rr'here ex:s' f"~~':on~}o' }' r T 2((\ 1 \ To' 1_\ "- (\ ~" T/ IX\ " (\ - - suc L 
\ J ~H . J"JUHL"J '" 'f' 'gC1.J\v,lj,llf\.L)~va.e.,llg\ )~va.e., .11 

that 

If(x, td - f(x, t2 )1 :::; Kf(x) It 1 - t21 and Ig(·T, td - g(:r, t2 )1 :::; f{g(x) !t l - t21 

for a.e. x E (0,1) and all iI, t2 E [O,T]. 
(H2) Or E HI (0, T) and O~ is locally Lipschitz continuous in (0, T). 

Theorem 2.4. ([26]) Let q E Q, ° < E < ~ and assume that the hypotheses (H1) 
and (H2) hold. Then, 

i) for any bounded subset U of [0, T] x Zq,f+' there exists a constant L = 
L( q, U, Or, f, g) such that 

liF(q, t l , ZI) - F(q, t2 , z2)ll q :::; L (It 1 - t21 + Ilz\ - z21Id+') 

for all (tl, zd, (t2, Z2) E U, i.e., the function F( q, t, z) : Q x [0, T] x Zq,f+< -+ Zq 
is locally Lipschitz continuous in t and z. Moreover the constant L can be 
chosen independent of q on any compact subset of Q; 

ii) for any initial data Zo E D ((-A(q))f+<), there exists il = tl(q,zo) > Osuch 

that the initial value problem (2.1) has a unique strong solution z(t; q) E 
1 

C ([0, td : Zq) n C I ((0, t l ) : Zq). Moreover ftz(t; q) E Cl~:< ((0, tl] : Zq), i.e., 
ftz(t; q) is locally Holder continuous on (0, tIl with exponent ~ - E. 
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Finally, we state the following theorem proved in [26], which states that for any com
pact -subset Qc of the admissible parameter set Q, it is possible to find a nontrivial 
common interval of existence for all solutions z(t, q), q E Qc. 

Theorem 2.5. ([26]) Let Qc be a compact subset of the admissible parameter 
set Q, qo E Qc, Zo E ZqQ,6, where ~ < 8 < 1. Let [0, tM(q)) = [0, tM(q, zo)) 
denote the maximum interval of existence of the solution z( tj q) with initial condition 
z(Oj q) = zoo Then 

3. CONTINUOUS DEPENDENCE ON THE MODEL PARAMETERS 

In this section we show that the mapping q ---+ z(. j q) from the space of admissible 
parameters Q into the space of solutions is continuous. More precisely, we shall 
show that if {qn}~=l is a sequence in Q converging to q E Q, then the sequence 
{z(t; qn)}~=l converges to z(tj q) in some appropriate sense. 

Throughout this section, to simplify the notation we will denote with An = A( qn), A = 
A(q), T"t(t) = T(t; qn), T(t) = T(t; q), zn(t) = z(t; qn) and z(t) = z(t; q). 

We shall need the following lemmas. 

Lemma 3.1. Let {qn}~=l be a sequence in Q, qn ---+ q E Q, and let A, An, T, Tn 
be as above. Then 

as n ---+ 00 

for every z E Zq and t > O. 

Proof. Let z E Zq. Since Tn(t), T(t) are analytic semigroups, Tn(t)z, T(t)z, are in 
D(An), D(A), respectively Vt > O. From Theorem 3.5 in [25] it follows that there 
exists an angle (), 0 < () < ~, such that the angular sector 

00 

Eo = {OJ U {A EtC: larg AI < i + ()} C p(A) n n p(An). 
n=l 

Now, let i < ()1 < i + () and let r be the path composed of the two rays 
re- i01 , re i01 , 0 :::; r < 00, r oriented so that Im(A) increases along r. We have 
the following expresions (see [23]) 

AT(t)z = ~ [ Ae>.tR(A;A)zdA, 2n ir 

AnTn{t)z = -21 . [Ae>.tR(AjAn)zdA, 
'Tn ir 

for every z E Zq, t > 0, where R(Ai A) = (AI - A)-I, R(Ai An) = (AI - An)-l. 
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II>.eM (R(>.; A) - R(>'; An)) Zllq ::; l>'jeRe(A)t C~I + I~I) IIZllq 

::; (1 + C)eRe(A)tllzllq E Ll(r), 

where the constant C appears because of the uniform equivalence of the norms 11·llqn 
and II . Ilq· Also, for any fixed>. E r 

In fact, 

II (R(>.; A) - R(>.; An)) Zllq -t 0 as n -t 00. 

II (R(>.; A) - R(>'; An)) Zllq = IIR(>.; An) [(U - An)R(>.; A) - I] Zllq 
= !!R(>.; An)(A - An)R(>.; A)zllq 
::; IIR(>.; An)IIC(Zq)II(A - An)R(>.; A)zllq 

which converges to zero as n goes to infinity by virtue of the uniform boundedness of 
iiR(.A; An)liC(Zq) and the strong convergence of An to A (which follows immediately 
from the definition of An and A, and the convergence of qn to q). 

The lemma then follows from (3.1) and the Dominated Convergence Theorem. • 

Lemma 3.2. Under the same hypotheses of Lemma 3.1 

II( -A)6(T(t) - Tn(t))Zllq -t 0 as n -t 00 

for every z E Zq, 8 E [0,1] and t ~ o. 

Remark. We note here that the assertion of Lemma 3.2 could be obtained imme
diately if (_A)6 commuted with Tn(t). However, this is not true since An does not 
commute with A, as it can be easily verified. 

Proof of Lemma 3.2. It suffices to show the result for E = 1. We can write 

IfA(T(t) - Tn(t))zll = II [AT(t) - AnTn(t) + (I - AA;l)AnTn(t)]zllq 

::; II(AT(t) - AnTn(t))zllq + III - AA;lllc(zq) IIAnTn(t)zllq· 
As a consequence of Lemma 3.1 the first term on the right of the above inequality 
tends to-zero as n goes to infinity and the sequence {IiAnTn(t)zllq}~=l is bounded. 
A straightforward calculation using the definition of A( q) shows that for any pair of 
admissible parameters q = (p,Cv,/3,a2,a4,a6,Ob"Y), ij = (p,Cv,~,a2,a4,a6,1J1!:Y) 

E Q and any z = (E) E z, 

A(qW'(q)z = ( (li - p(~) u~ + ';v ) , (3.2) 

from which it follows immediately that III - AA;;-lIIC(Zq) -t 0 as n -t 00. The 
theorem then follows. • 
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Lemma 3.3. Let Qc be a compact subset of Q. Then for any 6 E [0, 1] there exists 
a constant G depending only on 6 and Qc such that . 

Proof. Since the operator A(q) is maximal dissipative (Theorem 2.1), the space Zq,6 
is isomorphic to the real interpolation space [D(A(q)), Zqh-6, of order 1- 6 between 
Zq and D(A(q)) (see [1]), i.e. 

(3.3) 

From (3.2) it follows that there exists a constant G depending only on Qc such 
that IIA(q)A-1(q)zllti ~ Gllzllti for every q, q E Qc, z E Zq. Letting'fJ = A-l(q)z we 
obtain 

for all q, q E Qc, 'fJ E D(A(q)). (3.4) 

Since the 1I·llq-norms are uniformly equivalent for q E Qc, it follows from (3.4) and 
(3.3) that the norms 1I'lIq,6 are also uniformly equivalent for q E Qc. Thus, for any 
ql, q2, q3 E Qc 

II( -A(qt))6( -A(q2)t6 Zllq3 ~ G11I( -A(ql))6( -A( q2))-6 Zllql 

= GllI( -A(q2))-6Zllq106 

~ Gl G2 11( -A(q2))-6z ll q2 ,6 

= Gl G211Z llq2 

~ Gl G2 G3 11 Z llq3' 

where the constants Gi , i = 1,2,3, depend only on Qc and 6. • 
Remark. Since Tn(t) is an analytic semi group of contractions, by a well known 
result on semigroup theory ([23]), for any 6 E (0,1], there exists a constant G6 

independent of n such that 

where Vn is any angle in (~,7r) for which 

As we mentioned in Lemma 3.1, in this case the angle Vn above can be chosen 
independent of n. Hence, there exists a constant 66 depending only on 6 such that 

Next, we state a lemma whose proof can be found in [14] (Lemma 7.1.1). 
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Lemma 3.4. Suppose L ~ 0,0 < 8 < 1 and aCt) is a nonnegative, locally integrable 
function on 0 S t S T. Let u(t) be a real valued function defined on [0, T] satisfying 

it 1 
u(t)sa(t)+L ( )ou(s)ds 

o t - s 

on this interval. Then, there exists a constant I< = I< (8) such that 

u(t) S aCt) + I<L t ( a(s\o ds for 0 S t < T. 10 t - s 

The following theorem will be essential for our main result. 

Theorem 3.5. Let 8 E (~, 1), {qn}~=l C Q, qn ~ q E Q, and zn(t), z(t) be the 
solutions of the NP (2.1) with initial datum Zo E D (( _A)5) corresponding to the 
parameters qn and q, respectively, and let [0, t l ) be the maximal interval of existence 
of z(t). Then, for any t~ < tl there exists a constant No such that zn(t) exists on 
[0, t~l [or every n ~ No and a constant D such that 

Proof. Let 8 E G, 1), 0 < t~ < t l , and t~ > 0 be such that zn(t) exists on [0, t~) for 
each n E IN. Then, for t E [0, rnin{t~, q}) . 

z(t) = T(t)zo + lt T(t - s)F(s,z(s))ds 

which imply 

IIZ(t)-zn(t)lIq,o = 11(-A)Oz(t) - (-A)Ozn(t)llq 

S 11(-A)5 (T(t) - Tn(t)) zollq 

+ lilt (-A)OT(t - s)F(q, s, z(s)) - (-A)OTn(t - s)F(qn,s, zn(s)) dSllq 

S lie _A)5 (T(t) - Tn(t)) zollq 

+ 111\ -A)OT(t - s)F(q, s, z(s)) - (-A)OI~(t - s)F(q, s, z{s)) dSll
q 

+ lilt (-AlTn(t - s) [F(q, s, z(s)) - F(qn,s, z(s))] dSll q 

+ Illt(-A)5Tn(t - s) [F(qn,s,z(s)) - F(qn,s,Zn(S))] dS\\q 

~ I~(t) + I;(t) + I;(t) + I:(t). 
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Note that, even when this last inequality is true on [0, min{t~, tn), If(t), I;(t) and 
13(t) _are well defined on [0, t~l. 

We have the following estimates 

I;(t) ::; it II (-A)5Tn{t - s )IIC(Zq) IIF( q, s, z(s)) - F( qn, s, z(s ))lIq ds 

::; Ct it II( -An)5Tn{t - s)IIC(Zqn)IIF(q, s, z(s)) - F(qn, s, z(s))lIq ds 

i t C5 
::; Ct ( )5I1F(q,s,z(s)) - F(qn,s,z(s))lIqds. 

o t - s 

The second and third inequality follow from Lemma 3.3 and the Remark preceding 
Lemma 3.4, respectively. Now, for any s E [0, t~], IIF(q, s, z( s))-F( qn, s, z(s)) IIq ---t ° 
as n ---t 00. Also, there exists a constant C2 independent of n such that IIF( q, s, z(s))
F( qn, s, z( s)) IIq ::; C2 for every s E [0, t~], which follows easily from the continuity 
of z(s) and the definition of F. Therefore, 13(t) ---t ° as n ---too on [O,t~l by the 

. Ct C2C5 t 5 
Dommated Convergence Theorem and 13(t)::; 1 _ 8 t - , Vn E IN, Vt E [0, t~l· 

To estimate I;(t), observe that 

I;(t) ::; lt II( _A)5 (T(t - s) - Tn{t - s)) F(q, s, z(s ))lIq ds. 

Now, IIF(q,s,z(s))lIq is uniformly bounded on [O,t~], say IIF(q,s,z(s))lIq < C3 , 

Vt E [0, t~l and 

II( -A)5(T(t - s)-Tn{t - s))lIc(zq) 

::; 1I(-A)5T(t - s)lIc(zq) + II (-A)5Tn{t - s)lIc(zq) 

::; 1I(-A)5T(t - s)lIc(zq) + CII(-An)5Tn{t - s)lIc(zqn) 
C5 - CC5 C4 

::; (t - s)5 + (t - s)5 = (t - s)5· 

,On the other hand, for any s E [0, t~l we have 

II( _A)5 (T(t - s) - Tn{t - s)) F(q, s, z(s))lIq ---t ° as n ---t 00 

by Lemma 3.2.· Therefore I;(t) ---t ° as n ---t 00 by.the Dominated Convergence 

Theorem, and also I;(t) ::; ~~;tt-5, Vn, Vt E [0, t~l 
In regard to If(t) observe that 

I~(t) = II( _A)O (Tn(t) - T(t)) zollq 
= II( _A)5( -Ant5( -An)5Tn(t)Zo - (-A)5T(t)zollq 

::; C IITn{t)(-An)5Zollq + IIT(t)(-A)5 zo ll q 

::; C IITn(t)lIc(zq) C 11(-A)5zo llq + IIT(t)lIc(zq) 11(-A)5zo llq 
::; Csll( -At zollq, 
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where we have used that Zo E D (( _A)6) and the semigroups are contractive. Also, 
by Lemma 3.2 If(t) -r 0 as n -r 00. 

Similarly, 

From the above estimates on If(t), T;(t), I~(t) and I;(t), there follows 

where, for all t E [0, t~], €n(t) ~ If(t) + T;(t) + 13'(t) satisfies 0 ::; €n(t) ::; C7 

for all n E lN and €n(t) -r 0 as n -r 00. In particular, these conditions imply 
(t' 

Jo 1 €n(t) dt -r 0 as n -r 00. 

Let K = K(8) be as in Lemma 3.4 and define 1< ~ C7 + C6 C7 K and M ~ 
. sUPO~t9; IIz(t)llq,6. From the continuity of z(t) it follows that M < 00. Let 

n E IN. Since z(O) = zn(O) = zo, there exists 8n > 0 such that Ilzn(t)llq,6 ::; 
M + 21< for all t E [0,8n l. Let L be a Lipschitz constant for F on the set 

U ~ [O,t~l X {llzlls::; M +21<}, valid for q and all the qn's. Then, from (3.5) 
and Lemma 3.4, we have 

Now, 

it €n(S). d it C7 d 
S < S 

o (t - S Y - 0 (t - s)6 

it 1 
= C7 6 ds 

o S 

= ~tl-6. 
1 - 8 

(3.6) 

1-8 
Choosing TJ = TJ(L) > 0 sufficiently small so that t1- O ::; ~ for every t E [0, TJ]' it 

follows that 

t €n(s) C7 
io (t_s)6 ds ::;2L foreverytE[0,TJ1· (3.7) 
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On the other hand, if 1'/ < t ~ t~ 

t fn{t) ds = r fn{t - S) ds 
10 (t-s)6 10 s6 

= r _En....:...{ t-::~,--s....:..) ds + it fn (t ~ s) ds 
10 s '1/ S 

< --.!... + - f (t - s) ds C lit 
- 2L 1'/6 0 n 

. C7 1 r~ 
~ 2L + 1'/6 10 fn{S) ds. 

Hence, since J;~ En (s) ds ---t 0, there exists No such that 

r fn{t) < C7 + C7 = C7 Vt E ['TI,tl'] and n >_ Mo. (3.8) 
10 (t-s)6 - 2L 2L L ., 

From (3.7) and (3.8) it follows that 

fn{t) ~ C7 + C6C7K Vt E [0, t~] and n ~ No. (3.9) 

Consequently, from (3.6) and (3.9) 

IIzn{t) - z{t)lIq,6 ~ K Vn ~ No and t E [0,8nl. 

which implies 
(3.10) 

Finally, let n ~ No be fixed. We claim that z.n{t) exis·ts on [0, t~] and for t E [0, t~], 
Ilzn{t)lIq,6 < M +2K. In fact, suppose, on the contrary, that there exists t* ~ t~ such 

that IIzn(t*)lIq,6 = M + 2K and Ilzn{t)lIq,6 < M + 2K for ° ~ t < t*. Then, in (3.6), 
8n can be replaced by t* and (3.10) follows with 8n = t*, i.e. IIzn{t)lIq,6 ~ M + K 
on [0, t*]. This contradicts Ilzn(t*)lIq,6 = M + 2K. The theorem then follows taking 

D =M +2K. • 

Theorem 3.6. Under the same hypotheses of Theorem 3.5 

IIZn{t) - z{t)lIq,6 ---t 0, as n ---t 00 

for every t E [0, tl)' 

Remark. If the initial data is smooth enough, then the results. in [28] and [32] 
imply that tl = 00 and therefore, this theorem ensures the II . IIq,6-Convergence of 
zn{t) to z{t) on the whole interval [0,00). 

Proof ~f Theorem 3.6. Let 8 E U' 1) and t~ < t l . By Theorem 3.5 there exist 
No E IN and D > ° such that Zn{t) exists and II zn{t) II q,6 .~ D on [0, t~] for every 
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n 2:: No. Following the steps of Theorem 3.5 we see that for every t E [0, t~l and 
n 2:: No 

where 0 ::; fn(t) ::; C7 and fn(t) -t 0 as n -t 00 for every t E [0, t~J. In the 
last inequality we have used the fact that F is locally Lipschitz continuous and 

Ilzn(t)llq,o ::; D, Vn 2:: No, Vt E [0, til. 
Hence, by Lemma 3.4, there exists J{ > 0 such that 

as n -t 00. 

Since t~ is arbitrary, the theorem follows. • 
4. CONCLUSIONS 

In this paper we have shown that the solutions ·of the IBVP (1.1), with free en
ergy potential \II in the Landau-Ginzburg form (1.2), depend continuously on the 
parameters p, Cv , /3, fr2, fr4, fr6, 01 and "y. In particular, we have shown that if {qn = 

(Pn, Cv,n, /3n, fr2,n, 

fr4,n, fr6,n, B1,n, "Yn)}~=1 is a sequence of admissible parameters converging to the ad
missible parameter q, then not only z(t; qn) -t z(t; q) in the norm of Zq, but also in 
the stronger II . Ilq,o-norm (6 = ~ + f). This constitutes an important step towards 
solving the parameter identifiability and the ID problems for system (1.1). These 
problems, to which we are already devoting efforts, involve also showing that the 
mapping q -t z(- ; q) from the admissible parameter set Q into the space of solutions 
is locally one-to-one. Results on this issue will be published in a forthcoming articie. 
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