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KRASNOSEL'SKII-TYPE PARAMETERS OF CONVEXITY SPACES 

Krzysztof Kolodziejczyk 

ABSTRACT. The aim of this paper is to give several properties of the 
starshapedness number - the first Krasnosel'skii-type parameter of a convexity 
space. Here we also introduce a new combinatorial characteristic of a convexity 
space connected with starshaped sets and examine relationships between the 
two considered parameters. Special attention is paid to both parameters in 
convex product and sum spaces. 

1. INTRODUCTION 
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A convexity space is a pair (X, C), where X is a nonempty set and C is a family of subsets of X 
closed under arbitrary intersections and containing X and the empty set 0. Members of Care 
called C-convex sets or simply convex sets. The convex hull of a set SeX is defined in the usual 
way as 

C(S) = n{A E C : SeA}. 

The classical example of a convexity space is (lR n, conv), where conv denotes the family of 
ordinary convex sets in lR n. For more examples of convexity spaces and systematic treatment of 
the subject we refer the reader to [6], [13] and [14]. 

We say that a point yES is seen from xES via S if C(x, y) C S. The star of xES, denoted 
by st(x, S), is the set of all points in S which are seen from x via S. Thus 

st(x, S) = {y E S : C(x,y) C S}. 

A set SeX is called C-starshaped or simply starshaped if there exists a point xES such that 
st( x, S) = S. The kernel of S is the set 

ker(S) = {x E S st(x,S) == S} 
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or equivalently 
kereS) = n{st(x, S) : xES}. 

A first theorem giving necessary and sufficient conditions for starshapedness is due to Krasno-
sel'skii [11]. Although the following differs from the formulation in [11] it is commonly known 
as 

Krasnosel'skii Theorem. A compact set Me lRn is starshapedif and only if for every n + 1 
points xl, ... , Xn+J E M there is a point y E M which sees them via M. 

The main problem in the investigations of starshaped sets in different settings is to give a 
new Krasnosel'skii-type theorem, see [1, 2, 5, 9, 10] and others. All known Krasnosel'skii-type 
theorems deal with sets satisfying some topological conditions. Of course (X, C) can be endowed 
with a topology, see [14], and then an analogue of Krasnosel'skii's theorem can be formulated, 
see [5]. However those topological conditions in question are mainly needed to have a variant of 
the followi.ng equality 

kerS = n{conv(st(x,S» : xES}, 

which can be also described in the very simple language of any convexity space. Moreover the 
concept of starshapedness is naturally connected with convexity and therefore we intend to 
describe Krasnosel'skii-type characteristics only by means of the tools accessible in convexity 
spaces. In [10] we noticed that the accessible in any convexity space notions of K-scts and 
K-families replace some topological conditions and enable us to give more general versions of 
some Krasnosel'skii- type theorems in lRN , see also [7]. 

We will say that S is a K-set in (X, C) if it satisfies the equality 

n{st(x, S) : XES} = n{C(st(x, S» : XES}. 

Obviously any convex set is a K-set. A finite family F of subsets of X is said to be a K- family in 
(X,C) if u9 is a K-set for each subfamily 9 of F. It is clear that any subfamily 9 of a K-family 
F is a K-family itself and any element of F is a K-set. An example of a K-family is any finite 
collection of closed sets in (lRN, conv), see [8]. 

2. THE STARSHAPEDNESS NUMBER 

In [10) we introduced the starshapedness number - the first combinatorial characteristic of a 
general convexity space in terms of starshaped sets - and next we proved a Krasnosel'skii-type 
theorem in a convexity space. In this section we will study some properties of the starshapedness 
number. Let us start with recalling the following definition. 

The starshapedness number of a convexity space (X, C) is the smallest nonnegative integer s (if 
such exists) with the property: any K-family F in (X, C) has a starshaped union provided that 
each s-element subfamily of F has a starshaped union. The starshapedness number of (X, C) can 
be also defined, see [10], as the smallest nonnegative integer s such that for any (s + 1 )-element 
K-family F = {S11 ... , Ss+d the following implication is true 

ker(UF:) i- 0 for n = 1, ... , s + 1 ===? ker(U:F) i- 0, 
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where F:; here and further on denotes the family F\ {Sn}. Clearly s 2: 0 and s = 0 if and only 
if any K-set in (X,C) is starshaped. Recall that the starshapedness number of (JRN , conv) is 
equal to N + 1. 

Below we give several properties of the starshapedness number. 

Property 1. Suppose that (X, C) has starshapedness number s 2: 2. Then in C there are convex 

sets Ql, ... , Q s such that 

n{Qi: i~j}~0 for j=l, ... ,s and n{Qi: i=1, ... ,s}=0. 

Proof. From the definition of the starshapedness number s 2: 2 it follows that in (X, C) there 
exists a K-family F= {Ml, ... ,Ms } such that 

ker(UFl') ~ 0 for i = 1, ... , sand ker(UF) = 0. 

Consider the following convex sets 

Qi = n{C(st(x, UF)) : x E Mi}, i = 1, ... , s. 

We will show that Q;'s are the required sets. Indeed, from the fact that UFI' is a K-set we have 

ker(UFp) n{C(st(x, UFi")) : x E UFI'} 

c n{C(st(x, UF)) : x E UFI'} 

n{n{C(st(x,UF)) : x E Mi} i ~ j} 

n{Qi: i~j}. 

Thereforen{Qi: i~j}~0forj=1, ... ,s. 
Since uF is also a K-set we similarly have 

ker(UF) n{n{C(st(x, UF)) : x E Mi} i = 1, ... , s} 

n{Qi : i = 1, ... ,s}. 

Hence n{ Qi : i = 1, ... , s} = 0 and the proof is complete. I 

The next property is an immediate corollary from Property 1. 

Property 2. If n(C \ {0}) ~ 0, then (X,C) has starshapedness number s = 1. 

Property 3. Suppose that (X, C) is a convexity space. If in C there are two disjoint convex sets 

Ql and Q2 such that st(Xi, Ql U Q2) = Qi for some points Xi E Qi, then for starshapedness 

number s of (X, C) we have s 2: 2. 

Proof. Let Ql and Q2 be disjoint convex sets and let Xl E Ql and X2 E Q2 be points such that 
st(Xi, Ql U Q2) = Qi, i = 1,2. Let us check that F = {Ql, Q2} is a K-family. Obviously it is 
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enough to show that the set QI U Q2 is a K-set. The following holds 

ker(QI U Q2) = n{st(x, QI U Q2) : x E QI U Q2} 

c n{C(st(x, QI U Q2)) x E QI U Q2} 

n{C(st(x, QI U Q2)) x E Qd n n{C(st(x, QI U Q2)) x E Q2} 

C C(st(XI, QI U Q2)) n C(st(X2, QI U Q2)) 

QI n Q2 = 0. 

The above shows that QI U Q2 is indeed a K-set with empty kernel. Hence we have 

This implies s ~ 2 and completes the proof. I 

3. THE KRASNOSEL'SKII PARAMETER 

We will say that (X, C) has Krasnosel'skii parameter k, if k is the smallest nonnegative integer (if 
such exists) such that any K-set SeX is starshaped provided that for any k points Xl, ... , X k in 
S there is a point yES such that C (Xi, y) C S for i = 1, ... , k. From the definition it follows that 
any convexity space (X,C) with finite X has Krasnosel'skii parameter k satisfying the following 
inequality k :s; IXI- 1. The upper bound can be lowered if (X, C) has the Helly number. 

We say that a convexity space (X, C) has Helly number h if h is the smallest integer (if such 
exists) such that the intersection of any finite collection F of convex sets is non empty provided 
that the intersection of each h-element subcollection of F is nonempty. 

We have the following Krasnosel'skii-type theorem. 

Theorem 1. Suppose that X is finite. If h is the Helly number of (X, C), then the Krasnosel'skii 

parameter k of (X, C) satisfies k :s; h. 

Proof. The finiteness condition of X implies that both the Helly number and the Krasnosel'skii 
parameter exist. Let S be a K-set in (X, C) such that any its h points are seen from a common 
point via S. Consider the family 

F = {C(st(x, S)) : XES}. 

Of course F is a finite family of convex sets. Take arbitrary points Xl,' .. , X h from S. There 
exists yES such that 

YE(i{st(Xi'S): i=l, ... ,h}Cn{C(st(Xi,S)): i=l, ... ,h}. 

It means that any h elements of F have a common point. Hence nF i' 0. This ends the proof 
since the equality nF = ker( S) implies that S is starshaped. I 

Theorem 2. Let (X,C) be a convexity space having Krasnosel'skii parameter k. Then (X,C) 

also has starshapedness number sand s :s; k. 
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Proof· Take a K~family F == {SI, . .. , Sk+I} such that 

ker(UF:) 1 0 for n == 1, ... , k + 1. 

We will show that the existence of the Krasnosel'skii parameter k implies that ker(UF) 1 0. 
The set UF is a K-set. Take arbitrary k points X}, • •• , Xk from UF. The points lie in UFJ' 

for some 1 :S j :S k + 1. Since ker(UFJ') 1 0 there exists a point q such that 

C(q, Xi) C UFJ' C uF for i == 1, ... , k. 

This shows that any kpoints in UF are seen from a common point via uF which implies that 
uF is starshaped and the proof is complete. I 

In connection with Theorem 2 let us remark that the existence of the starshapedness num-
ber does not imply the existence of the Krasnosel'skii parameter. For example (lR 2 , conv) has 
starshapedness number 3 but no Krasnosel'skii parameter. To this end take 

S == {q == (x,y) : x:::: 0 and y:S [x + 1]- x}, 

where [x] denotes the greatest integer not exceeding x. S is clearly a K-set in (lR2 ,conv). It is 
easily verified that for each n E IN and arbitrary points ql, ... ,qn from S there exists a point in 
S which sees them via S, but S is not a starshaped set. Consequently, Krasnosel'skii parameter 
of (lR 2, conv) does not exist. 

4. KRASNOSEL'SKII-TYPE PARAMETERS OF CONVEX PRODUCT 
AND SUM SPACES 

In the investigations of convexity spaces the convex product and sum spaces take a part, see 
[5, 12, 13, 14]. In this section we will examine Krasnosel'skii-type parameters in convex product 
and sum spaces. 

Let (Xi,Ci), i == 1, ... , n, be convexity spaces. The pair (Il?=1 Xi,Cn), where 

is a convexity space and is called the convex product space. For arbitrary set S C Il?=1 Xi by 
'iriS we denote the projection of S into Xi. The product convex hull of a set S C Il?=1 Xi is 
given by 

n 

Cn(S) == II Ci('lri S ). 
i=1 

Theorem 3. Suppose that (Xi, Ci) has Helly number hi, i == 1, ... , n. Then the convex product 
space (Il?=l Xi,Cn) has starshapedness number s satisfying 

where Si is a starshapedness numbers of (Xi,Ci), i==l, ... ,n. 
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Proof. From the results of [12] it follows that the Reily number h of (II?=1 Xi, en) exists and 
satisfies h = max{hI, ... ,hn }. This in conjunction with Theorem 4.1 from [10] firstly implies 
the existence of a starshapedness number 8 of (II7=1 Xi, en) and secondly establishes the upper 
bound for 8.' 

Now we will establish the lower bound. Again by Theorem 4.1 from [10] we have the existence 
of starshapedness numbers 8i, i =: 1, ... , n. Suppose that 81 = max{ 81, ... , 8n }. If 81 :S 1 then 
obviously 8 ~ 81. Therefore we can assume that 81 ~ 2. So in (X1 ,e1 ) there exists a K-family 
9 = {M1 , . .• , MS, } such that 

ker(Ug~) f- 0 for m = 1, ... ,81 and ker(Ug) = 0. 

It is easy to check that 
n 

F={MiXIIXj: i=I, ... ,8d 
j=2 

is a K-family in (II?=1 Xi, en) with the following properties: 
n 

ker(UF~) = ker(Ug~) x IIXi f- 0 for m = 1, ... ,81 
i=2 

and 
n 

ker(UF) = ker(Ug) x II Xi = 0. 
;=2 

This shows that s ~ 81 = max{ 81, ... , 8 n } and ends the proof. I 

N ow we are going to show that the assumption of the existence of ReIly numbers in Theorem 
3 cannot be dropped. Namely we will show that the product of convexity spaces with finite 
starshapedness numbers need not have a starshapedness number. To this end we will use a 
modification of the example given in [5]. 

Example 1. Let IN denote the set of natural numbers and Y = {1,2}. Let us consider the 
product space 

Define 

Take a family 

where 

Mo ={(i,n+2,2): l:Si:Sn+l}, 

Mt={(i,t,l): 1:Si:Sn+2,if-t}, t=I, ... ,n+l, 

Mn+2 ={(i,n+2,1): l:Si:Sn+2}. 

Sj = Mj U Mo U Mn+2, 1:S j :S n + 1. 

N ow we will check that F is a K-family. Denote by J a nonempty subset of the set {I, ... , n + I}. 
We will show that the set 
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is a K-set. 
Every set CJ contains the points Xi = (i, n + 2, 1), 1 ::; i ::; n + 2, and Xo = (1, n + 2,2). It is 

easy to check that 

and 

We also have 
st(Xj, CJ) = CJ \ Mj, for j E J 

and st( xi, C J) = C J if i !/. J. Moreover, it is easy to check that 

(1) 

(2) 

(3) 

n{st(y,CJ): YEMj}=U{Mi: iEJU{n+2}}\{(j,t,1) 1::;t::;n+2} (4) 

and for Yj = (j + 1,j, 1) E Mj 

Xj rf- Cn(st(Yj,CJ)). (5) 

Taking (1), (3) and (4) into account we have 

ker(CJ)=n{st(y,CJ): YECJ}=Mn+2\{xj: jEJU{n+2}}. (6) 

Obviously 

Mn+2 \ {Xj : j E J U {n + 2}} C n{Cn(st(y,CJ)) : Y E CJ}. 

On the other hand, with the help of (2), (4) and (5) one can check that 

n{Cn(st(y,CJ)) : Y E CJ} C Cn(st(xo,CJ))nCn(st(Xn+2,CJ)) 

n n{Cn(st(Yj,CJ)): j E J} 

C Mn+2 \ {Xj : j E J U {n + 2}} 

which means that every CJ is indeed a K-set and consequently F is a K-family iii (X,Cn). 
Let us notice that from (6) it follows that 

Xj E ker(UFi") for j = 1, ... ,n+ 1 

but 
ker(UF) = 0. 

In view of this we see that s ~ n + 1 for every n E IN, which means that no starshapedness 
number of (X,Cn) exists. Let us add that both spaces (IN,21N ) and (Y,2Y ) have starshapedness 
number zero. I 

Using similar arguments to those in Theorem 1 and Theorem 3 one can check that the following 
theorem is true. 

Theorem 4. Suppose that (Xi,Ci) with finite Xi is a convexity space having Helly number 

hi, i = 1,2. Then the convex product space (Xl X X 2, Cl <81 C2) has Krasnosel'skii parameter k 
satisfying 
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where ki is a Krasnosel'skii parameter of (Xi,Ci).' 

Let (Xt,Cd and (X2,C2), Xl n X 2 = 0, be convexity spaces. The pair (Xl U X 2,Cu), where 

is a convexity space and is called the convex sum space. Here we have 

Theorem 5. Let (Xt,CI ) and (X2,C2), Xl n X 2 = 0, be convexity spaces with Krasnosel'skii 
parameters kl and k2, respectively. Then for the Kmsnosel'skii parametet k of (Xl U X 2 ,Cu) we 

have k = kl + k2. 

Proof. First let us notice that a set S is a K-set in (Xl U X 2,Cu) if and only if S = Sl U S2, 

where Si is a K-set in (Xi, Ci), i = 1,2. 
Take a K-set S in (Xl U X 2, Cu ) such that any its kl + k2 points are seen from a common 

point in S via S. We will show that S is starshap.ed. The assumption that any kl + k2 points 
from S are seen from a common point in S via S implies that either any kl points from Sl 
are seen from a common point in S} via S}, or any k2 points from S2 are seen from a common 
point in S2 via S2. From the definition of the Krasnosel'skii parameter it follows that either 
kereS}) i 0, or ker(S2) i 0. This, in virtue of the equality 

kereS) = ker(Sl) U ker(S2) 

ends the proof .• 

One can easily extend the definition of the sum space to any finite collection of convexity spaces. 
Then in Theorem 5 instead of two spaces we can consider any finite family of convexity spaces 
with Krasnosel'skii parameters kt, ... , kn . Standard argument reveals that the Krasnosel'skii 
parameter k of (Ui=l Xi, Cu) satisfies then k = E?=} ki. 

5. TWO REMARKS CONCERNING K-SETS 

Since the notion of K-sets is crucial for Krasnosel'skii-type parameters of convexity spaces we end 
the paper with two remarks about K-sets. The first one deals with K-sets in the product space. 
Clearly, products of K-sets are also K-sets. However the projection of a K-set in (X} X X 2 ,Cn) 

need not be a K-set in (Xi,Ci) which is illustrated by the following example. 

Example. 2. Consider the product space (JR 2 , clconv ® clconv), where clconv dellotes the family 
of closed convex sets (closed intervals) in IR. Take S = {(x,y) : x 2 + y2 < I}. First we will 
show that S is a K-set in (Xl X X 2 ,Cn). Of course we have (0,0) E kereS). On the other hand, 
as is easy to check, we get 

kereS) = n{st(x,S) xES}Cn{st(qi,S) iElN}nn{st(p;,S) iElN} 
= {(O,O)}, 

where qi = (1- t,O) and Pi = (0,1- t)· 
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Similarly we have (0,0) E n{Cn(st(x, S» : XES} and 

n{Cn(st(x, S» : xE S} c n{Cn(st(qi, S» : i E IN} n n{Cn(st(Pi, S» i E IN} 

{(O, On 

so S is indeed a K-set. However, for 'irIS = {x : -1 < x < I} we get 

Hence 'irIS is not a K-set in(IR, dconv) .• 

The notion of visibility cell plays a part in starshaped sets, see [3,4]. For each nonempty subset 
SeX and each point· xES the visibility cell of x relative to S is the set 

vis(x,S) = {y E st(x,S) : st(x,S) C st(y,S)}. 

In [4] it is shown that for any nonempty set SeX the equality ker(S) = n{vis(x,S) XES} 
holds. It turns out that in the case of K-sets we also have the following 

Property 4. If S is a nonempty K-set in (X,C). then 

ker(S) = n{C(vis(x, S») xES}. 

Proof. It is clear that vis(x, S) C st(x, 5). Hence we get 

ker(S) n{vis(x,5) : x E 5} C n{C(vis(x,5» : xES} 

C n{C(st(x,5»: x E 5} = n{st(x,5) : x E 5} 
ker( 5) 

and the property is established. I 

From the proof of Property 4 it follows that for any K-set 5 C X we have 

n{C(vis(x, S)) : x E 5} = n{C(st(x, 5» : x E 5}. 

Let us notice that the equality can fail for sets which are not K-sets. This can be shown as 
follows. In (IR2 ,conv) take 5 = {q = (x,y) : 0< x2 + y2 < I}. For q = (x,y) 1- (0,0) consider 
two half-lines It = {qt : t > O} and I;; = {-qt t 2: OJ. One can observe that for q E 5 we 
have 

st(q, 5) = 5 \ I;; vis(q, 5) = 5 nl: 

and 
conv(st(q, 5» = 5 conv(vis( q, S» = 5 n I:. 

The above implies 
n{conv(st(q,S» :q E 5} = S 

but 
n{conv(vis(q,S» : q E S} = 0. 
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