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Abstract: In this work two versions of weak Orlicz spaces that appear in the

literature, M 4 and M4, are analyzed. One of those include the weak Lebesgue
spaces for 1 S p < o0, while the other version gives theao annces o

the other version these spaces only for p > 1,
resulting the stronger space L! in the extrem case p = 1. Necessary and sufficient
conditions about the growth function A in order that both spaces coincide arc

given. Moreover we prove that these same conditions characterize the normability
of the M 4 space.

1.INTRODUCTION.

We shall denote by M, the weak Orlicz space associated to A, defined as in
the work of O’Neil, [O], where he makes use of this kind of functions to obtain a
generalization of the Hardy-Littlewood-Sobolev’s theorem on fractional integration
into the context of Orlicz spaces. This version of weak Orlicz spaces generalizes
the weak L? spaces, L%, but only for p > 1. In fact the class M4 for A the identity
function gives a proper subspace of L!.

Our aim in this work is to present an alternative definition of a weak Orlicz space
associated to the function A, denoted by M4, in order to include all L} for 1 <
p < oo. In this way our spaces M 4 give L] for A the identity function and they
coincide with M4 for A(t) = t?, p > 1. Moreover we shall prove that both spaces
are exactly the same as long as A keeps a “little bit away” from the identity. In
fact we establish in theorem (4.8) the necessary and sufficient conditions on A to
guarantee the equality M4 = M 4.

We would like to point out that the spaces M4 are easier to handle since they
‘are defined in terms of a norm while in turn, M 4 is given by means of a quantity
which is not necessarily a norm. It is well known that the weak LP spaces are
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normable for p > 1 while L. is not. Following this line we shall give in theorem
(4.11) the necessary and sufficient conditions on A for M 4 to be normable.

As’a last remark we may say that the usefulness of one version or the other it
would depend on the type of problem we are dealing with. On one side the spaces
M4 seem to be the appropriate ones when generalizing the Hardy- Littlewood-
Sobolev’s theorem, while on the other side the spaces M 4 would fit better for a
theorem on interpolation of operators for example.

2.THE ORLICZ SPACES.

(2.1)Definition: Along this work, for a Young function A we shall mean a non-
negative, convez and nmon decreasing function defined on [0,00] with A(0) = 0,
A(o0) = oo and such that it is nesther identically zero nor identically infinity. We
notice that A may have an jump at some z1 > 0, but in this case limz_ﬂ,l_ A(z) =

0o and A(z) = 0o for x > z; . Under these assumptions the inverse function A~!
18 well defined and it 13 also increasing and continuous.

We introduce now some notions related to the role of growth of non-negative
functions as above.

(2.2)Definitions: We shall say that two non-negative functions are equivalent if
and only if their ratio 1s bounded above and bellow by two positive constants.

A non negative function A defined on IRY is of lower type p (upper type p) if
A(st) < CsPA(t) for any s <1 (s > 1).

We notice that lower and upper types are preserved by equivalence of functions
and also for any function we may choose another for which the definition of type is
satisfied with C' = 1. In particular A is of lower type zero if and only if is equivalent
to a non decreasing function.

(2.3)Definition: For a Young function A we define the Orlicz space La = L 4(X)
as the linear space of those measurable functions acting on the measure space (X, )
for which there i3 a finite number K > 0 such that

1)l
/X A ( I dp <1
The infimun of such K 18 a norm which will be denoted by || f|| 4.
3.WEAK ORLICZ SPACES.

For a complex or real valued and measurable f, defined on a measure space (X, ©),
we will denote by p¢(t) the distribution function of f given by

ps(t) = p({z : [f(z)| > t}).

Then for t € [0,00), us(t) is a non increasing function taking non-negative values.
Therefore we may define its inverse f* by

£1(s) = inf{t : us(t) < )
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where s > 0. This function f* usually called the non-increasing rearrengement of
f, has the of property being equimeasurable with f in the sense that they share the
distribution function. »

By f** we shall denote the average of f* over the interval [0,z], that i3

1[* .,
;/of(t)dt z>0

f**(z) — { v
f*(0) z=0.

Given a Young function A, it is possible to define a class of functions M4 in terms
of the size of the f**, wider than the Orlicz space L 4. The following definition of
a version of weak Orlicz spaces is taken from the work of O’Neil [O], where the
author used this class in connection with the boundedness of convolution operators
on strong Orlicz spaces.

(3.1)Definition: For a Young function A we will say that f defined on (X, p)
belongs to M4 if and only if there exists a real number A large enough so that for
z>0

£* () < A7 (1> .
z
We define ||f||m, as the infimum of such A. Therefore

_ f*(s)
”f“MA —'iglg A—l(l/s) .

In [O], O’Neil shows that the quantity |[f||ar, is indeed a norm wich makes M4 a
Banach space.

For A(t) = t? with p > 1, it is well known that M, agrees with the space L% or
weak LP, defined as those functions satisfying

1 £1l; = sup#'/? £*(¢) < oo
>0

since for 1 < p < oo both quantities ||f||; and ||f||am,,, are in fact equivalent.
Moreover it is known that for p > 1 the Lebesgue spaces LP(IR™) are proper
subspaces of LY(IR™) (see for example [SW]. However the situation changes for
A(t) =t, that is for p = 1. In this case the O’Neil version of weak L! is no longer
the same that L!; it rather coincides with the strong L! space. In fact if A(t) =t,
f € M, if and only if for some A

1
*¥% \< -
=) < Ao

which means

/ " P )dt <A
0



194

This is equivalent to f* being integrable, that is, f in L!.
At this point it appears in a natural way another version of weak Orlicz spaces as
to include all the L% spaces for p > 1.

(3.2)Definition: We will say that a u-measurable function f defined on X belongs
to the weak Orlicz space M 4 if and only if there i3 a constant C so that for t >0

At)p({z : |f(z)l > t}) < C.
This definition implies that the quantity

Il =it {3 > 0/suprs ()0 < 1}

is finite. Moreover the following properties hold
a) [lefllma =le| [ fllma

b) [|F + gllma < 2001 fllamea + llgllaea)
We notice that the factor 2 in b) does not allow to say that || || s, is a norm.

The proof of a) is immediate. On the other hand we observe that b) will follow if
we are able to prove the inequality

) ( { |f(z) + g(a)| >-t}) Aty <1

(I fllma + llgllaa)
for all t > 0. But

(e Pt > #1)20 < (i Hotn > 1) 40

U@L 1l 0@l ol
e ({cnfum (Tt + laTaes) T+ ellalTacy U Tatn + loTaca) > t}) At)

:ﬂ({ f@) 4, _lot)l 92>t}) AQ)

cllflima  eligllama

< (i > ) 20+ ({ais > 1) 40

since #; + 6 = 1. The convexity of A implies A(st) < sA(t) for 0 < s < 1. Then,
if ¢ > 1, we can bound the above sum by

(Ui =) 72 o (s> ) 722

IN -
S
o=
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which in turn is bounded by one as long as we take ¢ > 2.m
4 RELATIONSHIP BETWEEN THE TWO DEFINITIONS.
As we already apointed out L!(IR"™) is a proper subespace of Li(ﬂ%") Consequently

the spaces M4 and M 4 are not always the same. Indeed when A is the identity
function there are functions on IR" for which

p({z : [f(2) > 1)) <

for some finite constant C, even though they are not integrable. Such is the case
of for example f(z) = |11|,,. However M4 is always a subspace of M 4. In fact we
have the following result.

(4.1)Lemma: For any Young function A, we have
My C My

Moreover we have the inequality

[Fllaea <11 Fllaes

First we will find an expression for ||f| s, in terms of the non increasing rear-
rengement of f. From this lemma (4.1) will be an obvious consequence.

(4.2)Lemma: If f 1s a measurable function and by pg(t) and f*(s) we denote its
distribution and rearrengement function, then the following identity holds

sup s (A0)A() = supsit (L),
t>0 :9>0

and hence ()
*(s
||f“MA - ?i%) A_l(l/s)'

Proof:

First, let us assume that f is a non-negative simple function. Then it may be

written as
n
f= E CiXE;,
=1

where p(E;) > 0,E; NEx = 0if j # kand ¢; > ¢ > ... > ¢y > 0. Set d; =
p(E1) + ... + (Ej), 1 < j < n, and let us define dg = 0,¢cpn41 = 0. Then, if we
set pus(t) = [{z : |f(z)| > t}|, this function and its inverse f* are given by

Sl 4 Y

d;
ﬂf()d):{ D A
0 tZCl
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. c; di—1 <s<d;
f(8)={(’) N ’

§ > dy.

Therefore, using that A is non-decreasing we have

sup A(t)ug(At) = supA ( 3 ) dj = ﬁ‘;gA (f*;s))

Now, for a general measurable function f, we can find a non-decreasing sequence

of non-negative simple functions f, such that lim,_. fn(z) = |f(z)|, for each z in

the domain of f. Therefore, for each ¢t > 0, the sequence {x,(t)} is non-decreasing

and lim, o tn(t) = p(t), where p, and p denote the distribution functions of f,

and f respectively. Likewise, for each s > 0 we also have that f}(s) increases to
*(s) and the first claim of the lemma follows immediately. i

As for the second equality we just notice that

| fllm, = inf {)\ > 0/sup pr(At)A(t) < 1}
>0

(4.3) = inf {A >0/ supsA <f*(8)) }

= su f*(s)
5 A1(1/3)

where in the last equality we have used that sA(@) <1 is equivalent to f*(s) <
AT ( % )=

Proof of lemma (4.1):

From of definition of f** it follows that for any s > 0 we have f*(s) < f**(s).
This observation together with lemma (4.2) give the desired conclusion.m

As we shall see the difference between the spaces M 4 and M 4 may appear in other
cases besides A(t) = t. In fact if for z > 0 we denote by log* z the maximum
between logt and zero and for z € IR" we take the function

9¢?
wale]" (3 + log" (b))’

f(z) =

then f belongs to the space M 4 for A(t) such that A=1(t) = 9e¢(3 4 log™ t)~2.
First, A(f) is a Young function because we have chosen the constants in such a
way that A~ is increasing, continuous and concave on [0, 00]. Also,it is not hard
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to check that A(t) behaves at infinity like t(log™ ¢)2. Second, for any increasing
function A~?, the function defined on IR™ by f(z) = A~} E.'IIIT) is such that

f*(s) = A~1(1/s) proving our assertion that f € M4. Finally let us see that f is
not in M 4. If it were, there would be a constant A > 0 such that

%/, A7 (1/t)dt < AATI(1/s).

But then, for any s < 1 we have

s 962 —log s 1
/ im o [ L,
o (3 + log(1/t)) o  (3+u)

= 9¢%(3 — log S)_l

This together with our assumption would lead to
9¢2(3 +log(1/s)) ™" < M9e%(3 + log(1/s)) >

- for some A > 0. But this impossible because it would imply that —logs is a
bounded function on (0,1).

This example shows that when X = IR"™ and p is the Lebesgue measure there are
other Young functions different from A(t) = ¢ for which the space M, is strictly
contained in M 4. In our next step we will characterize all the Young functions for
which both spaces are exactly the same. In what follows we shall restrict ourselves
to the case of X = IR"™ with p the Lebesgue measure. Nevertheless the main
results contained in theorems (4.8) and (4.11) could also be derived working in
more general measure spaces.

We start by giving two real functions lemmas; the first can be found in [M], and
the second is an stronger version of a result proved by Viviani in [V]. This last
result will be an essential tool in looking for necessary and sufficient conditions on
A to ensure that M4 = M 4.

(4.4)Lemma: Let h(t) be a non negative and non decreasing function on [0, ] for
which there ezists a constant D such that for 0 < s < j/20, [; h(t)dt < Dsh(s).
Then if 1<r < D/(D -1), ’

(4.5) / [h(t)]"dt% (20)' - s [ / h(t)dt]



198

4.6)Lemma: Let n be a non negative function such that X2 is non increasing.
( n g : g
Then n(t) is equivalent to 7j(t) = fot ﬂsﬂds if and only if n has a positive lower
type.

Proof:

Since ﬁtﬁ is non increasing the inequality n(t) < fot —"—(f-)-ds is always true no matter

what the lower type of 5 is. Also, the fact that the inequality fot ﬂsﬂds < Cn(t)
holds whenever 7 is of positive lower type is proved in [V]. Conversely the equiva-
lence between n and 7} implies that fot h(s)ds < Cth(t), for h(t) = ﬂtﬁ and Vt > 0.
This allows us to use (4.5) from Muckenhoupt lemma for any finite interval in or-
der to obtain that 7 is of positive lower type. In fact, if r > 1, as in the conclusion
of the previous lemma, 0 < u < 1 and s > 0 we have

ush™(us) < /0 Chrwa < /0 “RT@)dt < st [ /0 | h(t)dt] "< oshr(s)

Therefore .
h(us) < C (l) ' h(s)
U

Since r > 1 we arrive to the desired conclusion.m

Now we make an useful remark on the relationship between the types of a Young
function and its inverse.

(4. 7)Lemma: Let A be a Young function. Then A has a lower type m if and only
if A7 has an upper type 1/m.

Proof:

The Young function A has a lower type m if and only if there is a constant C > 0
such that : :
A(st) < Ct™A(s) forany 0<t<1 .

Now taking a pair t < s the latter inequality can be written
Al = AGsHy < C (3) " AGs)
s’ S

which is equivalent to say
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for any t < s. Setting a = A(t) and § = A(s), by the continuity of A the above
inequality can be written

o 8
A = A

Since A is non decreasing we get that the inequality

1(ﬂ) oA (@)

B o
holds for any a < 8, but this is to say that A~! has an upper type = .=

Now we are in position to state and prove the anounced characterization.

(4.8)Theorem: Let A be a Young function. Then the following statements are
equivalent
) MA - -MA;
i) 1 [0 ATI(1/t)dt is equivalent with A71(1/s),
1) A'has a lower type greater than one 1.

Proof:
Let us assume i) is true. Since by (4.1) M4 C M4 always holds, we must obtain
ii) from M4 C My . Take the function f(z) = A™? (

non increasing it is easy to check that its rearrengement is f*(s) = A7!(1) and
hence f € M 4. Now, our hypothesis implies that f belongs also to M4 which
means that for some A > 0 the inequality

[ ()=o)

holds for any s > 0 giving one of the inequalities in ii). Finally, the other inequality
follows using that A=!(1/t) is a non increasing function.

To check that ii) = iii) we set n(t) = tA7!(1/t) and we make use of lemma (4.6)
to conclude that n has a positive lower type, say a. Therefore we have

e ) since it is radial and

1 1 :
n(ut) = utA™! (7) < Cu®tA™? (?> O0<u<1,t>0yya>0)
u
which implies

1
A»-l( ) < Cu® 47! G) (0<u<1,t>0anda>0)

ut
setting o = L and z = 1 the above expresion is equivalent to

A (02) < Co'™®A(z) (6>1,z>0ya>0)
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which means that A~! has an upper type less than one. By using now Lemma 4.7
we may conclude that A has lower type greater than one.

In order to prove iii) = ii) we use again lemma (4.7) to conclude that A~! has
an upper type, say b, less than one and that, in consequence, the function 7(t) =
tA~1(1/t) has a positive lower type. In fact, if 0 < u < 1 and ¢ > 0 we have

n(ut) = utA™? (%) < cutG)bA*l G) = Cu'7by(2).

Since 1 — b > 0 we may apply lemma (4.6) to get ii).
It remains to prove that ii)=1). First we observe that by lemma 4.1 it is enough
to check M4 C M4. Let us assume f € M4, that is f*(s) < AA™! (%) Then we

have \
1 [* e 1
*k P * < Z -1 { = .
o= [ 1 (t)dt_:cA 4 <S)ds
But, using ii) we get
(@) < KA (1)
T

and hence f € My.a

(4.9)Corollary: If A has a lower type greater than one, then there ezists a con-
stant C' such that

[fllaea < Clifllama

holds for any f € M4 and moreover M 4 i3 normable.

Proof:

@ =1 [ 5w

N A () N
fmfo T AT

<Clflay [ A7 /0

< Cllfllma A7 (1/2),

where we have used iii) = ii) from theorem (4.8). Taking supremum over all z, we
get

[ fllma < Cllfllaa-
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Finally, since by lemma (4.1) the reverse inequality between | f|im, and || f]|am,
always holds, our space M4 is normable so that the proof of the corollary is
complete.»

(4.10) Remark: As we have just seen the space M 4 is normable, with the norm
||.l| a4, whenever A has a lower type greater than one. For A a Young function
without this property (i.e. A has lower type cne and no greater than) we already
know that our space M4 is much bigger than M, and consequently the quantity
Il m, 1s not longer equivalent to the norm ||.||ss, . A natural question then arises:
is there a norm on the space M4 equivalent to the quantity ||.[|a«,?. In other
words we would like to know whether or not this spaces M 4 are normable for
Young functions A without a lower type greater than one. It is known that the

T 1 . . 1
space L, is not normable. Our next result shows that this situation extends to all

M 4 with A having a lower type at most one.

(4.11) Theorem: Let A be a Young function. Then the weak Orlicz space My
is normable, with a norm equivelent to ||.|\m, if and only if A has a lower type
greater than one.

Proof:

By corollary (4.9) we only have to show that M 4 normable implies that A must
have a lower type greater than one. For simplicity we will work out the proof only
in the one dimensional case. For higher dimensions it follows the same lines. For
given s > 0 and N € IN we define the function

f(z) = ZA ( ks])

If we call fi (z) = A7! <2|z = |) it is easy to check that they all belong to M 4

forany 1 < k < N and s > O and moreover we have ||fk,s|lm, < 1 since all of
these functions sheare the same distribution Therefore, if by ||.|| we denote a

W
norm equlvalent to the quantity ||.||m,, we get

: N N
A< D N ksl S C1 Yl frslla, < CLN
k=1

k=1

However, elementary computations show that the derivative of f is negative on

[0, s + %] which implies that f(z) < f(0) for z € [0,s 4+ 7], . Then if we set
1N 1N 211
= fO) = AT )+ AT ) o+ AT
Hy,s = f(0) (2s)+ .(225)+ + (23)

we obtain

1
1< ,u'f(HN,s); = P'f()‘N,sts)A(ts)



202

where t, = A_l(%) Y AN, = Then

HNA
A-1(Ly:
AN,s || fllm, < CoN
Thus 1
Hy, < CZNA_l(—)
s

and " )
+
ZA I(st Z/N 1 o)™

Since A™! is non decreasing we obtain
N N(N-+—l)
/ “1(1/2u)du < CoNAT(1/s) .

Letting N go to infinity we get that for any fixed s > 0

/3 A7H(1/2u)du < CysAT(1/s).

Changing variables v = 2u we get

v “(1/v)dv < CsA™(1)s).

0

Finally since A™! is non negative we arrived to the inequality
y g

/s A7 (1/v)dv < CsATY(1/s)

which by theorem (4.8), implies that A has a lower type greater than one.s
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