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Abstract: In this work two versions of weak Orlicz spaces that appear in the 
literature, MA and MA, are analyzed. One of those include the weak Lebesgue 
spaces for 1 :5 p < 00, while the other version gives these spaces only for p > 1, 
resulting the stronger space L1 in the extrem case p = 1. Necessary and sufficient 
condit.ions about t.he growth function A in order that. both spaces coincide arc 
given. Moreover we prove that these same conditions characterize the normability 
of the MA space. . 

I.INTRODUCTION. 
We shall denote by MA the weak Orlicz space associated to A, defined as in 
the work of O'Neil, [0], where he makes use of this kind of functions to obtain a 
generalization of the Hardy-Littlewood-Sobolev's theorem on fractional integration 
into the context of Orlicz spaces. This version of weak Orlicz spaces generalizes 
the weak LP spaces, L~, but only for p > 1. In fact the class MA for A the identity 
function gives a proper subspace of L!. 
Our aim in t.his work is to present an alternative definition of a weak Orlicz space 
associated to the function A, denoted by MA, in order to include allL~ for 1 ::; 
p < 00. In this way our spaces MA give L! for A the identity function and they 
coincide with MA for A(t) = t P , p > 1. Moreover we shall prove that both spaces 
are exactly the same as long as A keeps a "little bit away" from the identity. In 
fact we establish in theorem (4.8) the necessary and sufficient conditions on A to 
guarantee the equality MA = MA. 
We would like to point out that the spaees MA are easier to handle since they 
are defined in terms of a norm while in turn, MA is given by means of a quantity 
which is not necessarily a norm. It is well known that the weak LP spaces are 
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normable for p > 1 while L! is not. Following this line we shall give in theorem 
(4.11) the necessary and sufficient conditions on A for MA to be normable. 
As . a last remark we may say that the usefulness of one version or the other it 
would depend on the type of problem we are dealing with. On one side the spaces 
MA seem to be the appropriate ones when generalizing the Hardy- Littlewood­
Sobolev's theorem, while on the other side the spaces MA would fit better for a 
theorem on interpolation of operators for example. 

2.THE ORLICZ SPACES. 

(2.1)Definition: Along this work, for a Young function A we shall mean a non­
negative, convex and non decreasing function defined on [0,00] with A(O) = 0, 
A( 00) = 00 and such that it is neither identically zero nor identically infinity. We 
notice that A may have an jump at some Xl > 0, but in this case lim - A( x) = 

J X--+Xl 

00 and A(x) = 00 for X ~ Xl . Under these assumptions the inverse function A-I 
is well defined and it is also increasing and continuous. 

We introduce now some notions related to the role of growth of non-negative 
functions as above. 

(2.2)Defillitions: We shall .~ay that two non-negative functions are equivalent if 
and only if their ratio is bounded above and bellow by two positive constants. 
A non negative function A defined on 1R+ is of lower type p (upp er type p) if 
A(st) ::::; CsP A(t) for any s ::::; 1 (s ~ 1). 

We notice that lower and upper types are preserved by equivalence of functions 
and also for any function we may choose another for which the definition of type is 
satisfied with C = 1. In particular A is oflower type zero if and only if is equivalent 
to a non decreasing function. 

(2.3)Definition: For a Young function A we define the Drlicz space LA = LA(X) 
as the linear space of those measurable functions acting on the measure space (X, f-l) 
for which there is a finite number ]{ > ° such that 

1 A (~. )I)d ,< 1 
T/" f-l -

X .It 

The infimun of such ]{ is a norm which will be denoted by IlfiIA. 

3.WEAK ORLICZ SPACES. 

For a complex or real valued and measurable f, defined on a measure space (X, f-l), 
we will denote by f-l J( t) the distribution function of 1 given by 

f-lJ(t) = f-l( {x : Il(x)1 > t}). 

Then for t E [0,00), f-l J(t) i.~ a non increasing function taking non-negative values. 
Therefore we may define its inverse 1* by 

1*(s) = inf{t: f-lJ(t)::::; s} 
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where s ~ O. This function f* usually called the non-increasing rearrengement of 
f, has the of property being equimeasurable with I in the sense that they shar:e the 
distribution function. 

'By 1** we shall denote the average of f* over the interval [0, x], that is 

1 1x 

j**(x) = {-; 0 j*(t)dt 

j*(0) 

x>O 

x =0. 

Given a Young function A, it is possible to define a class of functions MA in terms 
of the size of the 1**, wider than the Orlicz space LA. The following definition of 
a version of weak Orlicz spaces is taken from the work of O'Neil [0], where the 
author used this class in connection with the boundedness of convolution operators 
on strong Orlicz spaces. 

(3.1)Definition: For a Young function A we will say that f defined on (X, f.L) 
belongs to MA if and only if there exists a real number), large enough so that for 
x>o 

j* (x) ~ )'A -1 (~) . 

We define IIfllMA as the infimum of such),. Therefore 

In [0], O'Neil shows that the quantity ii/liMA is indeed a norm wich makes Iv.fA a 
Banach space. 

For A(t) = tP with p > 1, it is well known that MA agrees with the space L~ or 
weak LP, defined as those functions satisfying 

Ilfll; = supt1/ p j*(t) < 00 
t>o 

since for 1 < p ~ 00 both quantities 11111; and IIIIIMtp, are in fact equivalent. 
Moreover it is known that for p ~ 1 the Lebesgue spaces LP(lRn) are proper 
subspaces of L~(lRn) (see for example [SW]. However the situation changes for 
A(t) = t, that is for p = 1. In this case the O'Neil version of weak Ll is no longer 
the same that L~; it rather coincides with the strong Ll space. In fact if A(t) = t, 
f E MA if and only if for some ), 

j**(x) ~ ),.! 
x 

which means 
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This is equivalent to f* being integrable, that is, f in L1. 
At this point it appears in a natural way another version of weak Orlicz spaces as 
to include all the L~ spaces for p ~ 1. 

(3.2)Definition: We will My that a M-measurable function f defined on X beJongs 
to the weak Orlicz space MA if and only if there is a constant C so that for t > 0 ~ 

A(t)M({X : If(x)1 > t}) ~ c. 
This definition implies that the quantity 

IIfIIMA = inf {A> 0/ sup Mf(At)A(t) ~ I} 
t>o 

is finite. Moreover the following properties hold 

a) IIcfllMA = lei IIJIIMA 
b) Ilf + gllMA ~ 2(lIf11MA + IlgIIMA) 

We notice that the factor 2 in b) does not allow to say that II liMA is a norm. 

The proof of a) is immediate. On the other hand we observe that b) will follow if 
we are able to prove the inequality 

({ If(x) + g(x)1 . }) 
M c(lIfllMA + IlgIIMA) > t A(t) ~ 1 

for all t > O. But 

({ Ifex) + g(x)1 }) ({ If(x)1 + Ig(x)1 }) 
J.l c(llfllMA + IIgIIMA) > t A(t) ~ M c(lIfllMA + IlgIIMA) > t A(t) 

< ({ If(x)I}) ({ Ig(x)1 }) 
- M cllfliMA > t A(t) + M cllgllMA > t A(t) 

since 81 + 82, = 1. The convexity of A implies A(st) ~ sA(t) for 0 ~ s ~ 1. Then, 
if c ~ 1, we can bound the above sum by 

({ If(x)1 }) A(ct) ({ Ig(x)1 }) A(ct) 
M IIfllMA > ct -c- + M IIgliMA > ct -c-

1 1 <-+­- c c 
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which in turn is bounded by one as long as we take C ~ 2.-

4.RELATIONSHIP BETWEEN THE TWO DEFINITIONS. 

As we already apointed out Ll(JRn ) is a proper subespace of L!(mn ). Consequently 
the spaces MA and MA are not always the same. Indeed when A is the identity 
function there are functions on mn for which 

c 
f.l({x: If(x)1 > t}) S t 

for some finite constant C, even though they are not integrable. Such is the case 
of for example f(x) = Ix1l n. However MA is always a subspace of MA. In fact we 
have the following result. 

(4.1)Lemma: For any Young function A, we have 

Moreover we have the inequality 

First we will find an expression for IlfllMA in terms of the non increasing rear­
rengement of f. From this lemma (4.1) will be an obvious consequence. 

(4.2)I.Jemma: If f is a measurable function and by f1f(t) and f*(s) we denote it" 
distribution and rearrengement function, then the following identity holds 

SUPf.lf(>.t)A(t)=supsA ---!- , ( 1*( Y) 
t>o 8>0 A 

and hence 

Proof: 

First, let us assume that f is a non-negative simple function. Then it may be 
written as 

n 

f = LCjXEj, 
j=l 

where f.l(Ej ) > O,Ej nEk = 0 if j i- k and Cl > C2 > ... > Cn > O. Set dj = 
f.l(Ed + ... + fJ,(Ej), 1 S j S n, and let us define do = O,Cn +l = O. Then, if we 
set f.lf(t) = I{x : If(x)1 > t}l, this function and its inverse f* are given by 

C'+l c· _J_<t<2. 
>. - ,\ 

t ~ Cl 
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dj - l ~ S < dj 

s 2:: dn . 

Therefore, using that A is non-decreasing we have 

supA(t)j.tf(At)=supA : dj=supA -,- s. ( CO) (f*(s)) 
t>o J>O A 8>0 A 

Now, for a general measurable function f, we can find a non-decreasing sequence 
of non-negative simple functions fn such that limn-+co fn(x) = If(x)l, for each x in 
the domain of f. Therefore, for each t > a, the sequence {j.tn(t)} is non-decreasing 
and limn-+co j.tn(t) = j.t(t), where j.tn and j.t denote the distribution functions of fn 
and f respectively. Likewise, for each s > a we also have that f~(s) increases to 
f* (s) and the first claim of the lemma follows immediately. -

As for the second equality we just notice that 

1lfilMA = inf {A > a/ sup j.tf(At)A(t) ~ I} 
t>o 

(4.3) 
= inf {A > a/~~~sA (f*?)) ~ I} 

f*(s) 
= sup 

8>0 A-l(I/s) 

where in the last equality we have used that sAC ris )) ~ I is equivalent to f*( s) ~ 
AA-l(i) .• 

Proof of lemma (4.1): 

From of definition of f** it follows that for any s > a we have f*(s) ~ f**(s). 
This observation together with lemma (4.2) give the desired conclusion .• 

As we shall see the difference between the spaces M A and M A may appear in other 
cases besides A( t) = t. In fact if for x > a we denote by log + x the maximum 
between log t and zero and for x E mn we take the function 

ge2 

f(x) = I Inc 1 +( 1 ))2 
Wn x 3 + og wnlxl n 

then f belongs to the space MA for A(t) such that A -let) = ge2t(3 + log+ t)-2. 
I:irst, A(t) is a Young function because we have chosen the eonstants in sueh a 
way that A-I is increasing, continuQus and concave on [a,oo]. Also,it is not hard 
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to check that ACt) behaves at infinity like t(1og+ t)2. Second, for any increasing 

function A-I, the function defined on mn by f(x) = A-I (w"jzln) is such that 

f* (s) = A-I (1 Is) proving our assertion that f E M A. Finally let us see that f is 
not in MA. If it were, there would be a constant). > 0 such that 

But then, for any s < 1 We have 

-------:::-dt = _ge2 du i s ge2 i-lOgS 1 

o t(3+log(1It»2 ··00 (3+u)2 

This together with our assumption would lead to 

for some ). > o. But this impossible because it would imply that -log s is a 
bounded function on (0,1). 
This example shows that when X = IRn and Jl is the Lebesgue measure there are 
other Young functions different from A(t) = t for which the space MA is strictly 
contained in M A. In our next step we will characterize all the Young functions for 
which both spaces are exactly the same. In what follows we shall restrict ourselves 
to the case of X = IRn with Jl the Lebesgue measure. Nevertheless the main 
results contained in theorems (4.8) and (4.11) could also be derived working in 
more general measure spaces. 

We start by giving two real functions lemmas; the first can be found in [M], and 
the second is an stronger version of a result proved by Viviani in [V]. This last 
result will be an essential tool in looking for necessary and sufficient conditions on 
A to ensure that MA = M A . 

(4.4)Lemma:. Let h(t) be a non negative and non decreasing function on [O,j] for 
which there exists a constant D such that for 0::; s ::; j/20, J: h(t)dt ::; Dsh(s). 
Then if 1::; r < DI(D -1), 

(4.5) 
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(4.6)Lemma: Let." be a non negative function such that !ll.fl is non increasing. 

Then .,,(t) is equivalent to ij(t) = Jot Tllfds if and only if." has a positive low.er 
type. 

Proof 

Since !ll.fl is non increasing the inequality 'T}(t) ~ Jot 1/(88) ds is always true no matter 

what the lower type of 'T} is. Also, the fact that the inequality J; 1/(88) ds ~ e.,,( t) 
holds whenever 'T} is of pOllitive lower type is proved in [V]. Conversely the equiva­

lence between." and ij implies that J; h(s)ds ~ eth(t), for h(t) = !ll.fl and Vt > O. 
This allows us to use (4.5) from Muckenhoupt lemma for any finite interval in or­
der to obtain that." is of positive lower type. In fact, if r > 1, as in the conclusion 
of the previous lemma, 0 < u ~ 1 and s > 0 we have 

Therefore 
1 

h( us) ~ C (~) r h( s ) 

1 

'T}(us) .~ c (!) r .,,(s). 
us u s 

Since r > 1 we arrive to the desir~d conclusion .• 

Nmv we make an useful remark on the relationship between the types of a Young 
function and its inverse. 

(4.7)Lemma: Let A be a Young function. Then A has a lower type m if and only 
if A-I has an upper type 11m. 

Proof; 

The Young function A has a lower type m if and only if there is a constant e > 0 
such that 

A(st) ~ etm A(s) for any 0 < t ~ 1 . 

Now taking a pair t ~ s the latter inequality can be written 

t t m 
A(t) = A(s;) ~ e(J A(s) 

which is equivalent to say 
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for any t ::; s. Setting a = A( t) and f3 = A( s ), by the continuity of A the above 
inequality can be written 

Since A is non decreasing we get that the inequality 

holds for any a ::; {3, but this is to say that A -1 has an upper type ~ .. -

Now we are in position to state and prove the anounced characterization. 

(4.8)Theorem: Let A be a Young function. Then the following statements are 
equivalent 

i) MA = M A, 
ii) ~ Jos A-1 (1/t)dt is equivalent with A-1 (1/s), 

iii) A has a lower type greater than one 1. 

Proof: 

Let us assume i) is true. Since by (4.1) MA C MA always holds, we must obtain 

ii) from MA C MA . Take the function f(.T) = A -1 (wn jxln ); since it is radial and 

non increasing it is easy to check that its rearrengement is f*( s) = A-I (~) and 
hence j E MAo Now, our hypothesis implies that f belongs also to JVIA which 
means that for some ,.\ > 0 the inequality 

holds for any s > 0 giving one of the inequalities in Ii). Finally, the- other inequality 
follows using that A-1 (I/t) is a non increasing function. 
To check that Ii) => iii) we set 'fI(t) = tA-l(l/t) and we make use of lemma (4.6) 
to conclude that 'fI has a positive lower type, say a. Therefore we have 

'fI(ut) = utA-1 (:t) ::; CuatA-1 (~) (0 < u::; l,t > 0 Y Y a> 0) 

which implies 

X-I (:t)::; Cua- 1A-1 (~) (0 < u::; l,t > 0 and a > 0) 

setting a = ~ and z =. t the above eXp'resion is equivalent to 
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which means that A-I has an upper type less than one. By using now Lemma 4.7 
we may conclude that A has lower type greater than one. 
In order to prove iii) => ii) we use again lemma (4.7) to conclude that A-I has 
an upper type, say b, less than one and that, in consequence, the function .,,(t) = 
tA-l(l/t) has a positive lower type. In fact, if 0 < u::; 1 and t > 0 we have 

Since 1 - b > 0 we may apply lemma (4.6) to get ii). 
It remains to prove that ii)=>i). First we observe that by lemma 4.1 it is enough 
to check MA C MA. Let us assume f E MA, that is f*(8) ::; .\A-1 (~). Then we 
have 

f**(x) =.! r f*(t)dt ::; ~ . r A-I (.!) ds. 
x 10 x 10 8 

But, using ii) we get 

f**(x)::; KA-1 (~) 

and hence f E MA.-

(4.9)Corollary: If A has a lower type greater than one, then there exists a con­
stant C such that 

holds' for any f E MA and moreover MA is normable. 

Proof: 

f**(x) = .! i x 
f*(t)dt 

x 0 

1 i x f*(t) -1 =;; 0 A-l(l/t) A (l/t)dt 

::; CllfllMA - A-1(1/t)dt lix 

x 0 

where we have used iii) => ii) from theorem (4.8). Taking supremUIil over all x, we 
get 
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Finally, since by lemma (4.1) the reverse inequality between IlfllMA and IlfllMA 
always holds; our space MA is normable so that the proof of the corollary is 
complete .• 

(4.10) Remark: As we have just seen the space MA is norrnable, with the norm 
II.IIM.~, whenever A has a lower type greater than one. For A a Young function 
without this property (i.e. A has lower type one and no greater than) we already 
know that our space MA is much bigger than ]vIA and consequently the quantity 
II.IIMA is not longer equivalent to the norm II.IIMA. A natural question then arises: 
is there a norm on the space MA equivalent to the quantity II.IIMA? In other 
words we would like to know whether or not this spaces MA are normable for 
Young functions A without a lower type greater than one. It is known that the 
space L! is not normable. Our next result shovvs that this situation extends to all 
MA with A having a lower type at most one. 

(4.11) Theorem: Let A be a Young function. Then the weak Orlicz space MA 
is normable, with a norm equivalent to II.I! MA if and only if A has a lower type 
greater than one. 

Proof: 

By corollary (4.9) we only have to show that MA normable implies that A must 
have a lower type greater than one. For simplicity we will work out the proof only 
in the one dimensional case. For higher dimensions it follows the same lines. For 
given s > 0 and N E IN we define the function 

If we call ik,s(x) = A-I Ci'x~~ ,) it is easy to check that they all belong to }AA 

for any 1 ::; k ::; Nand s > 0 and moreover we have Ilfk,s liMA ::; 1 since all of 
these functions sheare the same distribution A(t). Therefore, if by 11.11 we denote a 

norm equivalent to the quantity 11.11 MA' we get 

N N 

Ilfll ::; L Ilik,sll ::; G1 L Ilfk,s liMA::; GlN 
k=l k=l 

However, elementary computations show that the derivative of f is negative on 
[0, s + ~ 1 which implies that f(x) ::; f(O) for x E [0, s + N], . Then if we set 

lIN. lIN 111 
HN,s=f(O)=A- (i-;)+A- (i2)+···+A- (i:;) 

we obtain 
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Thus 

and 
N 1 N N N I N(k+ 1) 1 

HN,s = ~ A-1 ( __ )::::: - ~ A-1(-)du. 
L.t 2 ks s L.t 'k 2u 
k=l k=1 N 

Since A -1 is non decreasing we obtain 

Letting N go to infinity we get that for any fixed s > 0 

Changing variables v = 2u we get 

Finally since A -1 is non negative we arrived to the inequality 

r A-1(1/v)dv ~ CsA- 1(1/s) 
./0 

which by theorem (4.8), implies that A has a lower type greater than one.-
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