
Revista de Ia 
Uni6n Matematica Argentina 
Volumen 40, Numeros 3 y 4,1997. 

PROPERTIES OF EXTERNAL VISIBILITY.1 

Mabel A. Rodriguez 

15 

Abstract. The external visibility of a closed set S means the visibility referred to its 

complementary points. This kind of geometrical study appears naturally in the planning of 

movements of servomechanisms and robots. The aim of this paper is to connect the external 

visibility of a certain set S (in particular Stavrakas' half-line property) with new properties 

which involve points of S instead of points of its complement. We say that a hunk S has the 

shining boundary property if its complement is free from bounded connected components 

and for each boundary point of S there exists a ray issuing from it and disjoint with the 

interior of S. It is proved here the equivalence (for a planar hunk) of this property and 

Stavrakas' half-line property. Furthermore, in some cases which we specify, Stavrakas' 

property is equivalent to the fact that each boundary point has nontrivial strong inner stem. 

These equivalencies yield new versions of some characterizations of starshapedness due to 

Stavrakas. 

§ 1.- BASIC DEiINITIONS AND NOTATIONS 

Unless otherwise stated, all the points and sets considered here are included in Rb the real n-

dimensional euclidean space. The interior, closure, boundary, and complement of a set S are 

denoted by: intS, cl S, bdry S, CS respectively. The open segment joining x and y is denoted 

(x,y). The substitution of one or both parentheses by square ones indicates the adjunction of 

the corresponding extremes. We say that x sees y via S if [x,y] c S. The star of x in S is the 

1 The preparation of this paper was supported in part by Comisi6n de Investigaciones 

Cientificas de la Pcia. de Bs. AS. 
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set st(x,S) of all the points of S that see x via S or analogously the visibility (?f x in S is the 

star ofx in S. The external visibility of S is the study of the visibility in the complement of S, 

or in certain cases in the closure of the complement of S. A star-centertif S is a point XES 

such that st(x,S) = S. The kernel of S is the set kerS of all the points star-centers of S, and S 

is starshaped if kerS oF 0. The ray issuing from x and going through y is denoted by 

R(x~y), while R(xy ~) is the ray issuing from y and going in the same direction to that of 

R(x~y). We say that the ray R(x~y) is inward through y if there exists t E R(xy~) such 

that (y,t) is included in intS (y E bdry S and x E st(y,S». Otherwise we say that R(x~y) is 

outward through y. (All the rays considered here are closed ones).The inner stem (ify with 

respect to S is the set ins(y,S) = {y} u {x E st(y,S) / R(x~y) is an outward. ray through yj. 

S is a regular domain if int S is connected and S = cI(intS). A bounded regular domain is 

called a hunk. A point XES is a k-extreme point of S provided for every (k+ 1)- dimensional 

simplex DeS, x ftc relintD, where relintD denotes the interior of D relative to the (k+ I )-

dimensional space D generates. S is said to have the half-line property (hlp) if for each point 

x E CS there exists a ray issuing from x and having empty intersection with S We 

note On = {x E Rn / II x II = I}. The algebraic hull of the set A is defined as follows: 

aA= {y E Rn / exists x EA such that [x,y) c A}, in other words aA is formed by all the 

points of Rn that have linear accessibility through A; and the convex hull of A is denoted 

convA. 

§ 2.- STAVRAKAS' HALF-LINE PROPERTY 

Lemma 2.1: If S c 1(' is a hunk, then S has the half-line property if and Ofl~Y iffor each 

pOint x of the complement of S hold .. that the star of x - in CS - is unbounded. 

Proof =» Let x E CS, consider the ray R with vertex in x such that R n S = 0. R s;;; CS and 

immediately R s;;; st(x,CS), then st(x,CS) is unbounded. 

<=) Suppose that there exists x E CS such that for every R half-line with x as vertex it is 

R n S oF 0. We pick U neighborhood such that S s;;; U, then K = st(x.,CS) is bounded: it 

verifies K s;;; U because otherwise we can consider R = [x,w] u R(xw ~ ) where w is a 

point w oF x, W E K, w ftc U and R contradicts the initial assumption.Q 
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Lemma 2.2: S c K' a hunk. If S has the half-line property, then the complement CS is free 

from bounded connected components. 

Proof Suppose that there exists AceS a bounded connected component. Let a E A, and 

consider st(a,CS). This star is connected because it is clearly a path-connected set and it is 

unbounded by hypothesis. As it intersects A it should verity st(a,CS) c A which is absurd. Q 

Notice that the converse is false. Consider for example the planar set S = SI II CS2 where SI 

and S2 are SI = {(x,y) E R2 / 0 < 1 $; x2 + I$;4 }; S2 = {(x,y) E R2/ I x I < 0.1; y;::: OJ. 

We consider S ~ RD a closed set such that as = Sand aCS = clCS, we say that S has the 

shining boundary property (sbp) if and only if S has its complement free from bounded 

connected components and if given each boundary point of S there exists a ray issuing from 

it and disjoint with the interior of S. 

Proposition 2.3: Let S ~ K' be a hunk, as = Sand aCS = dCS. If S has the half-line 

property, then S has the shining boundary property. 

Proof Suppose S does not have the shining boundary property, then there are two 

alternatives: (i) CS has a bounded connected component, (ii) there exists p a boundary point 

of S such that taking any half-line R(p) with vertex in p, it verifies that R(p) intersects intS. 

For the first case, using lemma 2.2 it results that S does not have the half-line property. For 

the second case, let us consider K = st(p,clCS). We can check with a standard argument that 

under this hypothesis K is a bounded set. We will show the existence ofa point x in CS II K 

such that st(x,CS) is bounded. Due to lemma 2.1 this will be absurd. We define the following 

proper subset of K: A = { X E K / :3 v E On such that { A.V + x / A. ;::: 0 } II intS = 0 }. 

Notice that it is immediate that if x E K II CA, then st(x,CS) is bounded because on the 

contrary we would have st(x, clCS) a closed unbounded starshaped set and, due to theorem 

4.1 of [1], x would belong to A. A is properly included in K because p E K but p ~ A 

(otherwise :3 Vo E On such that {A..vo + p / A.;::: O} ~ K, what means K unbounded). We 

prove that A is a closed set: let be {xn} a convergent sequence included in A, and let be 

liIDXn = x. As Xn E A, there exists Vn E On such that {A..vn + Xn / A.;::: O} II intS = 0 then we 

have a sequence {Vn} in. On and standard compactness arguments assert that {Vn} (or a 
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subsequence thereof) converge to a certain Vo in n... It is easy to verify that 

{A.vo + x 1 A ~ 0 } n intS = 0. Then x E A, and A is a closed set. 

If A = 0 we consider x E intI<, x 7= p. Such x (l; A. (There exists such x because 

aCS = cICS). If A 7= 0, A closed set implies that there exists a neighborhood U of p such 

that (U n K) n A = 0. The fact that p E clCS implies that p belongs to aCS and then there 

exists WE CS such that [w,p) c CS. We pick any x E [W,p) n U. Such x does not belong to 

A. Then in both cases st(x,CS) is bounded.Cl 

Proposition 2.4: Let S be a planar hunk, as = Sand aCS = clCS. If S does not have the 

half-line property, then S does not have the shining boundary property. 

Proof Using lemma 2.1, there exists x E CS such that K = st(x,CS) is bounded. We will 

prove that either exists a bounded connected component of CS, or there exists p a boundary 

point of S such that any ray issuing from it meets intS. We consider the following set: 

A = {y E clK 13 v E 02 such that { A.v + Y 1 A ~ O} n intS = 0}. Naturally there appear 

four possibilities: (i) A = 0; (ii) A properly included in clK and x E A; (iii) A properly 

included in clK (x ~ A, A 7= 0); and (iv) A = clK. We consider each of them: (i) if we pick 

p E bdryK n bdryS, such a point verifies that any ray issuing from it meets intS. Otherwise 

p would belong to A which is absurd. (ii) We prove first that if there exists a point a E A, 

a 7= X, then the whole segment [a,x] is included in A: the fact that a E A implies that 

[a,x] c cICS. As a and x belong to A, this implies the existence ofvo and VI in 02 such that 

Ro: {A.vo + a 1 A ~ O} and R 1: {A.VI + x 1 A ~ O} are included in clCS. We now cOnsider the 

polygonal P = Ro u [a,x] uRI, P is included in clCS. Suppose that Ro n RI = 0 and denote 

HI and Hz the open regions determined by P. Thus, the plane results a disjoint union ofP, HI 

and Hz. We can suppose -without loss of generality- that intS is included in HI (as intS is 

connected, it lies exclusively in one of the ll, i = 1~ 2). Then if we take t E [a,x] it is easy to 

see that there always exists a half-line with origin in t included in Hz. If it occurs that 

Ron RI = {w}, the plane results a disjoint union of P and the three open regions P 

determines: Hz: the only bounded region, HI: the only unbounded region such that [a,x] is 

in~uded in its boundary, and H3: the unbounded region that verifies [a,x] is not included in 

its boondary. Again, intS will be included exclusively in one of the Hi ( i = 1, 2, 3). If 

intS c H2 or intS c IIJ it. is immediate that for each t in [a,x] we can choose a half-line with 

origin in t lying in a half-plane; or in the case that intS c HI we consider R(t --+ w). In each 
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of these cases, the half-line considered does not meet intS, and then t belongs to A. Now, A 

properly included in clK implies that there exists c E clK such that c ~ A. Let us consider 

the first point (going from x towards c) t E bdryS n R(x ~ c), point that should exist, 

otherwise the ray R(x ~ c) would make K unbounded. Due to the previous considerations 

t ~ A because c E [t, xl and c ~ A. (iii) A properly included in clK means that we can take 

a E A, a *" x. With an argument analogous to the previous one we can consider the first 

point (going from a towards x) t E bdryS n R(a ~ x) and such t does not belong to. A. (iv) 

We will show that K is a connected component of CS and as it is bounded the thesis follows. 

In this case there exists a half-line Rv(x): { A..v + x I A. ~ 0 } such that Rv(x) c cleS"but the 
i 

fact that K is bounded means that Rv(x) cannot be wholly included inCS then, there exists 

u E Rv(x) n bdryS. Notice that it cannot exist another direction w, (w *" v) such that 

Rw c clCS because otherwise ifwe consider the polygonal P = Rw u Rv using an argumeilt 

analogous to the previous ones we would be able to choose a new direction z such that 

Rzc CS. Again, it is easy to see that if a E A, (a *" x) the only half-line witlt origin in a that 

does not intersect intS should pass through u. As K is clearly a connected set it should exist 

C c CS, a connected component of CS which contains K. As C results an open set and then 

path-connected, ifthere exists c E C such that c ~ K we can consider an arc r joining x with 

c, r c CS; but the only way to "leave" K is going through u which is absurd. Then K = C. Q 

Theorem 2.5: Let S be a planar hunk, as = Sand acS = clCS. S has til(! half-line property 

if and only if S has the shining boundary property. 

Proof. Propositions 2.3 and 2.4. Q 

§ 3.- EMISSION OF OUTWARD RAYS. 

In this paragraph we intend to connect the half-line property with the emission of outward 

rays. For a planar set S we·will prove that if S has the haIf.:.)ine property then for each 

boundary point x ofS it holds that the inner stem ofx is nontrivial. To do this, we define the 

strong inner stem of a boundary point of S which is a certain subset of the inner stem of the 

point, and we pmve that this new set is nontrivial. The converse is false as we can· see if we 

consider the planar bunk S defined as S = {(x,y) E R2 I 0 < a ~ .,;- + .j ~ P} (notice that 
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as = S and aCS = clCS) and any boundary point of the interior circle has non trivial inner 

stem, but S does not have the half-line property. A counterexample where the complement 

of S is free from bounded connected components can be easily constructed. 

Previous definitions. 

We note A+B = {a + bl a E A, bE B}, A..A = {A..a I a E A}, (A. E R) and A-B = A + (-I).B, 

where A, B are subsets ofRR. We say that C eRR is a cone with vertex a if V A. E R, A. > 0 

it holds A..(C - {a}) e C -{a}. Given A eRR, a E A we define I(A,a) the inscribed cone in 

A from a as the cone formed by {a} and every half-line included in A having a as origin. In 

our case, we consider I( clCS,p) and we define the set of external directions to S from pas: 

exd(S,p) = [I(clCS,p) - {p}] n n.. where p E bdryS. 

Proposition 3.1: 1) A c K' a closed set, a E bdryA, then /(A,a) is a closed cone. 

2) S c R2 hunk, p E bdryS then: 

a) exd(p,S) is an arcwise connected set. 

b) ifp E bdry(convS), then exd(p,S) contains a half circle of [}2. 

c) if P E int(convS), then /(clCS,p) is a convex cone and exd(p,S) is a closed arc 

included in a half circle. 

Proof 1) It results easily since A is a closed set. 

2)a) Suppose that there exist VI and V2 in exd(p,S), VI *- V2 such that both of the arcs 

determined by them are not completely included in exd(p,S). Then if we denote 

Lj : {A..Vi + P / A. :?: O} (i = 1, 2) in both regions determined by LI U L2 there must exist 

interior points of S which we note XI and X2. Notice that Li e clCS and p E bdryS, then 

there is no way to connect XI with X2 with an arc wholly included in intS which is absurd. 

2)b) Ifp E bdry(convS) there exists L a line through p which supports convS then, ifC and 

L- denote the closed half-planes determined by L we have that if S e L + then L- e I( clCS,p). 

Then the assertion is immediate. 

2)c) As p E int(convS) no line L through p leaves convS in one of the half-planes 

determined by L, then the cone I(clCS,p) is properly included in one half-plane. Hence, using 

part\a), it results that the cone is convex and exd(p,S) verifies the thesis. Q 
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We will show in an example below a set in R3 where the item 2)a) does not hold. This is one 

of the reasons why we work in the plane. We consider now the set J(A,a) formed by {a} and 

every half-line with origin in a and opposite direction to those which compose I(A,a). We 

define the strong inner stem ofp in S (p E bdryS) as the set: sins(p,S) = J(clCS,p) n st(p,S). 

Notice that it is immediate that sins(p,S) c ins(p,S). 

Theorem 3.2: Let S be a planar hunk, as = Sand aCS = clCS. S has the half-line property 

if and only if for any p E bdryS it holds that sins(p,S) is nontrivial and CS is free from 

bounded connected components. 

Proof <=) We will prove that S has the shining boundary property then the thesis will follow 

from theorem 2.5. We know that there exists a point x, x different from p such that 

x E J(clCS,p) n st(p,S). The fact that x E J(clCS,p) implies that x belongs to a certain half-

line R -v(P) with origin p and a direction -v such that R v(p) verifies that it does not intersect 

intS. This result plus the hypothesis that CS does not contain any bounded connected 

component derives in the thesis. 

=» IfS has the hlp, then it has the sbp as it was shown in theorem 2.5, then in particular CS 

is free from bounded connected components. Then we have to prove that 'each boundary 

point of S verifies that its strong inner stem is nontrivial. We consider two cases: (a) 

p E bdry(convS) and (b) p E int(convS). (a) Given any point x in the star ofp in S, different 

from p (such a point exists because as = S ) it verifies that R(xp ~ ) does not intersect intS 

because there exists L a support line of convS through p. This means that if convS c L+, 

then R(xp ~ ) c L- where L+ .It,d L- denote the closed half-planes determined by L. (b) 

l(clCS,p) is a closed convex cone and exd(p,S) results a closed arc in Q 2 as we have shown 

in 3.1. Consider VI and V2 the extremal directions of this arc. (Eventually they may coincide). 

Let us denote ~': {A.Vi + P / A. ~ OJ; - Li': { A.(-Vi) + p / A. ~ 0 } and ~ = ~' u (- L;') (for 

i = 1, 2). Then, the plane appears divided in four regions (or two in the case VI = V2) which 

we denote I = l(clCS,p), J = J(clCS,p), RI = LI-n L/, R2 = L l + n L2-, where ~+ are the 

closed half-planes determined by Li such that ~+ n I = ~ , and ~- are the closed 

complements of~+ (i = 1,2). We also consider: Si = S n R; (i = 1,2) and S3 = S n 1. (In the 

case VI = V2 the configuration is simplified but the construction and the following argument 

are analogous). If st(p,S) n S3 is nontrivial, every point of this intersection would belong to 

sins(p,S). If this does not occur, let us suppose -without loss of generality- that p has linear 
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accessibility through S by points of SI. Both facts that p has linear accessibility by points of 

S and that VI is an extremal direction of exd(S,p) assure the existence of interior points of S 

in SI and S2. Then, due to the connectedness of intS we have interior points of S in S3 and a 

fortiori in -LI'. Now, as we are under the hypothesis that every point of S3 does not belong 

to st(p,S), then, in particular, this is verified by every point of -LI'. These two remarks let us 

take a point y E -LI' such that y E CS n convS. We can take U a neighborhood ofy such 

that U c CS n convS. Ifwe consider a point y' E Un RI it verifies st(y',CS) is a bounded 

set what is absurd because S has the half-line property. 0 

Corollary 3.3: Let S be a planar hunk, as = Sand acs = clCS. If S has the half-line 

property then for any p boundary point of S it holds that ins(p,S) is nontrivial. 

Proof Immediate from theorem 3.2 and the fact that sins(p,S) is included in ins(p,S). 0 

These characterizations of the sets that enjoy the half-line property yield planar results 

equivalent to Stavrakas' ones [3]: 

Theorem 3.4: Let S be a planar compact set such that as = Sand "CS = clCS. If 

n (st(x,S) / x is a O-extreme point} ;t 0, then the folloWing statements are equivalents: 

(i) S has the shining boundary property. 

(ii) KerS = n (st(x,S) / x is a O-extreme point} 

Proof Immediate from theorem 2 of[3] and theorem 2.5.0 

Corollary 3.5: Let S be a planar compact set, as = Sand "CS = clCS. Sis starshaped if 

and only if S has the shining boundary property and the intersection of the stars oj the 0-

extreme points is nonempty. 

Proof Immediate from corollary 1 of[3] and theorem 2.5.0 

Finally we show an example of a hunk S c R3 that enjoys the half-line property, the shining 

boundary property but that it contains a boundary point such that the strong inner stem of it 

is trivial. Then, there is no way of improving the planar results. We denote X = (x,y,z) E R3 

SI = {X / x2 + y2 + (z - 1)2 ~ 1, z ~ I} u {X / -2 ~ x ~ 2, -2 ~ Y ~ 2, 1 ~ z ~ 2} u 

u {X / -2 ~ x «::; 2, 1 ~ Y ~ 2, 0 ~ z ~ 2} u { X / -2 ~ x ~ 2, -2 ~ Y ~ -1, 0 ~ z ~·2} 
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S2 is the symmetrical to S) with respect to the plane z = o. Then the set considered is 

S = S) U S2. The origin p is a boundary point of Sand ins(p,S) = {p}. Notice that exd(p,S) 

is formed by two arcs lying on the plane z = 0 that do not form an arcwise set, so the 

proposition 3.1 2)c) cannot be generalized. 

It remains open the possibility of getting a generalization of the equivalence between the 

half-line property and the shining boundary property to spaces of dimension higher than two; 

or on the contrary to show a counterexample. 

REFERENCES. 

[1] AMBROSIO, B., Consecuencias del teorema "topoI6gico" de Helly, Revista de la 

Union Matematica Argentina, 35 (1990), 13-18. 

[2] RODRIGUEZ, M., Propiedades de Visibilidad £xterna, Communication to UM.A 

(1994). 

[3] ST AVRAKAS, N., A note on starshaped sets, (Ic)-extreme points and the half ray 

property. Pacific Journal of Mathematics, 53 No.2 (1974), 627 - 628. 

[4] TORANZOS, F. A., Critical visibility and outward rays, Journal of Geometry, 33 

(1988), 155 - 167. 

Mabel A. Rodriguez 

Instituto de Ciencias. Universidad Nacional de General Sarmiento. Argentina. 

mrodri@unisar.edu.ar 

Recibido en Agosto de 1995 


