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ABSTRACT. We prove that the boundary of the tame dragon is a Jordan curve J whose interior 
is a uniform domain. J is· the union of six similar Jordan arcs. Each of these arcs is a self
similar set that satisfies the open set condition. J is an s-set with s == 1.21076. Precisely, s= 

=2(log v)/log 2 where V-= VI + ,126/27 ~ 41- ')26/27. The disk F defined by J is the set of 

complex numbers that have a binary representation with integer part zero in the base 

fJ=-1I2+iJ7 12. 

1. INTRODUCTION. Let IlEC, 11l1>1, D={O,I}. a. EC is. said representable in base 

Il with ciphers D if there exists a set of digits, {a j ED ; j=M, M-l, M-2, ... }, such that 

M 

a = LPjJ.l. j • We write a = aM ... aO .a_1a_2 ••• = (ej),.. and call (e) the integral part of a 
-d> 

and (J)the fractional part· of a. Denote G the set of all representable numbers and 

define the set :F ofjractionai numbers as those numbers in G with a representation such 

that (e)=O and the set W of integers of the system as those with a representation such 

that (j)=O. A number r will be called a rational of the ilUttlerical system (,u,D) if it has a 

finite positional representation, i.e., with aj=O for j < J(r). U will denote the set of 

rationals ,of the system. F will also be denoted by F 0 • 

In what follows Il :=-1/2+iJ7/2. L:=[l,j.t] is the point-lattice defined by 1 and Il. It 

holds that W=L and that the Lebesgue measure of F, m(F), equals IIm,u1 = J7 12. 

Besides, ~ and OEint(F), (cf [Z]). ,u satisfies the equation x2 + x + 2 = 0 and 

1.uI = J2. It is easy to see that 

(1) Ido+dI,u+d2,u21~.Jlt if -dk ED or dk ED. 

The present work completes the results of our paper [Z] providing a proof of its Th. 11. 

,Most of the arguments used are similar to those given in our treatmerd of the Knuth 



116 

dragon in [BP] except for particular details. Thus, wben a result is not followed by a 

proof or a reference we understand tbat an analogous proposition appears in (BP) 

and-tbat its formal proof can be repeated almost verbatim in tbe present case. 

2. GRAPHS OF STATES. Given a representation of the complex number z, 
L 

Z = ~P j f./ , and an integer k, we denote with P(k):= the integral part of Zp-k and call it 

L 

the state k of this representation. If z has another repres~ntation z = ~qjpj then the 

successive states verify: 

(2) p(k-I)-q(k-I) = p[p(k)-q(k)]+(Pk_l -qk-l). 

«> 

We have P{k-I)-q(k-I) = LdjP-j wit!t d j E{O,±I} and by (I), 
j=l 

(3) 

Therefore p(k-I)-q(k-l) E S:={O,±l,±p,±(p+ I)}, (cf Fig. 3). But p(k)-q(k) 

also belongs to S and Pk-l and qk-l belong to D. These coefficients can be chosen then 

in a few definite ways. In Fig. I, the nodes of the graph r are the differences 

p( k) - q( k) of the states (p(k), q( k»). The nomenclature we use in that diagram is 

inspired in that of Gilbert ([G I], [G2]). Specifically, Iqpl and qlP mean that p(k)-q(k)=O 

and 1 respectively and JE. and LII that p(k)-q(k)=ll+ 1 and II respectively. According ql q 

to (2), the vector !Pk-l!- beside the arrow yields the transition to the state 
,qk-l 

(p(k - I),q(k - I») . 
THEOREM 1. Each number with two different representations is associated to an 

infinite string in the _graph r that starts in a node of the graph. Conversely, each such 

an infinite string is associated to a number z EF with more than one'representation that 
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is uniquely determined if p(O)=O, q(O)ES\{O}. Numbers of the form wpm, W EW, 

m E Z, i. e., the rational numbers, have only one representation. 

r I~I () I~ I 
Ip ql 

I~V \J~I Fig. 1 

qlp plq 

I ~ I I ~ I I ~ I 

I ~ I * ~<-'I-~I-
In particular 0 has only one representation. Let us define F~: == F + g, g E W == L. Then 

F n F~ =J:. 0 if and only if g E S. In the diagram of the graph 't in Fig. 2 we used the 

following notation: rip means p(k)-q(k)=l+/1, r(k)-q(k)=/1, p(k)-r(k)=l and L.I 
q qr 

means p(k)-q(k)=l+/1, r(k)-q(k)=l, p(k)-r(k)= /1. 

THEOREM 2. Let z be a number with three different representations and p(O)=O=J:. 

=J:.q(O)=J:.r(O)=J:.O. Then p(O), q(O) and reO) are related as in one of the nodes of the graph T 

and the succesive ciphers of these representations can be read following the graph from 

the columns beside the arrows. 

Each infinite string of T that starts in one of the nodes defines a unique complex number 

ZEF if p(O)=O. The ciphers of the three representations of Z are the entries in the 

columns beside the arrows. There is no number with four representations. 
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If z has three representations then z '=W-i- Z, WE W, has also three representations. z and 

z' are associated to the same infinite string of r: These numbers are ultimately periodic 

with period 100 or 110 • 

p 

-----r- < 
q I r 

r 

111 

7 
I ~I 

q 

± 
q 

III 

> 

It I 

Fig. 2 

3. THE COMPACT SET F. The contractions <Po(z)=z/11 and <P1(z)=(z+1)/11 

could be used to define the set F since F=<Po(F)u<P1(f} F is a disk,as will be 

shown, whose boundary is a Jordan curve that looks like the curve exhibited in Fig. 5. 

We obtain from (3) that IFI:=diam F <2. The family {f~:w E W} is a tessellation of the 

plane in the sense that R 2 = U{ ~g : g E W} and that any two different sets of the family 

have an intersection of Lebesgue measure zero. This fact will be established in §6 but 

was already proved in [Z], Th. 10. Fig. 4 shows the set F 0 (=F) and its (exactly) six 

neighbors (cf. Th. 1). F* will denote the set of rational numbers of (I1,D) in F. 

THEOREM 3. i) Let gE W and k be a nonnegative integer such that Igj ~ (J2l + 3. 

Then, g has a positional representation with no more than k+8 ciphers. 

ii) If z E C and jzi < ( J2) ~8 then zEF. 
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iii) F* c FO = int(F) and F = F * = FO = cI(int (F»). 

iv) Let gES\ {O}. Then Z E F (\ Fg if and only if z is associated to an infinite string of 

the graph r that starts at the node corresponding to the type of the state (O,g). 

v) Assume gES/{O} and Z EF nFg Then, neither radix representation ofz has more 

than 3 consecutive equal ciphers after the point. 

vi) {f O~ gE Wthen FO nFg = 0 .• 

8 is the maximum number of ciphers necessary to represent the integers of the numerical 

system of modulus not greater than 4 (cf Table 1). As a matter off act, 4=(11100100) p 

and 4+1l=(1110011O) p are the only ones ofthese that need 8 ciphers to be represented. 

,u-l 
0 

2 
0 

,u +,u 

}.L = -1/2 + i Y7/2 
2 

}.L +}.L+2=O 

~ 
,u ,u+l ,u+2 

0 0 

-1 0 1 
0 0 0 

o o 
-,u-i l-p: 

,u-l=111001 ,u+2=11100 -2=110 

-,u-2=100 -,u-l=101 -p:=1110 

0 

Fig. 3 

2 0 

o o 

-1=111 2=1010 

l-,u=l1ll 

[Th. 3, i) implies that 0 has a unique positional representation in (J1,D), (cf[Z],§2), a 

fact that we deduced from Th. 1.] 

4. THE BOUNDARY OF F. Most of the times in Fg we shall replace g fiy its 

representation in the numerical system (Il,D). It will be clear from the context the 

meaning of the subindex. So, F_I = F'.,11 ,Fp = F'.,o,F_ p = r~110 and Fp+l = r;l ,E1-P = F'.,OI· 
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DEFINITION 1. J:=iF; A, C, B, A", C", B" are the intersections ofF with g+F where 

g is, respectively, 1, fI+ 1, f1, -1, -fl-1, -J..L 

We obtain from theorems 1 and 2 that: J=A u B u C u A" u C" u B", (cf. Fig. 5). 

w 

Fig. 4 

x 

z 

TABLE 1 

Table 1 shows the positional representation in base fl of numbers WEW of modulus not greater 
than four. The integer at the right is the square ofthe modulus ofw. 

-4-211=101000 16 -1-211=1110011 7 1+311=10111 16 
-4-11=101010 14 -1-11=101 2 2-211=1010110 16 
-4=111100 16 -1=111 1 2-11=1000 8 
-3-211=101001 11 -1+11=111001 4 2=1010 4 
-3-11=101011 8 -1+211=111011 11 2+11=11100 4 
-3=111101 9 -211=1100 8 2+211=11110 8 
-3+11=111111 14 -11=1110 2 2+311=10000 16 

-2-311=1110000 16 11=10 2 3-11=1001 14 

-2-211=1110010 8 211=10100 8 3=1011 9 

-2-11=100 4 1-211=1101 11 3+11=11101 8 

-2=110 4 1-11=1111 4 3+211=11111 11 

-2+11=111000 8 1=1 1 4=11100100 16 

-2+211=111010 16 1+11=11 2 4+11=11100110 14 
4+211=11000 16 

-1-311=1110001 16 1+211=10101 7 
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THEOREM 4. i) B=<PO(CA), i.e., zEB ~J..IZEC\ 

ii) C=<PO(AA), i.e., ZEC ~J..IZEAA 

iii) A= <l>o(BuCu(B+ 1») = <l>o(BUC)U<P1 (B), i.e. zEA ~ J..IZEBuCu(B+l) 

ivY CA=<P1(A), i.e., C'=C-(1+,u) 

v) BI\= <P1 (C), i.e., BI\=B-,u 

vi)CallH=F;nF;111 where 1-,£1=(1111»)1' Then,zEAI\~J..IZEBl\uHu(CI\+I), i.e., 

AI\= <Po (BAuH u (CA+ 1» = <Po(BAuH)U<P1 (CA) .• 

PROOF. We prove iii) and vi). The statements i) and ii) are easier to prove than iii) and 

they imply iv) and v). 

iii) Assume Z = 0.P_1"'= l.q_1 ... EA. Then, following one step, the three branches that 

start in the node p I q in the graph r we have the following possibilities: z= 0.0 .. ,= 1.0 ... , 

z = 0.0 ... = 1.1..., z = 0, l...= 1.1.. .. Therefore, Ilz = O .... = 10 .... EB or Ilz = O .... = 

=11. ... EC or Ilz = 1. ... = 11. ... , i.e., Ilz-l == O .... = 10 .... EB. Assume now that 

wEBuCu(B+ 1). lfw EB then will = 0.0 ... = 1.0 ... EA, ifwEC then will = 0.0 ... = 

= 1.1...EAandifw EB+l, w= 1. ... = 11. ... , that is, w/ll=O . ... = 1.1... EA. 

vi) Z EAA <=> z= O.p -1 ... = 111.q -1 ... corresponds to the state q I p. Thus, using the 

graph r, ifz= 0.0 ... = 111.0 ... then IlZ= 0, ... = 1110 .... EBA, ifz= 0.1 ... = 11l.l ... then 

IlZ= 1. ... = 1111. ... EH and ifz= 0.1... = 111.0 ... , IlZ= 1. ... = 1110 .... ECA.+ l. 

It can be shown as before that w EBAuHu(CAt 1) ~ w/l-l EAA, QED. 

5. CONSPICUOUS POINTS OF F AND J. The next theorem provides the positional 

representations and values of some distinguished points of F and J=8F. For example: 

1/,£1= (-I-iJ7)/4 =0.1. 

THEOREM 5. A period will be represented by .... It holds that 

x=O.OOl= l.010= 11.100 =(3+i~7)/8 

Y = 0.101 = 1.110= 1110.011 = (l-i~7)/4 

, Z = 0.l00 = 1110.010 = 1Ol.001 = (-1-i3~7)/8 
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u = 0.110 = 111.101 = 101.011 = (-3-i"7)/4 

v = 0.010 = 111.001 = 10.100 = (-5+i"7)/8 

w = 0.011 = 11.110= 10.101 = (-1+i"7)/4 

-
2c= 0.1 

-
P:= (x+y)/2= x.y= -pI2(1- p) E A 2P= 1.1 • 

PROOF. If a point y=0.r1 ... =1.p -1 ... =1l1O·q_1 .. , then its set of states corresponds to 

the node rip in the graph't (cf. Fig. 2). In consequence, the p-representation is periodic 
q 

of period 110 beginning immediately after the point, the r-representation has period 101 

and the q-representation has period 011. Such a point is unique. The positional 

representations of x, z, u, v and ware obtained in an analogous way. 

We have: 0.1 = 1/(/1-1)= -(3+i"7)/8 and 0.1+0.001=0.m, 0.1-0.001=0.110. Since 

/1 2 +/1+2 = 0 we get (112) I' =0. Therefore, 0.1 +x = 0 and 0.1 -x = u. That is, 0.1 = 2c = 

= -x = x+u and from this the values ofx and u are obtained and also that x=1/(l-/1). The 

calculations of the values ofy, z, v and ware easier. Finally we observe that -/1/2 = 

= (1-i"7)/4 = y. In consequence, P = (x+y)l2 = 112(1-/1) - /1/4 = /1/2(/1-1) = (/1/2).0.1 = 

= (1.1 )/2. Recall that x = 1/(1-/1). Since /1 2 +/1+2=0 we get y = -/1/2 = 1/(1 +/1) Then, 

(4) P = [-/1/2][1/(1-/1)] = 11(1- p2 ) = (P-1)1 p2 

It will be shown later using this formula that PEAcJ, QED. 

THEOREM 6. c is the center of symmetlY of F.. 

PROOF. Define s = W(z):= 2c-z. Ifz = O.P_l P -2'" then s = O.(1-p -1 )(1-p'2)'" and 

z EF ¢:> s EF, QED. 

It is easy to check that 

(5) N'= W(A) B'" = WeB) U'=W(C). 

(For example, ifb = 1O.p_1 P-2'" then O.l-b = 1110.(1-p_1)(1-p_2)' i.e., bEB => 

2c-bEBI\). The proof ofTh. 6 uses essentially the graph 't and shows also, since there is 

no point with four representations (Th. 2), that the following relations hold: 
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(6) M(BuN\uC/\) = Cn(A/\uC/\uB/\) = Bn(C/\uB/\uAJ = 0 

(7) AnC={x}, CnB={w}, BnA/\={v}, A/\nC/\={u}, C/\nB/\={z}, B/\nA={y}. 

We denote with dim K the Hausdorff dimension of the set K. 

THEOREM 7. Jis a closed simple curve and dim J = dim A .• 

PROOF. We prove in paragraph 8 that A is a simple arc. Because offormulae (5) and 

Th. 4, A is similar to B, C, B/\, A/\, and C/\. Thus, the thesis follows from (6), (7) and the 

fact, proved in § 4, that J = A u B u C u N' U C/\ U B/\, QED. 

6. THE SET A. The object of this section is to prove the next result: 

THEOREM 8. i) A is the invariant set of the following family of similarities 

(8) 

iii) Let a be the similarity dimension of A. Then a = 210g( v) where v is the real root 
log(2) 

of v3 - v- 2 = 0 and V= ~l +~26/27 + ~l- ~26/27. a ~1.21076 and v ~ 1:52138. 

iv) O'j(A)n0'3(A)=0 

v) O'j (A) n O'i (A) = {O'j (yJ} = {0'2 (y)} 0'2 (A) n 0'3 (A) = {0'2 (x)} = {0'3 (x)} .• 

PROOF. i) implies iii) since v is the only real root of x3 - x - 2 = O. The precise 

expression for v is obtained from Cardano's formula. ii) exhibits the fixed points of the 

contractions and follows from (4) and easy calculations. Let us see i). 

Because of Theorem 4 we have, B=<I> 0 (C/\)=<I> 0 (C-I-Il)=<I> 0 (C)-l-l/Il= 

=<1> 0 (<1> 0 (A/\»-I-lIll=<I> 0 (<I> 0 (A)-1/Il)-l-1/Il= <I>~ (A)-(l +1l+1l 2 )/Il 2 = <I>~ (A)+ 1/1l 2 

Taking into account formulae (8), we obtain, 

(9) <I> 0 (B) = <I>~ (A) + 1 III 3 = (j j (A) 

<I> 0 (B+ 1) = <I>~ (A) + (1+1l 2 )/1l 3 = (j 3 (A) 

It follows from Th. 4 iii) that A equals the union of the three sets in (8). Therefore, 

A= U~O'/A). 
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To prove iv), we must know the action of the a's on the positional representation of a 

number z. This is shown in (10). There ~ means a sequence of binary digits that does not 

change after the transformation. 

{ O.~ ~ O.OOl~ 

(10) (5 
1 

l.~ ~ 1.Ol~ 

(5{O.~ ~l.ll~ 

2 l.~ ~ O.OO~ 

cr3{6.~ ---7 O.lOl~ 
1.~ ~ l.ll~ 

Assume a, bEA and a 1 (a)=cr 3 (b)=z. Then, z must be equal to 0.001 ... and to 1.010 ... 

because of the action of () Ion a and also z must be equal to 0.101 ... and to 1.110 ... 

because of the action of ()3 on b. Multiplying by ~3 one obtains a number that shows 

clearly four representations, a contradiction. 

Let us prove the first formula in v). IfzEa 1 (A)na 2 (A) then z = 0.001... = 1.010 ... = 

1.11... and ~2 z = O.l ... = 101. ... = 111. ..... Therefore, ~2 Z E FnF -I nF +1'" 

Because ofTh. 5, z = ul ~2 . Thus, Z = a 2 (y) = a 1 (y), QED. 

We note here that it follows from (10) that 

(11) V) E {1,2,3}. 

7. THE HAUSDORFF DIMENSION OF A. The aim of this paragraph is to prove that 

A is a self-similar s-set, s=dim(A)=the Hausdorff dimension of A. In view of 

Hutchinson's theorem it suffices to show that the family of similarities (8) satisfies the 

open set condition. 

We extend our earlier notation as follows: F C .. D.E..K :={z: z=C. .. D.E ... K-} where -:- is 

any sequence of binary digits. Besides, if r = (il, ... ,i r), we write () y instead of 

DEFINITION 2. f:=F~0l111 = int{z: z=0.0111l~} and 
00 

V: = UU{ ();, O ... O();, (f) : ij E{1,2,3}} = U()y(f)· 
r=1 r 

THEOREM 9. i) A is a self-similar set and O<H s (A)< 00, s=similarity dimension of A 
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PROOF. ii) implies i). Let us prove ii). (11) yields the first inclusion. It is obvious that V 

is open and that the second inclusion holds. To prove the third statement in ii) we need 

some auxiliary propositions. 

Proposition 1. Assume that 0' r (f) == F: . Then, a = 0' r (0.01111) .• 

Proof. It is an immediate consequence offormulae (10), qed. 

Proposition 2. Let y=(iI, ... iJ and O'y(FOOOllll)=F: where a=ao.a_I ... a_kOll11 

then ao E {O,l} and {a_1 , ... ,a_k } does not contain four consecutive ciphers 1._ 

Proof. We use repeatedly (10) for the proof by induction on r. For r=1 it is true. Suppose 

the statement is true for 0' y but not for 0' d 00' y with some dE { 1,2,3}. That is, if 

O'y(O.llll)=ao.a _la_z ... a_kOl111 and O'd(ao.a_I ... a_kOllll)=bo.b_I ... b_jOllll then 

{a_I, ... ,a_d does not contain four consecutives l's, but {b_I, ... ,b_ f } does. The only 

way for this to happen is that aO.a_Ia_Z '" = 0.1l~ (cf. (10». However, neither f nor any 

outcome of the applications 0' f have such a beginning, a contradiction, qed. 

Proposition 3. Assume a= aO.a_I ... a_ j , P= bo.b_I ... b_k , k?:.j and F: nF; ;t:0. Then 

a; =b;fori = O,-I, ... ,-j.Moreover, k> j~F: ::;F; properly .• 

Proof. It follows immediately from vi) of Theorem3, qed. 

Proposition 14. Assume that r={il, ... ,ir)and O=(JI, ... ,jS).lj O',s(f) = O'y(f) =F: 

thenr=o, i.e., s=rand Vk: ik =A .• 
Proof. Suppose that s?:. r and let x= (il , ... ,ik) where k< r is such that i l = jw,i k = jk 

and 0' z(0.01111) = co' c_I ... c m , (if Xis empty then 0' z = identity map). 

Assume that O't (c 0 . c_I ... c_m ) = ... cdc_I,,,c_m for t = i hI and O't (c 0 . c_I· .. c_m )= . 

= ... CDc_I,,,c_m for t = j k+I' Ifihl = 2 and j k+1 = 1 or 3, then, because of (10), cd=OO or 

11 and CD=Ol or 10. This is a contradiction, since a is uniquely determined (Prop. 3). 

Assume next that i k+1 =1 and j k+i =3. If 0' t ( co' c_I . .. c_m ) = ... bcdc_ l · "C_m in the first 

case and O't( Co .c_I ... c_m ) = ... BCDc_I,,,c_m in the second case then bcd=OOl or 010 

and BCD=101 or 110, again a contradiction. In consequence, ik+1 = jk+I' This implies 



136 

that 1 = G I , ... j ,). Taking into account that the applications cr i are contractions, we 

conclude that s = r and then, r = 0 , qed. 

Proposition 5. Assume a. = ao.a_I ... a_i • f3 = bo.b_I ... b_k• k ~}. O=(JI'''''}S) and 

r = (il, .. ·,i,). If O'r (f) =F;. O'§(f) =F; and O'§(f) n O'r (f)::I= 0 then 0 =y.-

Proof From proposition 3 we obtain a i = b i for i = 0,-1, ... ,-j. Taking into account that 

the last ciphers of a. and f3 are 01111, k > j leads to a contradiction with Proposition 2. 

Therefore, 0.= f3. Because of proposition 4, cS = 1, qed. 
<Xl 

To finish the proof observe that if i::l=j then O'i (V)=UU { O'i (O'i, 0 .. . 00'i, (f»} and 
r=1 

<Xl 

O'j(V)=UU{ O'j(O'i, o ... oO'i, (f»} are unions of sets pairwise disjoint 10 view of 
,=1 

proposition.5. Therefore, O'i (V) n 0' j (V) = 0, QED. 

Corollary. For any pEA and any ball B(p;e), it holds that HS(B(p;e) nA) > O. 

8. THE SIMPLE ARC A. The applicationS(z):=2P - z = 1.1 - z is such that S(A)cA 

and since S 2 (A)cS(A), S(A)=A. In fact, if z=O.p -I p -2 ... = l.q_1 q-2 ... then S(z) = 

=1.(I-p_I )(1-p_2 ) ... =0. (l-q_1 )(1-q-:-2 ) ... €:A. P is the center of~metry of A. 

x 

y Fig. 6 

The set A and'the first five steps of its construction. 
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Z + 1 + Jl2 
T2(Z) = 0"3(Z) = 3 • 

Jl 

Let B=B(0;2)={z: I z I <2}. We obtain i) of the following auxiliary result from Theorem 

8. ii) is easy to check (recall that I F 1<2 and that 0 E int(F». 

Lemma 1. i)A=To(A)uT](4)u T2(A), To(A)n T2(A)=0, To(A)n T](A)= {To(y)}= 

={ T](X)}, T](A)nT2(A)={ T](y)}={ T2(X)}, 

ii) Vi: T; (B)cB~F .• 

We use in the next lemma the same notation for composition of applications that was 

introduced in section 7 before the proof of Th. 9. 

Lemma 2. If z] and Z2 belong to B, a = (aN, ... ,a]), a; E {0,1,2} and N is a positive 

integer, then 

i). I Z]-Z2 kv'2)-3N::::;1 Ta (Z])-T a (z2) I::::; I Z]-Z2 kv'2)-2N 

ii) IT] T~-] (z]) - To T~-] (Z2)1 ::::; 8(.J2 )HN 

iii) jor h= 0, 1, Th+]T~-](X) = ThT~-](y) .• 

I N-l() . N-]( )1<8( ~2)1-3N T 2 To Zl - T]7: 2 Z2 .- ..J 

Proof The proofs of i) and ii) are completely similar to those of i) and ii), respectively, of 
\ 

Proposition 4, [BP]. iii) follows from Theorem 8 and Definition 3, qed. 

THEOREM 10. A is a simple arc with initial point x and terminal point y .• 

PROOF. Assume tE[O,l]. Let us define! [O,l]~A by 
00 

(12) t=LajTi ~ j(t) = Iimn->ooTa(O) where a=(an, ... ,a]). 

jis a well defined, injective and continuous application. The proof of an analogous fact in 

§ 3.2 [BP], precisely the proof ofTh. 4 of that paper, can be repeated verbatim, QED. 

9. F IS A QUASI-DISK. Theorem 10 is the result we needed to assure that J, the 

boundary ofF, is a Jordan curve. However, more can be said about this homeomorphic 

copy of a circle. It is a quasi-circle or what is the same, F 0 is a uniform domain (in 

relation with this notion we refer to [L]). To see that J is a quasi-circle it is enough to 
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prove the next theorem. Its statement is called the Ahlfors' condition and it can be taken 

as a.definition of quasi-circle. 

THEOREM 11. There exists K > 0 such that for any pair z, W EJ, it /Jolds that 

(13) 

where zw is the arc in J, positively oriented, with initial point z and terminal point w .• 

PROOF. This property is shared with the Knuth's dragon. So, to show that the diameter 

of the arc zw is bounded by K I z-w lone can repeat the demonstration of an analogous 

result in [BP]. That proof requires the next two Lemmas. 

Lemma 3. There exists K > 0 such that if 0 ~ t1 < t ~ 12 ~ 1 then 

(14) 

Proof. From the definitions of the .'s we get 

1 1 
Assume tE[O, -+-]. Then, t=(O.OO~) 3 and t + 2/9= (0.02~) 3 or t= (0.01O~) 3 and 

9 27 

t + 2/9= (0, 100~) 3 . In thesecond case, t=1/9 + s/9, t + 2/9=113 + s/9. Here, s= O.O~ . 

We have, by the definition ofj,fit) = (.0 0. 1 )(I(s»,fit+2/9) = (.1 0. 0 )(I(s». By (15), 

(16) 2 
fit + -) = ToT1fis) + 11 = fit) + 11 

9 

The same formula can be obtained from (15) in the first case. (16) implies that the subarc 

of A defined by tE [ ..!. -..!. ,..!. + _1_] is a translation of the subarc of A defined by tE 
3 9 3 27 

[0)+_1_]. It is possible at this point to follow the same line of proof of the Proposition 
9 27 

5, [BP], § 4, to obtain the desired inequality (14), qed .. 

To verify that (14) is satisfied around any of the corners x, y, z, u, v, w ofJ, it is 

convenient to find a similarity transformation that applies a neighbor!Jood of the corner 

under consideration into A. Because of the symmetry of the set J, it is sufficient to 

examine the points x, w and v. 
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DEFINITION 4. 0(z) =-;.. + (1.11))J 
f.I. 

z z 
q>(z) = 0( -) =-+ (1.11) -f.I. f.l.3 )J 

Lemma 4. cp(B u C) c A 0(AuC)cA cp(BuA")cA -

Proof We check only the third relation. Recall that BuA" =:Fn(F \0 uF 111)' But q>(0.~)= 

=1.l1O~ belongs to F I , q>(lO.~)= 0.010~ + 1.11= O.OOO~ EF and q>(111.~)= 

= O.lll~ + 1.11= 0.101- EF. That is, q>(BuA") c F 0 nF I =A, qed. 

Now we are able to prove our present Theorem 11 repeating verbatim the proof of 

Theorem 7, [BP], § 4.2, QED. 

COROLLARY. i) there exists a 8>0 such that given 11 ,t2 E[O,l], t2 >tl , there is a 

similarity u such thatu(J([t l ,t2 ]) c A and lu(f(t l )) -u(f(t2 ))I? 8. 

ii) there exist a, b and r>O such that for any set :E c J with 0 < I:EI sr there is a 

similarity A: :E--+A such that IA(:E)I? 8 and for X. Y E :E, it holds that 

(17) alX -J1~I~I'IA(X)-A(Y)1 ~blX -YI-
(Cf [BP], pgs. 27 and 28.) 

10. ON THE SELF-SIMILARITY OF A. Let us introduce property P. 

DEFINITION 5. A has property P if there exists t1 > 0 such that for any XEA and any 

ball B(x;r) with r < t1 there exist YEA and a similarity Y with contraction ratio equal to 

one such thatB(y;r)nA c 't j (A)for some jE{0,1,2} andY(B(y;r)nA) = B(x;r)nA._ 

That is, the affine isometry Y -I sends B(x;r)nA onto a copy completely included in one 

of the sets T k (A). 

THEOREM 12. A has property P._ 

We shall not enter into the details because the proofis the same as that given in [BP] § 6. 

There is a misprint in that proof; the definition of 0 should read: 

0= (Yz)inf{dist(f(l/9),j([1/9 + 1/27,ID,dist(f(1/3),A \f([1/3-1/9,1/3+ 1127])). 

Theorem 12 implies that A is a 23/2 -quasi-self-similar set of standard size N2 in the 

sense of McLaughlin. This is shown in [BPP], § 6.2, where a discussion of these 

concepts is included. 
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11. THE CONVEX HULL OF BF. J shares many properties with the boundary of the 

Knuth dragon, BK, though has a smaller Hausdorff dimension. It seems not so wild as aK , 

but its convex hull is much more complex. We proved in [BP] that co(K) is an octogon. 

THEOREM 13. The convex set co()) = co(F) is not a polygon._ 

PROOF. We ~bserve first that arg(Il)=\jI1t, \jI irrational. In fact, f.i2 = - f.i - 2 and by 

induction one can prove that f.i2k = af.i + b with a = a(k) an odd integer and b = b(k) an 

even integer. So, f.i2k is not real for any positive integer k. Therefore, \jI is not a rational . . " 

number. ~hus, {f.i i / If.ili : j EZ} is a family of pairwise different unit vectors. 

Let L be a support line to F at the point u=0.a_1 ... a_i ... , parallel to f.i- i . Then L = 

= {z:Im(z . .ul) = Im(U.f.ii)}. If U=u+~ = 0.a_1a_2 ••• (1-a_ j ) ... ,where E=1 if a_j=O 
. f.i 

and E=-l if a_j =l, then Im(U.f.ij) = Im(U.f.ii) and U E L. Therefore, L is a support 

line to F also at U and the segment uU c a(co(F» c co(F), QED. 
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