Revista de la Unión Matemática Argentina Volumen 40, Números 3 y 4, 1997.

ON THE TAME DRAGON

A. Benedek and R. Panzone

Departamento e Instituto de Matemática, Univ. Nac. del Sur, (8000) Bahía Blanca, Argentina

ABSTRACT. We prove that the boundary of the tame dragon is a Jordan curve J whose interior is a uniform domain. J is the union of six similar Jordan arcs. Each of these arcs is a selfsimilar set that satisfies the open set condition. J is an s-set with $s \cong 1.21076$. Precisely, s = $=2(\log v)/\log 2$ where $v = \sqrt[3]{1+\sqrt{26/27}} + \sqrt[3]{1-\sqrt{26/27}}$. The disk F defined by J is the set of complex numbers that have a binary representation with integer part zero in the base $\mu = -1/2 + i\sqrt{7}/2$.

1. INTRODUCTION. Let $\mu \in \mathbb{C}$, $|\mu| > 1$, $D = \{0,1\}$. $\alpha \in \mathbb{C}$ is said *representable* in base μ with ciphers D if there exists a set of digits, $\{a_i \in D; j=M, M-1, M-2, ...\}$, such that

$$\alpha = \sum_{-\infty}^{M} a_{j} \mu^{j}$$
. We write $\alpha = a_{M} \dots a_{0} \dots a_{-1} a_{-2} \dots = (e, f)_{\mu}$ and call (e) the integral part of α

and (f) the fractional part of α . Denote G the set of all representable numbers and define the set F of *fractional numbers* as those numbers in G with a representation such that (e)=0 and the set W of *integers* of the system as those with a representation such that (f)=0. A number r will be called a *rational* of the numerical system (μ,D) if it has a finite positional representation, i.e., with $a_j=0$ for j < J(r). U will denote the set of rationals of the system. F will also be denoted by F_0 .

In what follows $\mu := -1/2 + i\sqrt{7}/2$. L:=[1, μ] is the point-lattice defined by 1 and μ . It holds that W=L and that the Lebesgue measure of F, m(F), equals $|\text{Im }\mu| = \sqrt{7}/2$. Besides, G=C and $0 \in int(F)$, (cf. [Z]). μ satisfies the equation $x^2 + x + 2 = 0$ and $|\mu| = \sqrt{2}$. It is easy to see that

(1)
$$|d_0 + d_1 \mu + d_2 \mu^2| \le \sqrt{11}$$
 if $-d_k \in D$ or $d_k \in D$.

The present work completes the results of our paper [Z] providing a proof of its Th. 11. Most of the arguments used are similar to those given in our treatment of the Knuth dragon in [BP] except for particular details. Thus, when a result is not followed by a proof or a reference we understand that an analogous proposition appears in [BP] and that its formal proof can be repeated almost verbatim in the present case.
2. GRAPHS OF STATES. Given a representation of the complex number z,

$$z = \sum_{-\infty}^{L} p_{j} \mu^{j}$$
, and an integer k, we denote with $p(k)$:= the integral part of $z \mu^{-k}$ and call it

the state k of this representation. If z has another representation $z = \sum_{-\infty}^{L} q_j \mu^j$ then the successive states verify:

(2)
$$p(k-1)-q(k-1) = \mu [p(k)-q(k)] + (p_{k-1}-q_{k-1})$$

We have $p(k-1)-q(k-1) = \sum_{j=1}^{\infty} d_j \mu^{-j}$ with $d_j \in \{0,\pm 1\}$ and by (1),

(3)
$$\left|\sum_{j=1}^{\infty} d_{j} \mu^{-j}\right| \leq \sqrt{11} \sum_{j=1}^{\infty} \left|\mu\right|^{-3j} = \frac{\sqrt{11}}{\sqrt{8}-1} < 2.$$

Therefore $p(k-1)-q(k-1) \in S = \{0,\pm 1,\pm \mu,\pm (\mu+1)\}$, (cf. Fig. 3). But p(k)-q(k)also belongs to S and p_{k-1} and q_{k-1} belong to D. These coefficients can be chosen then in a few definite ways. In Fig. 1, the nodes of the graph Γ are the differences p(k)-q(k) of the states (p(k),q(k)). The nomenclature we use in that diagram is inspired in that of Gilbert ([G1], [G2]). Specifically, |qp| and q|p mean that p(k)-q(k)=0

and 1 respectively and $\frac{|p|}{|q|}$ and $\frac{p|}{|q|}$ that $p(k)-q(k)=\mu+1$ and μ respectively. According

to (2), the vector $\begin{vmatrix} p_{k-1} \\ q_{k-1} \end{vmatrix}$ beside the arrow yields the transition to the state (p(k-1),q(k-1)).

THEOREM 1. Each number with two different representations is associated to an infinite string in the graph Γ that starts in a node of the graph. Conversely, each such an infinite string is associated to a number $z \in F$ with more than one representation that

is uniquely determined if p(0)=0, $q(0)\in S\setminus\{0\}$. Numbers of the form $w\mu^m$, $w\in W$, $m\in \mathbb{Z}$, i.e., the rational numbers, have only one representation \blacksquare

In particular 0 has only one representation. Let us define $F_g := F + g, g \in W = L$. Then $F \cap F_g \neq \emptyset$ if and only if $g \in S$. In the diagram of the graph τ in Fig. 2 we used the following notation: $\frac{r|p}{q}$ means $p(k)-q(k)=1+\mu$, $r(k)-q(k)=\mu$, p(k)-r(k)=1 and $\frac{p}{q|r}$ means $p(k)-q(k)=1+\mu$, r(k)-q(k)=1, $p(k)-r(k)=\mu$.

THEOREM 2. Let z be a number with three different representations and $p(0)=0\neq \neq q(0)\neq r(0)\neq 0$. Then p(0), q(0) and r(0) are related as in one of the nodes of the graph τ and the successive ciphers of these representations can be read following the graph from the columns beside the arrows.

Each infinite string of τ that starts in one of the nodes defines a unique complex number $z \in F$ if p(0)=0. The ciphers of the three representations of z are the entries in the columns beside the arrows. There is no number with four representations.

If z has three representations then z'=w+z, $w \in W$, has also three representations. z and z' are associated to the same infinite string of τ . These numbers are ultimately periodic with period 100 or 110 \blacksquare

3. THE COMPACT SET F. The contractions $\Phi_0(z) = z/\mu$ and $\Phi_1(z) = (z+1)/\mu$ could be used to define the set F since $F = \Phi_0(F) \cup \Phi_1(F)$. F is a disk, as will be shown, whose boundary is a Jordan curve that looks like the curve exhibited in Fig. 5. We obtain from (3) that |F|:=diam F <2. The family $\{F_w: w \in W\}$ is a *tessellation of the plane* in the sense that $\mathbb{R}^2 = \bigcup \{F_g: g \in W\}$ and that any two different sets of the family have an intersection of Lebesgue measure zero. This fact will be established in §6 but was already proved in [Z], Th. 10. Fig. 4 shows the set F_0 (=F) and its (exactly) six neighbors (cf. Th. 1). F* will denote the set of rational numbers of (μ, D) in F.

THEOREM 3. i) Let $g \in W$ and k be a nonnegative integer such that $|g| \le (\sqrt{2})^k + 3$. Then, g has a positional representation with no more than k+8 ciphers. ii) If $z \in \mathbb{C}$ and $|z| < (\sqrt{2})^{-8}$ then $z \in F$. iii) $F^* \subset F^\circ = int(F)$ and $F = \overline{F^*} = \overline{F^\circ} = cl(int(F))$. iv) Let $g \in S \setminus \{0\}$. Then $z \in F \cap F_g$ if and only if z is associated to an infinite string of the graph Γ that starts at the node corresponding to the type of the state (0,g). v) Assume $g \in S \setminus \{0\}$ and $z \in F \cap F_g$. Then, neither radix representation of z has more than 3 consecutive equal ciphers after the point. vi) If $0 \neq g \in W$ then $F^\circ \cap F_g = \emptyset$.

8 is the maximum number of ciphers necessary to represent the integers of the numerical system of modulus not greater than 4 (cf. Table 1). As a matter of fact, $4=(11100100)_{\mu}$ and $4+\mu=(11100110)_{\mu}$ are the only ones of these that need 8 ciphers to be represented.

 $\mu = -1/2 + i\sqrt{7}/2 \qquad \mu - 1 = 111001 \qquad \mu + 2 = 11100 \qquad -2 = 110 \qquad -1 = 111 \qquad 2 = 1010$ $\mu^{2} + \mu + 2 = 0 \qquad -\mu - 2 = 100 \qquad -\mu - 1 = 101 \qquad -\mu = 1110 \qquad 1 - \mu = 1111$

[Th. 3, i) implies that 0 has a unique positional representation in (μ, D) , (cf.[Z],§2), a fact that we deduced from Th. 1.]

4. THE BOUNDARY OF F. Most of the times in F_g we shall replace g by its representation in the numerical system (μ ,D). It will be clear from the context the meaning of the subindex. So, $F_{-1} = F_{111}, F_{\mu} = F_{10}, F_{-\mu} = F_{1110}$ and $F_{\mu+1} = F_{11}, F_{-1-\mu} = F_{101}$.

DEFINITION 1. J:= ∂F ; A, C, B, A[^], C[^], B[^] are the intersections of F with g+F where g is, respectively, 1, μ +1, μ , -1, $-\mu$ -1, $-\mu$.

We obtain from theorems 1 and 2 that: $J=A \cup B \cup C \cup A^{\wedge} \cup C^{\wedge} \cup B^{\wedge}$, (cf. Fig. 5).

TABLE 1

Table 1 shows the positional representation in base μ of numbers $w \in W$ of modulus not greater than four. The integer at the right is the square of the modulus of w.

$-4-2\mu=101000$	16	$-1-2\mu = 1110011$	7	1+3µ=10111	16
-4-µ=101010	14	$-1-\mu = 101$	2	2–2µ=1010110	16
-4=111100	16	-1=111	1	2-µ=1000	8
$-3-2\mu = 101001$	11	$-1+\mu=111001$	4	2=1010	4
$-3-\mu=101011$	8	$-1+2\mu=111011$	11	$2+\mu=11100$	4
-3=111101	9	$-2\mu = 1100$	8	$2+2\mu=11110$	8
$-3+\mu=111111$	14	$-\mu = 1110$	2	$2+3\mu=10000$	16
$-2-3\mu = 1110000$	16	$\mu = 10$	2	$3-\mu=1001$	14
$-2-2\mu = 1110010$	8	2u = 10100	8	3=1011	9
$-2-\mu=100$	4	1-2u=1101	11	3+µ=11101	8
$-2-\mu = 100$		$1 - \mu = 1111$	4	$3+2\mu=11111$	11
-2-110	-+ 0	1=1	1	4=11100100	16
$-2+\mu=111000$	8	1 1	2	$4+\mu=11100110$	14
$-2+2\mu=111010$	16	$1 \pm \mu = 11$	2	$4+2\mu=11000$	16
$-1-3\mu = 1110001$	16	$1+2\mu=10101$	7	1. 2µ 11000	10

THEOREM 4. i)
$$B = \Phi_0(C^{\wedge})$$
, i.e., $z \in B \Leftrightarrow \mu z \in C^{\wedge}$
ii) $C = \Phi_0(A^{\wedge})$, i.e., $z \in C \Leftrightarrow \mu z \in A^{\wedge}$
iii) $A = \Phi_0(B \cup C \cup (B+1)) = \Phi_0(B \cup C) \cup \Phi_1(B)$, i.e. $z \in A \Leftrightarrow \mu z \in B \cup C \cup (B+1)$
iv) $C^{\wedge} = \Phi_1(A)$, i.e., $C^{\wedge} = C - (1 + \mu)$
v) $B^{\wedge} = \Phi_1(C)$, i.e., $B^{\wedge} = B - \mu$
vi) Call $H = F_1 \cap F_{1111}$ where $1 - \mu = (1111)_{\mu}$. Then, $z \in A^{\wedge} \Leftrightarrow \mu z \in B^{\wedge} \cup H \cup (C^{\wedge} + 1)$, i.e.,

 $A^{A} = \Phi_0(B^{A} \cup H \cup (C^{A} + 1)) = \Phi_0(B^{A} \cup H) \bigcup \Phi_1(C^{A}).$

PROOF. We prove iii) and vi). The statements i) and ii) are easier to prove than iii) and they imply iv) and v).

iii) Assume $z = 0.p_{-1} \dots = 1.q_{-1} \dots \in A$. Then, following one step the three branches that start in the node $p \mid q$ in the graph Γ we have the following possibilities: $z=0.0\dots = 1.0\dots$, $z = 0.0\dots = 1.1\dots$, $z = 0.1\dots = 1.1\dots$. Therefore, $\mu z = 0\dots = 10\dots \in B$ or $\mu z = 0\dots =$ $=11\dots \in C$ or $\mu z = 1\dots = 11\dots$, i.e., $\mu z - 1 = 0\dots = 10\dots \in B$. Assume now that $w \in B \cup C \cup (B+1)$. If $w \in B$ then $w/\mu = 0.0\dots = 1.0\dots \in A$, if $w \in C$ then $w/\mu = 0.0\dots =$ $= 1.1\dots \in A$ and if $w \in B+1$, $w = 1\dots = 11\dots$, that is, $w/\mu = 0\dots = 1.1\dots \in A$. vi) $z \in A^{\wedge} \Leftrightarrow z = 0.p_{-1} \dots = 111.q_{-1}\dots$ corresponds to the state $q \mid p$. Thus, using the graph Γ , if $z = 0.0\dots = 111.0\dots$ then $\mu z = 0\dots = 1110\dots \in B^{\wedge}$, if $z = 0.1\dots = 111.1\dots$ then $\mu z = 1\dots = 1111\dots \in H$ and if $z = 0.1\dots = 111.0\dots$, $\mu z = 1\dots = 1110\dots \in C^{\wedge +1}$. It can be shown as before that $w \in B^{\wedge} \cup H \cup (C^{\wedge +1}) \Rightarrow w/\mu \in A^{\wedge}$, QED.

5. CONSPICUOUS POINTS OF F AND J. The next theorem provides the positional representations and values of some distinguished points of F and J= ∂ F. For example: $1/\mu = (-1 - i\sqrt{7})/4 = 0.1$.

THEOREM 5. A period will be represented by It holds that $\{x\} = F_0 \cap F_1 \cap F_{1+\mu}$ $x = 0.\overline{001} = 1.\overline{010} = 11.\overline{100} = (3+i\sqrt{7})/8$ $\{y\} = F_0 \cap F_1 \cap F_{-\mu}$ $y = 0.\overline{101} = 1.\overline{110} = 1110.\overline{011} = (1-i\sqrt{7})/4$ $\{z\} = F_0 \cap F_{-\mu} \cap F_{-\mu}$ $z = 0.\overline{100} = 1110.\overline{010} = 101.\overline{001} = (-1-i3\sqrt{7})/8$

$$\begin{aligned} \{u\} &= F_0 \cap F_{-1} \cap F_{-1-\mu} & u = 0.\overline{110} = 111.\overline{101} = 101.\overline{011} = (-3-i\sqrt{7})/4 \\ \{v\} &= F_0 \cap F_{-1} \cap F_{\mu} & v = 0.\overline{010} = 111.\overline{001} = 10.\overline{100} = (-5+i\sqrt{7})/8 \\ \{w\} &= F_0 \cap F_{\mu} \cap F_{1+\mu} & w = 0.\overline{011} = 11.\overline{110} = 10.\overline{101} = (-1+i\sqrt{7})/4 \\ c: &= -x/2 = -(3+i\sqrt{7})/16 \in F & 2c = 0.\overline{1} \\ P: &= (x+y)/2 = x.y = -\mu/2(1-\mu) \in A & 2P = 1.\overline{1} \end{aligned}$$

PROOF. If a point y=0.r₋₁...=1.p₋₁...=1110.q₋₁... then its set of states corresponds to the node $\frac{r|p}{q}$ in the graph τ (cf. Fig. 2). In consequence, the p-representation is periodic of period 110 beginning immediately after the point, the r-representation has period 101 and the q-representation has period 011. Such a point is unique. The positional representations of x, z, u, v and w are obtained in an analogous way. We have: $0.\overline{1} = 1/(\mu-1) = -(3+i\sqrt{7})/8$ and $0.\overline{1}+0.\overline{001}=0.\overline{112}$, $0.\overline{1}-0.\overline{001}=0.\overline{110}$. Since $\mu^2 +\mu+2 = 0$ we get $(112)_{\mu} = 0$. Therefore, $0.\overline{1}+x=0$ and $0.\overline{1}-x=u$. That is, $0.\overline{1} = 2c =$ = -x = x+u and from this the values of x and u are obtained and also that $x=1/(1-\mu)$. The calculations of the values of y, z, v and w are easier. Finally we observe that $-\mu/2 =$ $= (1-i\sqrt{7})/4 = y$. In consequence, $P = (x+y)/2 = 1/2(1-\mu) - \mu/4 = \mu/2(\mu-1) = (\mu/2)$. $0.\overline{1} = 0$

= $(1, \overline{1})/2$. Recall that x = $1/(1-\mu)$. Since $\mu^2 + \mu + 2 = 0$ we get y = $-\mu/2 = 1/(1+\mu)$. Then,

(4) $P = [-\mu/2][1/(1-\mu)] = 1/(1-\mu^2) = (P-1)/\mu^2.$

It will be shown later using this formula that $P \in A \subset J$, QED.

THEOREM 6. *c* is the center of symmetry of F.

PROOF. Define s = W(z) := 2c-z. If $z = 0.p_{-1}p_{-2} \dots$ then $s = 0.(1-p_{-1})(1-p_{-2}) \dots$ and $z \in F \Leftrightarrow s \in F$, QED.

It is easy to check that

(5) $A^{\wedge} = W(A)$ $B^{\wedge} = W(B)$ $C^{\wedge} = W(C)$.

(For example, if $b = 10.p_{-1}p_{-2}...$ then $0.\bar{1}-b = 1110.(1-p_{-1})(1-p_{-2})$, i.e., $b \in B \Rightarrow$

 $2c-b\in B^{\wedge}$). The proof of Th. 6 uses essentially the graph τ and shows also, since there is no point with four representations (Th. 2), that the following relations hold:

(6)
$$A \cap (B \cup A^{\wedge} \cup C^{\wedge}) = C \cap (A^{\wedge} \cup C^{\wedge} \cup B^{\wedge}) = B \cap (C^{\wedge} \cup B^{\wedge} \cup A) = \emptyset$$

$$(7) A \cap C = \{x\}, C \cap B = \{w\}, B \cap A^{\wedge} = \{v\}, A^{\wedge} \cap C^{\wedge} = \{u\}, C^{\wedge} \cap B^{\wedge} = \{z\}, B^{\wedge} \cap A = \{y\}.$$

We denote with dim K the Hausdorff dimension of the set K.

THEOREM 7. J is a closed simple curve and dim $J = \dim A$.

PROOF. We prove in paragraph 8 that A is a simple arc. Because of formulae (5) and Th. 4, A is similar to B, C, B^{\land}, A^{\land}, and C^{\land}. Thus, the thesis follows from (6), (7) and the fact, proved in § 4, that J = A \cup B \cup C \cup A^{\land} \cup C^{\land} \cup B^{\land}, QED.

6. THE SET A. The object of this section is to prove the next result:

THEOREM 8. i) A is the invariant set of the following family of similarities

(8)
$$\sigma_1(z) = \frac{z+1}{\mu^3}$$
 $\sigma_2(z) = \frac{z-1}{\mu^2}$ $\sigma_3(z) = \frac{z+1+\mu}{\mu^3}$

ii) $\sigma_1(x) = x$ $\sigma_2(P) = P$ $\sigma_3(y) = y$ $\sigma_1(y) = \sigma_2(y) = \frac{1}{2}$ $\sigma_2(x) = \sigma_3(x) = \frac{y}{2}$

iii) Let α be the similarity dimension of A. Then $\alpha = 2 \frac{\log(v)}{\log(2)}$ where v is the real root

of $v^3 - v - 2 = 0$ and $v = \sqrt[3]{1 + \sqrt{26/27}} + \sqrt[3]{1 - \sqrt{26/27}}$. $\alpha \approx 1.21076$ and $v \approx 1.52138$. $iv) \quad \sigma_1(A) \cap \sigma_2(A) = \emptyset$

v)
$$\sigma_1(A) \cap \sigma_2(A) = \{\sigma_1(y)\} = \{\sigma_2(y)\}$$
 $\sigma_2(A) \cap \sigma_3(A) = \{\sigma_2(x)\} = \{\sigma_3(x)\}.$

PROOF. i) implies iii) since v is the only real root of $x^3 - x - 2 = 0$. The precise expression for v is obtained from Cardano's formula. ii) exhibits the fixed points of the contractions and follows from (4) and easy calculations. Let us see i). Because of Theorem 4 we have, $B=\Phi_0 (C^{\wedge})=\Phi_0 (C-1-\mu)=\Phi_0 (C)-1-1/\mu=$ $=\Phi_0 (\Phi_0 (A^{\wedge}))-1-1/\mu=\Phi_0 (\Phi_0 (A)-1/\mu)-1-1/\mu=\Phi_0^2 (A)-(1+\mu+\mu^2)/\mu^2 = \Phi_0^2 (A)+1/\mu^2$ Taking into account formulae (8), we obtain,

(9)
$$\Phi_0(\mathbf{B}) = \Phi_0^3(\mathbf{A}) + 1/\mu^3 = \sigma_1(\mathbf{A})$$

 $\Phi_0(\mathbf{C}) = \Phi_0^2(\mathbf{A}) - 1/\mu^2 = \sigma_2(\mathbf{A})$
 $\Phi_0(\mathbf{B}+1) = \Phi_0^3(\mathbf{A}) + (1+\mu^2)/\mu^3 = \sigma_3(\mathbf{A})$

It follows from Th. 4 iii) that A equals the union of the three sets in (8). Therefore,

$$\mathbf{A} = \bigcup_{i=1}^{3} \sigma_{i}(\mathbf{A}).$$

To prove iv), we must know the action of the σ 's on the positional representation of a number z. This is shown in (10). There ~ means a sequence of binary digits that does not change after the transformation.

$$(10) \quad \sigma_1 \begin{cases} \mathbf{0}.\sim \longrightarrow \mathbf{0}.001\sim \\ \mathbf{0}.\sim \longrightarrow \mathbf{0}.001\sim \\ \mathbf{1}.\sim \longrightarrow \mathbf{1}.010\sim \end{cases} \quad \sigma_2 \begin{cases} \mathbf{0}.\sim \longrightarrow \mathbf{1}.11\sim \\ \mathbf{0}.\sim \longrightarrow \mathbf{0}.101\sim \\ \mathbf{1}.\sim \longrightarrow \mathbf{0}.00\sim \end{cases} \quad \sigma_3 \begin{cases} \mathbf{0}.\sim \longrightarrow \mathbf{0}.101\sim \\ \mathbf{1}.\sim \longrightarrow \mathbf{0}.101\sim \\ \mathbf{1}.\sim \longrightarrow \mathbf{1}.110\sim \end{cases}$$

Assume a, $b \in A$ and $\sigma_1(a) = \sigma_3(b) = z$. Then, z must be equal to 0.001 ... and to 1.010 ... because of the action of σ_1 on a and also z must be equal to 0.101... and to 1.110... because of the action of σ_3 on b. Multiplying by μ^3 one obtains a number that shows clearly four representations, a contradiction.

Let us prove the first formula in v). If $z \in \sigma_1$ (A) $\cap \sigma_2$ (A) then z = 0.001...= 1.010...=1.11... and $\mu^2 z = 0.1...= 101....= 111...$ Therefore, $\mu^2 z \in F \cap F_{-1} \cap F_{-1-\mu}$.

Because of Th. 5, $z = u/\mu^2$. Thus, $z = \sigma_2(y) = \sigma_1(y)$, QED.

We note here that it follows from (10) that

(11)
$$\sigma_i(F_0 \cup F_1) \subseteq F_0 \cup F_1 \qquad \forall j \in \{1,2,3\}.$$

7. THE HAUSDORFF DIMENSION OF A. The aim of this paragraph is to prove that A is a self-similar s-set, s=dim(A)=the Hausdorff dimension of A. In view of Hutchinson's theorem it suffices to show that the family of similarities (8) satisfies the open set condition.

We extend our earlier *notation* as follows: $F_{C_{...,D,E_{...,K}}} := \{z: z = C_{...,D,E_{...,K}} \}$ where \sim is any sequence of binary digits. Besides, if $\gamma = (i_1, ..., i_r)$, we write σ_{γ} instead of

$\sigma_{i_i} \circ \ldots \circ \sigma_{i_1}$.

DEFINITION 2. $f := F_{0.01111}^o = int\{z: z=0.01111\sim\}$ and

$$V_{\cdot} = \bigcup_{r=1}^{\infty} \bigcup \{ \sigma_{i_r} \circ \ldots \circ \sigma_{i_1}(f) : i_j \in \{1,2,3\} \} = \bigcup_{\gamma} \sigma_{\gamma}(f).$$

THEOREM 9. i) A is a self-similar set and $0 \le H^s(A) \le \infty$, s = similarity dimension of A ii) $V = V^o \subset F_0 \cup F_1$ $\sigma_i(V) \subset V$ $\sigma_i(V) \cap \sigma_j(V) = \emptyset$ if $i \ne j$. **PROOF.** ii) implies i). Let us prove ii). (11) yields the first inclusion. It is obvious that V is open and that the second inclusion holds. To prove the third statement in ii) we need some auxiliary propositions.

Proposition 1. Assume that $\sigma_{\gamma}(f) = F_{\alpha}^{o}$. Then, $\alpha = \sigma_{\gamma}(0.01111)$.

Proof. It is an immediate consequence of formulae (10), qed.

Proposition 2. Let $\gamma = (i_1, ..., i_r)$ and $\sigma_{\gamma}(F_{0,01111}^o) = F_{\alpha}^o$ where $\alpha = a_0.a_{-1}...a_{-k}$ 01111 then $a_0 \in \{0,1\}$ and $\{a_{-1}, ..., a_{-k}\}$ does not contain four consecutive ciphers 1.

Proof. We use repeatedly (10) for the proof by induction on r. For r=1 it is true. Suppose the statement is true for σ_{γ} but not for $\sigma_{d} \circ \sigma_{\gamma}$ with some $d \in \{1,2,3\}$. That is, if $\sigma_{\gamma} (0.1111) = a_0.a_{-1}a_{-2}...a_{-k} 01111$ and $\sigma_{d} (a_0.a_{-1}...a_{-k} 01111) = b_0.b_{-1}...b_{-j} 01111$ then $\{a_{-1},...,a_{-k}\}$ does not contain four consecutives 1's, but $\{b_{-1},...,b_{-j}\}$ does. The only way for this to happen is that $a_0.a_{-1}a_{-2}...=0.11 \sim (cf. (10))$. However, neither f nor any outcome of the applications σ_{j} have such a beginning, a contradiction, qed.

Proposition 3. Assume $\alpha = a_0.a_{-1}...a_{-j}$, $\beta = b_0.b_{-1}...b_{-k}$, $k \ge j$ and $F_{\alpha}^o \cap F_{\beta}^o \ne \emptyset$. Then $a_i = b_i$ for i = 0, -1, ..., -j. Moreover, $k > j \Rightarrow F_{\alpha}^o \supset F_{\beta}^o$ properly.

Proof. It follows immediately from vi) of Theorem 3, qed.

Proposition 4. Assume that $\gamma = (i_1, ..., i_r)$ and $\delta = (j_1, ..., j_s)$. If $\sigma_{\delta}(f) = \sigma_{\gamma}(f) = F_{\alpha}^o$ then $\gamma = \delta$, i.e., s = r and $\forall k$: $i_k = j_k$.

Proof. Suppose that $s \ge r$ and let $\chi = (i_1, ..., i_k)$ where k < r is such that $i_1 = j_1, ..., i_k = j_k$ and $\sigma_{\chi}(0.01111) = c_0 ... c_{-m}$, (if χ is empty then σ_{χ} = identity map).

Assume that $\sigma_t(c_0, c_{-1}, .., c_{-m}) = ..., \operatorname{cd} c_{-1}, .., c_{-m}$ for $t = i_{k+1}$ and $\sigma_t(c_0, c_{-1}, .., c_{-m}) =$

= ...CD $c_{-1}...c_{-m}$ for t = j_{k+1}. If i_{k+1} = 2 and j_{k+1} = 1 or 3, then, because of (10), cd=00 or 11 and CD=01 or 10. This is a contradiction, since α is uniquely determined (Prop. 3). Assume next that i_{k+1}=1 and j_{k+1}=3. If $\sigma_t(c_0 \cdot c_{-1}...c_{-m}) = ...bcd c_{-1}...c_{-m}$ in the first case and $\sigma_t(c_0 \cdot c_{-1}...c_{-m}) = ...BCD c_{-1}...c_{-m}$ in the second case then bcd=001 or 010 and BCD=101 or 110, again a contradiction. In consequence, $i_{k+1} = j_{k+1}$. This implies that $\gamma = (j_1, ..., j_r)$. Taking into account that the applications σ_j are contractions, we conclude that s = r and then, $\gamma = \delta$, ged.

Proposition 5. Assume $\alpha = a_0.a_{-1}...a_{-j}$, $\beta = b_0.b_{-1}...b_{-k}$, $k \ge j$, $\delta = (j_1,...,j_s)$ and $\gamma = (i_1,...,i_r)$. If $\sigma_{\gamma}(f) = F_{\alpha}^o$, $\sigma_{\delta}(f) = F_{\beta}^o$ and $\sigma_{\delta}(f) \cap \sigma_{\gamma}(f) \neq \emptyset$ then $\delta = \gamma$.

Proof. From proposition 3 we obtain $a_i = b_i$ for i = 0, -1, ..., -j. Taking into account that the last ciphers of α and β are 01111, k > j leads to a contradiction with Proposition 2. Therefore, $\alpha = \beta$. Because of proposition 4, $\delta = \gamma$, qed.

To finish the proof observe that if $i \neq j$ then $\sigma_i(V) = \bigcup_{r=1}^{\infty} \bigcup \{ \sigma_i(\sigma_{i_r} \circ \dots \circ \sigma_{i_1}(f)) \}$ and

 $\sigma_{j}(V) = \bigcup_{r=1}^{\infty} \bigcup \{ \sigma_{j}(\sigma_{i_{r}} \circ ... \circ \sigma_{i_{1}}(f)) \} \text{ are unions of sets pairwise disjoint in view of proposition 5. Therefore, } \sigma_{i}(V) \cap \sigma_{j}(V) = \emptyset, \text{ QED.}$

Corollary. For any $p \in A$ and any ball $B(p; \varepsilon)$, it holds that $H^s(B(p; \varepsilon) \cap A) \ge 0$.

8. THE SIMPLE ARC A. The application $S(z):=2P - z = 1.\overline{1} - z$ is such that $S(A) \subset A$ and since $S^2(A) \subset S(A)$, S(A)=A. In fact, if $z=0.p_{-1}p_{-2}...=1.q_{-1}q_{-2}...$ then $S(z) = =1.(1-p_{-1})(1-p_{-2})...=0.(1-q_{-1})(1-q_{-2})...\in A$. P is the center of symmetry of A.

The set A and the first five steps of its construction.

DEFINITION 3.
$$\tau_0(z) = \sigma_1(z) = \frac{z+1}{\mu^3}$$
 $\tau_1(z) = \sigma_2(S(z)) = -\frac{z}{\mu^2} + \tau_2(z) = \sigma_3(z) = \frac{z+1+\mu^2}{\mu^3}$

Let B=B(0,2)={z: |z|<2}. We obtain i) of the following auxiliary result from Theorem 8. ii) is easy to check (recall that |F|<2 and that $0 \in int(F)$). Lemma 1. i) $A = \tau_0(A) \cup \tau_1(A) \cup \tau_2(A)$, $\tau_0(A) \cap \tau_2(A) = \emptyset$, $\tau_0(A) \cap \tau_1(A) = \{\tau_0(y)\} =$ ={ $\tau_1(x)$ }, $\tau_1(A) \cap \tau_2(A) = \{\tau_1(y)\} = \{\tau_2(x)\}$. ii) $\forall i: \tau_i(B) \subseteq B \supset F$.

We use in the next lemma the same notation for composition of applications that was introduced in section 7 before the proof of Th. 9.

Lemma 2. If z_1 and z_2 belong to B, $\alpha = (a_N, ..., a_1)$, $a_i \in \{0,1,2\}$ and N is a positive integer, then

$$i) \quad \left| \begin{array}{c} z_{1} - z_{2} \left| (\sqrt{2})^{-3N} \leq \left| \begin{array}{c} \tau_{\alpha}(z_{1}) - \tau_{\alpha}(z_{2}) \right| \leq \left| \begin{array}{c} z_{1} - z_{2} \left| (\sqrt{2})^{-2N} \right. \right. \right. \\ ii) \quad \left| \tau_{1} \tau_{0}^{N-1}(z_{1}) - \tau_{0} \tau_{2}^{N-1}(z_{2}) \right| \leq 8(\sqrt{2})^{1-3N} \qquad \left| \tau_{2} \tau_{0}^{N-1}(z_{1}) - \tau_{1} \tau_{2}^{N-1}(z_{2}) \right| \leq 8(\sqrt{2})^{1-3N} \\ iii) \quad for \ h = 0, 1, \ \tau_{h+1} \tau_{0}^{N-1}(x) = \tau_{h} \tau_{2}^{N-1}(y) . \blacksquare$$

Proof. The proofs of i) and ii) are completely similar to those of i) and ii), respectively, of Proposition 4, [BP]. iii) follows from Theorem 8 and Definition 3, qed. THEOREM 10. A is a simple arc with initial point x and terminal point y. PROOF. Assume $t \in [0,1]$. Let us define f: $[0,1] \rightarrow A$ by

(12)
$$t = \sum_{1}^{\infty} a_j 3^{-j} \rightarrow f(t) = \lim_{n \to \infty} \tau_{\alpha}(0) \text{ where } \alpha = (a_n, \dots, a_1).$$

f is a well defined, injective and continuous application. The proof of an analogous fact in § 3.2 [BP], precisely the proof of Th. 4 of that paper, can be repeated verbatim, QED. 9. F IS A QUASI-DISK. Theorem 10 is the result we needed to assure that J, the boundary of F, is a Jordan curve. However, more can be said about this homeomorphic copy of a circle. It is a *quasi-circle* or what is the same, F° is a *uniform domain* (in relation with this notion we refer to [L]). To see that J is a quasi-circle it is enough to

 $\frac{1}{4}$

prove the next theorem. Its statement is called the Ahlfors' condition and it can be taken as a definition of quasi-circle.

THEOREM 11. There exists K > 0 such that for any pair $z, w \in J$, it holds that

(13)
$$\inf\{|\overline{zw}|, |\overline{wz}|\} \le K |z-w|$$

where \overline{zw} is the arc in J, positively oriented, with initial point z and terminal point w. PROOF. This property is shared with the Knuth's dragon. So, to show that the diameter of the arc zw is bounded by K |z-w| one can repeat the demonstration of an analogous result in [BP]. That proof requires the next two Lemmas.

Lemma 3. There exists K > 0 such that if $0 \le t_1 < t \le t_2 \le 1$ then

(14)
$$|f(t) - f(t_1)| \le K |f(t_2) - f(t_1)| =$$

Proof. From the definitions of the τ 's we get

(15)
$$\tau_1 \tau_0(z) = \tau_0 \tau_1(z) + \eta$$
 $\eta = \frac{-\mu}{\mu + 6} = \frac{1}{\mu^4}$ $\tau_0 \tau_2(z) = \tau_0^2(z) + \eta$

Assume $t \in [0, \frac{1}{9} + \frac{1}{27}]$. Then, $t=(0.00\sim)_3$ and $t + 2/9 = (0.02\sim)_3$ or $t=(0.010\sim)_3$ and $t + 2/9 = (0.100\sim)_3$. In the second case, t=1/9 + s/9, t + 2/9 = 1/3 + s/9. Here, $s=0.0\sim$. We have, by the definition of f, $f(t) = (\tau_0 \circ \tau_1)(f(s))$, $f(t+2/9) = (\tau_1 \circ \tau_0)(f(s))$. By (15),

(16)
$$f(t + \frac{2}{9}) = \tau_0 \tau_1 f(s) + \eta = f(t) + \eta$$

The same formula can be obtained from (15) in the first case. (16) implies that the subarc of A defined by $t \in [\frac{1}{3} - \frac{1}{9}, \frac{1}{3} + \frac{1}{27}]$ is a translation of the subarc of A defined by $t \in$

 $[0, \frac{1}{9} + \frac{1}{27}]$. It is possible at this point to follow the same line of proof of the Proposition 5, [BP], § 4, to obtain the desired inequality (14), qed.

To verify that (14) is satisfied around any of the corners x, y, z, u, v, w of J, it is convenient to find a similarity transformation that applies a neighborhood of the corner under consideration into A. Because of the symmetry of the set J, it is sufficient to examine the points x, w and v. DEFINITION 4. $\Theta(z) = \frac{z}{\mu^2} + (1.11)_{\mu}$ $\varphi(z) = \Theta(\frac{z}{\mu}) = \frac{z}{\mu^3} + (1.11)_{\mu}$ Lemma 4. $\varphi(B \cup C) \subset A$ $\Theta(A \cup C) \subset A$ $\varphi(B \cup A^{\wedge}) \subset A$ = Proof. We check only the third relation. Recall that $B \cup A^{\wedge} = F \cap (F_{10} \cup F_{111})$. But $\varphi(0, \sim) = = 1.110^{\sim}$ belongs to F_1 , $\varphi(10, \sim) = 0.010^{\sim} + 1.11 = 0.000^{\sim} \in F$ and $\varphi(111, \sim) =$

= 0.111~+1.11=0.101~
$$\in$$
 F. That is, $\varphi(B \cup A^{\wedge}) \subset F_{\alpha} \cap F_{1} = A$, ged.

Now we are able to prove our present Theorem 11 repeating verbatim the proof of Theorem 7, [BP], § 4.2, QED.

COROLLARY. i) there exists a $\delta > 0$ such that given $t_1, t_2 \in [0,1], t_2 > t_1$, there is a similarity u such that $u(f([t_1, t_2]) \subset A \text{ and } |u(f(t_1)) - u(f(t_2))| \ge \delta$.

ii) there exist a, b and r > 0 such that for any set $\Sigma \subset J$ with $0 < |\Sigma| \le r$ there is a

similarity $\Lambda: \Sigma \rightarrow A$ such that $|\Lambda(\Sigma)| \ge \delta$ and for $X, Y \in \Sigma$, it holds that

(17)
$$a|X-Y| \le |\Sigma| \cdot |\Lambda(X) - \Lambda(Y)| \le b|X-Y| \bullet$$

(Cf. [BP], pgs. 27 and 28.)

10. ON THE SELF-SIMILARITY OF A. Let us introduce property P.

DEFINITION 5. A has property **P** if there exists $\Delta > 0$ such that for any $x \in A$ and any ball B(x,r) with $r < \Delta$ there exist $y \in A$ and a similarity Y with contraction ratio equal to one such that $B(y,r) \cap A \subset \tau_j(A)$ for some $j \in \{0,1,2\}$ and $Y(B(y,r) \cap A) = B(x,r) \cap A$.

That is, the affine isometry Y^{-1} sends $B(x;r) \cap A$ onto a copy completely included in one of the sets $\tau_k(A)$.

THEOREM 12. A has property P.

We shall not enter into the details because the proof is the same as that given in [BP] § 6. There is a misprint in that proof; the definition of δ should read:

 $\delta = (\frac{1}{2})\inf\{dist(f(1/9), f([1/9+1/27,1]), dist(f(1/3), A \setminus f([1/3-1/9, 1/3+1/27]))\}.$

Theorem 12 implies that A is a $2^{3/2}$ -quasi-self-similar set of standard size $\Delta/2$ in the sense of McLaughlin. This is shown in [BPP], § 6.2, where a discussion of these concepts is included.

11. THE CONVEX HULL OF ∂F . J shares many properties with the boundary of the Knuth dragon, ∂K , though has a smaller Hausdorff dimension. It seems not so wild as ∂K but its convex hull is much more complex. We proved in [BP] that co(K) is an octogon. THEOREM 13. The convex set co(J) = co(F) is not a polygon.

PROOF. We observe first that $\arg(\mu) = \psi \pi$, ψ *irrational*. In fact, $\mu^2 = -\mu - 2$ and by induction one can prove that $\mu^{2k} = a\mu + b$ with a = a(k) an odd integer and b = b(k) an even integer. So, μ^{2k} is not real for any positive integer k. Therefore, ψ is not a rational number. Thus, $\{\mu^j / |\mu|^j : j \in Z\}$ is a family of pairwise different unit vectors.

Let L be a support line to F at the point $u=0.a_{-1}...a_{-j}...$, parallel to μ^{-j} . Then L =

 $= \left\{ z: \operatorname{Im}(z, \mu^{j}) = \operatorname{Im}(u, \mu^{j}) \right\}. \text{ If } U = u + \frac{\varepsilon}{\mu^{j}} = 0.a_{-1}a_{-2}...(1 - a_{-j})..., \text{ where } \varepsilon = 1 \text{ if } a_{-j} = 0$ and $\varepsilon = -1$ if $a_{-j} = 1$, then $\operatorname{Im}(U, \mu^{j}) = \operatorname{Im}(u, \mu^{j})$ and $U \in L$. Therefore, L is a support line to F also at U and the segment $\overline{uU} \subset \partial(\operatorname{co}(F)) \subset \operatorname{co}(F)$, QED.

REFERENCES

[BG] Bandt Ch. and Gelbrich G., Classification of self-affine lattice tilings, J. London Math. Soc. (2)50(1994)581-593.

[BP] Benedek A. and Panzone R., The set of gaussian fractions, Actas 2° Congreso "Dr. A.A.R. Monteiro", Univ. Nac. del Sur, (1993)11-40.

[BPP] Benedek A., Panzone P. A. and Panzone R., Some comments on the Hausdorff meaure of self-similar sets, Instituto de Matemática, Univ. Nac. del Sur, Vol. de Homenaje a R. Ricabarra, 1(1995)35-52.

[E] Edgar G. A., MEASURE, TOPOLOGY and FRACTAL GEOMETRY, Springer (1990).

[G1] Gilbert W. J., Arithmetic in complex bases, Math. Magazine, 57(1984)77-81.

[G2] Gilbert W. J., Complex numbers with three radix expansions, Can. J. Math., XXXIV(1982)1335-48.

[G3] Gilbert W. J., Fractal Geometry derived from complex bases, The Math. Intelligencer, 4(1982)78-86.

[IKR] Indlekofer K.H., Kátai I. and Racskó P., Some remarks on generalized number systems, Acta Sci. Math. (Szeged) 57,1-4,(1993)543-553.

[K] Knuth D. E., THE ART OF COMPUTING PROGRAMMING, vol. 2, Ch. 4, Addison-Wesley, Reading (1969).

[KS] Kátai I. and Szabó J., Canonical number systems for complex integers, Acta Sci. Math. (Szeged) 37(1975)255-260.

[L] Lehto O., UNIVALENT FUNCTIONS AND TEICHMULLER SPACES, Springer (1986).

[M] McLaughlin J., A note on Hausdorff measures of quasi-self-similar sets, Proc. A.M.S., 100(1987)183-186.

[PAP] Panzone Pablo A., A note on the convex hull of self-similar sets, (1993), Actas 2° Congreso "Dr. A.A.R. Monteiro", Univ. Nac. del Sur, (1993)57-64.

[Z] Benedek A. and Panzone R., On complex bases for number systems with the digit set {0,1}, Actas 4° Congreso "Dr. A. A. R. Monteiro", Univ. Nac. del Sur, (1997)

Recibido en Junio de 1997