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MODULAR INEQUALITIES OF MAXIMAL
OPERATORS IN ORLICZ SPACES

BRUNO BONGIOANNI

Abstract

Given p > 1, we study modular inequalities for the operators M, and M 1_/1),
related to p-averages and Cesaro means of order 1/p, in the context of Orlicz
Spaces establishing a comparison between their boundedness properties. We
also analyze their behavior on weighted Orlicz spaces for weights in the class
Ay and Ay, respectively. We find out that, in both cases, conditions on the
growth functions to have a modular inequalities, render unchangeable. Also,

a converse inequality for M, is given.

1 INTRODUCTION

Let (€2, p) be a finite measure space and 9%(£2) be the space of measurable functions
from € into R. Let ¥ : [0, 00] — [0, 00] an increasing function such that ¥(0) = 0.
The set of functions

LY(Q) = {f e M) : / U(el|f|) dp < oo for some € > 0 }
Q

is called an Orlicz space associated to ¥. We may write LY when the set  is known.
If ¥ is convex we can define a norm on LY called the Luzemburg norm given by (see

[7) 1l = inf{s -0 /Q\p (l—:—l) dp < 1}.

Let T be a sublinear and positive homogeneous operator defined on a subspace ® C
2M(€2) and taking values on M(2). We assume that D contains all the characteristic
functions of sets of finite measure and has the property that whenever f € © and g
is a truncation of f, then g € D.
A such operator T is of weak type (p,p) if there exists a constant A such that for
any measurable function f € 2,

W({TF > s} < (g ||f||,,)p for all s > 0.
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32 BRUNO BONGIOANNI

T is of restricted weak type (p,p) if there exists a constant A such that for any
measurable function f € D,

(s> s < (4 ||f||p,l)p for all s > 0,

with || fllp1 = [;° w({f > r})/Pdr, the seminorm in the Lorentz Space LP(§) (for
more details, see [8]).
Finally, T is of type (00, 00) if there exists a constant B such that for any measurable
function f € D,

1Tl < Bil e

In the sequel we will work with functions ® and ¥ given by

B(t) = /Ot a(s)ds and U(t) = /Ot b(s)ds

for all t > 0, where a and b be positive continuous functions defined on [0, c0).
We are interested in the study of two kinds of maximal operators. The first is related
with the p-averages of a function. For p > 1, we define the M, operator given by

1 1/p
Myf(a) = s (m / lfl”) ,

with Z the family of all intervals contained in {0, 1]. It is well known that M, is of
weak type (p,p).

The second is related with the Cesaro means and has two lateral forms. Let 0 <
a<l,

M} f(z) = sup ﬁ/cu(s)}(c—s)“‘lds, for z € [0,1],

r<c<1
and "
M, f(xz) = sup L‘/ If(s)] (s —c)*'ds, forxz €[0,1].
0<c<z (-T - C)a c
It is also known that these operators are not of weak type (1/a, 1/a) but of restricted
weak type (1/a,1/a) (see [2]).
In [1] the authors found conditions for the boundedness of these operators in terms
of modular inequalities as follows.
We say that an operator T is (¥, ®)-bounded on (€2, ) if there exists a constant C
such that

/ S(Tf)du<C+C / W(C|f1) du, 1)
9] 9]
forall f € ®.

Theorem 1. Let T be of weak type (p,p) with p > 1, and of type (oo,00). If for
some constant C, a and b satisfy

t
tp—l/ @ ds < Cb(Ct), for allt > 1, (2)
1

sP

then, T is (U, ®)-bounded on (£, u).
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Theorem 2. Let p > 1 and b monotone on [1,00). The operator M, is (¥, ®)-
bounded on ([0,1],dx), i.e., there exists a constant C' such that

/O S(M,f(@)])dr < C'+ C’ / ¥(C' | (2))) dr, 3)

for all f € M([0,1)) if, and only if, (2) holds.

Theorem 3. Let T be of restricted weak type (p,p) with p > 1, and of type (0o, 00).
If for some constant C, a and b satisfy

([ 4)" ([erms)”n

then, T is (U, ®)-bounded on (2, p).

Theorem 4. Let 0 < a < 1 and b monotone on [1,00). The operator My is
(U, ®)-bounded on ([0, 1],dx), i.e., there erists a constant C' such that

/0 S(M f(z)))dz < C' +C' / ¥(C'|f (@) dz, (5)

for all f € 9M([0,1]) if, and only if, condition (4) holds with p = 1/a.
We have the same result for M.

Theorems 2 and 4 are useful for studying the mapping behavior of M, and M
obtaining more information than that derived from the Marcinkiewicz interpolation
theorem. From these results some questions arise naturally:

(a) For ¢ > p, it is known that M, maps L? into L; then, for which b does M,
map LY into itself?

(b) For which b does M, map LY into itself?

(c) Since conditions (2) and (4) are not the same, for which b does M, and M1‘}p
maps LY into the same L®?

(d) What happens if we consider weighted Orlicz spaces?

(e) If we have a function f that M,f or Ml% f belongs to some L®, what can we
say about f?

In Section 2 we answer questions (a), (b) and (c), establishing a comparison between
the two kinds of operators and their common properties. In Section 3 we generalize
theorems 1 to 4 dealing with question (d). Section 4 is devoted to the converse
inequalities and we find some answers to question (e).
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2 COMPARISON OF MAPPING BEHAVIOR

Let p > 1 and consider the operators M, and Ml‘/p.
Interpolation Theorem we assert that both My, and M, are bounded from L? into
L7 for ¢ > p and therefore, we have (¥, ¥)-boundedness with ¥(¢) = 9. Hence, we
may expect (¥, ¥)-boundedness for ¥ “greater” than t9, for ¢ > p.

According to theorems 2 and 4 we can study the (¥, ®)-boudedness checking con-
dition (2) for M, and condition (4) for Mf;p. Comparing both conditions we find
that (¥, ¥)-boundedness is no longer true when we deal with domains “close” to L”.
For example, if we take ¥(t) = [tlog(t)]? then, we do not have (¥, ¥)-boundedness
for any of the operators.

Also, M,, and M;L/p do not have the same behavior near L?, for example, if ¥(¢) =
tPlog(t) and ®(t) = t?, the operator M, is (¥, ®)-bounded, but ]\Ifr/p is not.

Now, we present some known facts about real functions (see [4], p.6, and [6], p.131).

Using the Marcinkiewicz

Lemma 1. Let b be a non-negative and non-increasing function defined on [0, 00).
The following statments are equivalent:

(i) There exists a constant C such that

/ PP < Ctb"”’/p(t) (6)

t
forallt > 1.

(ii) There exists a constant C such that

/lt @ ds < Ct'7Pb(t) (7

s
for allt > 1.
(ii1) There exists constants C and v > 1 such that
b"’//p(s t) < Cs“”b‘p'/l’(t)
foralls>1 andt > 1.
(iv) There erists constants C and n > p — 1 such that
b(st) < Cs"b(t) (8)
for all0 < s <1 and st > 1.
We recall that a function satisfying inequality (8) is said to be of lower type n at
infinity.
The following corollaries 1 and 2 give answers to questions (a), (b). They are direct
consequence of Theorem 2, Theorem 4 and Lemma, 1.

Corollary 1. The operator M, is (¥, ¥)-bounded if, and only if, ¥ has a lower
type greater than p.
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Corollary 2. The operator Mf?p is (¥, U)-bounded if, and only if, ¥ has a lower
type greater than p.

In order to answer question (c¢), we state the following corollary.

Corollary 3. Given ¥, the following statements are equivalent:
(1) For all @, M, is (¥, ®)-bounded if, and only if, M, is (¥, ®)-bounded.
(i) U has a lower type greater than p.

Proof. To prove that (i) implies (ii), let ¥ be fixed and suppose that for all ®, if M,
is (¥, ®)-bounded, then Mf’/p is (¥, ®)-bounded. We may suppose that b’ exists (if b
is not differentiable we can always find an equivalent function having that property)

and that g is increasing (otherwise M, can not be (¥, ®)-bounded for any ®, see
(1], p.7). Set a(t) = td'(t). Due to b’ > 0, we have a > 0, and then a and b satisfy

P b(t) < /1 t ﬁglds < ptP b(t). )

By Theorem 2 we have that M, is (¥, ®)-bounded and by the hypothesis, Mf; p 1
(¥, ®)-bounded and Theorem 4 implies (4). From (9) and (4) we obtain

P b(t) < ( /t ” b(C s)7P'/P ds) R (10)

and this is (6). Finally, Lemma 1 implies that ¥ has a lower type greater than p.
On the other hand, if we assume that ¥ has a lower type greater than p, by
Lemma 1 we have (6) and therefore, inequality (2) implies (4) and then, the (¥, ®)-
boundedness of M, implies that of M:;p. Because inequality (4) is stronger than
inequality (2), using Theorems 2 and 4, the (¥, ®)-boundedness of AMf;p always
implies the (¥, ®)-boundedness of M,,.

Proof of Lemma 1. The equivalence between (iii) and (iv) is trivial. To see that (iii)
implies (i), let ¢ > 1,

/ b /P(s)ds =t/ bP/P(tr) dr
¢ 1

< CthP/P(t) / 7 dr (11)
1

C ,
=~ PPy

Now we prove that (i) implies (iii). Let ¢ > 1 and s > 1. If we call h = b™?/? we
have by (i)

h(r) 1

— > =, 12
J[Th ™ Cr (12)

r
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for all » > 1. We first suppose s > 2. Integrating between ¢ and st/2,

N log(s/2)
log (m?h> 2 =g (13)

and exponentiating, we obtain

[ onz e | °/° h. (14)

Using h non-increasing and inequalities (14) and (6),

oS

ts' TV h(st) < 231/0/ h
st/2

< 9l+1/C /wh (15)
t
< AHVCCEh(t).

Then, for s > 2,
h(st) < 22YCC s~ UV by, (16)

If 1 <s < 2, since h is non-increasing,
h(st) < h(t) < 21O+ py) (17)
In a similar way, we obtain the equivalence between (ii) and (iv), then, the proof is

finished. O

3 WEIGHTED INEQUALITIES

A measurable and nonnegative function w :  — R is called a weight on Q. Given a
weight w on € and W as above, we introduce the following generalization of Orlicz
spaces. The set

LY(Q,w) = {f € M(Q) : / V(e |f]) wdp < oo for some € > 0 }
Q

will be called a Weighted Orlicz Space.
A weight w defined on the [0, 1] interval with the Lebesgue measure, is said to be in
Ay([0,1]) if there exists a constant C such that for every interval I C [0,1] we have

1 3
T / w < Cinfw
11/ [

It is well known that A;([0,1]) are the weights which characterized the weak tvpe
(1.1) of Af, the Hardy-Littlewood maximal function on [0,1], and since M, f =
(M fP)YP we sce that A,([0,1]) also characterized the weak type (p,p) of M,,. The
following theorem states for which a and b the operator M, is (¥, ®)-bounded on

([0, 1], w).
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Theorem 5. Let w be a weight in A,([0,1]). There exists a constant C' such that
1

| oims@hue i< cve [Cee e a9)

0
for all f € M([0,1]) if, and only if, (2) holds.

Proof. Suppose that condition (2) holds. Since w is in A;([0,1]), M, is of weak
type (p,p) and then, (18) follows since we are in a particular case of Theorem 1.

We will now see that (2) is a consequence of (18). We use the notation w(E) =
f, p w for any measurable set E. Without loss of generality we may suppose that
w([0,1]) = 1 and that 0 is a Lebesgue point of w with w(0) > 0. Let ¢t > 1 be fixed.

1 1
Let y, € [0,1] such that w([0,y,)) = w Let f; = txjo,2,), With z, = max{y, ;5}
Since

0 ifs>t
u)({ft > 5}) = {w([o,xt)) if0<s<t
we have ) o
nlwwummmm=£ b(s)w({f. > s})ds < w([0,2,)) tb().

If 2, =y,

w([0, 7)) = w([0, y;)) = 51,3

. 1 .
and in the case z; = 2 We use that w is in A;([0, 1]) to see that

1 1 1, w(0
w([0,z,)) < —pw([O, Z;])t” < » inf{0<2z<1/t": w(x)} < t(” )
On the other hand, since
t if x € [0, 2]
My fe(x) = 41/7
zlt/p if x € (z4,1],
the distribution of M, f, with respect to w is given by
0 ift<s
tp:l:t . 1/p
w({Mpfy > s}) = < w([0, ~gp—]) if tr;”? <s <t
1 if0<s<txi/p.
and then,
1 00
[ v Mfte)ute) e = [ oMy > s ds
0 0
t tpl't
> 0, —])d
[ oo, %)
' 1
> [ alspu(io, ) ds
7 t 2
> inf {O <zr<l: w((0, z]) }/ a() ds.
T 1 SP
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As a consequence of the fact that 0 is a Lebesgue point of w and w(0) > 0, there

0,
exists a number ¢ > 0 small enough such that for all 2 € [0, §), we have M >

w(0)/2. Therefore, inf{M 0<z < 1} > inf{w(0)/2,w([0,6])} > 0 and
this completes the proof. ]
In [5] the authors characterized the weights for the restricted weak type (,1) of

the operators M, and M} . For M. this class of weights is the A7 ([0,1]) defined
by the set of weights w such that

1
b—a

b
/wSCw(a) V0<a<b<l. (19)

For the operator M}, the class Af([0,1]) is defined similarly (see [5]).

Theorem 6. Let w be a weight in A7 ([0, 1]), then for some constant C'

/D B(M_ f(z)) w(z)de < C'+ C' /3 V(O |f(@)]) w(z) dz (20)

for all f € M([0,1]) if, and only if, condition (4) holds.

Proof. Since w is in A; ([0,1]), the operator M, is simultaneously of restricted
weak type (1/a,1/a) and of type (00, 00) (see [5]), from Theorem 3 we have that
(4) implies (20).

For the converse, assume that (20) holds. Suppose that 0 is a Lebesgue point of w
and that w(0) > 0. Due to inequality (19), if for some z, w(z) = 0, then w(y) = 0 for
all y > z. Then, we may assume w(zx) > 0 almost everywhere. Let g : [0,1] = [0,1]
defined as g(z) = w([0, z]). Since w(z) > 0 a.e., we have that g is strictly increasing
and so ¢! is well defined.

Also, from inequality (19), we have

9(z) = w([0,z]) < w(0)z (21)
and z
6@ > o (22

We first assume that b has the property

/ b(s) /7 ds < oo. (23)
1
Let t > 1 be fixed. For s > 0, let

hi(s) = A, b(C )P

with 0 -p
Ay = w(0) [tb(Ct)—P’/P+ / b(C s)7P/P ds]
t
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and C > (C")? such that [*b “¥'/p < (C")~?'/P. Observe that since b is increas-
ing, lim,_,o b(s) = o0, h; is decreasmg and lim,_,o, hy(s) = 0, then h;'(r) is well
defined for r > 0.
Now consider f; € M([0, 1]) defined by

fl('r) = h;l(g(.’t))X(O’yt)(.T)’

with y = min{g~!(h(t)), 1}.
The distribution function of f; is for s > 0

w({fe > s}) = w({z € (0,1]: (w) > s})
=w({z € (0,1]: h'(g(x)) > s and z < y,})
=w({z € (0,1]: ( ) < fu(s) and z <y,})

= min{h(s), h(t),1}.

From the last equation and the fact that b is increasing we get
1 00
C'/ U(C"|fi(z))w(z) dz = C'Z/ b(C' s)w({f; > s})ds
0 0
t 00
<C [ht(t)/ b(C s) ds+/ b(C s)ht(s)ds}
0 t
< C [t b(Ct ht / b CS ht(s) dS:I
= CA, [t b(Ct)P/P 4 / b(Cs)~ PP ds]
t
00 , -p/v’
< Cw(0) [/ b(Cs)”/”ds] .
t
Then, by the choice of C,
1 0o , -p/p
c'+ ' / V(O | fo(z))w(z) de < (1 + w(0)) C [/ b(C r) PP dr] . (24)
Jo ¢
On the other hand, we will see that

w{ Mo f, > s}) > g for all s € (1,1), (25)

for some ¢y depending on w.
Therefore,

[ #z fa)hwe) ds = / "M fi > s)) ds
0 0 (26)

t
Z Co/ @ds
1 sP
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Then, from (26 4), we have

) and (2
/ 205) s < / (M () )w(z) do

<C+c / W(C | folo) () da

-p/p

< (1+w(0))C [/tm b(Cr)P P dr]

Since C and ¢g do not depend on t, we get (4).

It remains to prove (25). For this purpose we introduce the #, operator with p > 1
defined for f € 9M([0,1]) by

Hyf(z l/p/ |£(s)|s'/P"tds  for z €0, 1].

Since H, < M, point wise, we may prove equation (25) for H, instead of M, . Due
to lim,_, he(s) = 0, we have lim,_,o fi(z) = oo and hence lim, o H,fi(z) = oo
(since for any decreasing function h, Hy,h > h). Also, H,f: is continuous and
decreasing on (0,1]. Consequently, the image of H,f; is the interval [H,f:(1), c0).
For M, fi(1) < s < t, we have

w({z: Hpfi(z) > s}) = w([0, zy)).

1 s
with 0 < z; < 1 and such that s = H,fi(z,) = —1/;;/ fe(x)zP~Vdz. Then,
pxs'" Jo

= L% /Ozs ft(x):cl/p_ldxr.

Since Hy f; > ft, ft is decreasing, t > s and inequality (22), we have z, > f7'(¢) =
g (h(t)) > w(o) h4(t), and due to inequality (21) and the fact that h; ' is decreasing,
we have fi(z) > h;'(g(z)) > h; ' (w(0)x). Then,

he(t)

w(0)

/ fe(z)z /P  dx >/ h Y (w(0)z)z /P~ da

O
= W/o he *(y") dy
= 1 1/p /OO 1/p
S (L

1/p , 00 ,
( ) [tb Ct)” ,,/,,+/ b(Cr)7P /w]
t

=1.

1
If H,f(1) < s <t, we have 3 > ———. Therefore,

(ps)?

1/(1’8)”
w(0,2) 2 w([0,1/(ps))) = 1

0 €1

TRV [ETE Twsr = o)
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. . 0, - .
with ¢; = inf {O <z<1: M} a positive number, as we saw in the proof of
T

1
Theorem 5. If 1 < s < H, fi(1), obviously w({H,f; > s}) =1 > et Consequently,
w({Hpfe > s}) > C-g, with ¢ = min{1, ¢, }.
s

To finish the proof of the theorem it remains to deal with the case that

/ b(s) PP ds = 0.
1

We will show that, in this situation, H, does not map L¥([0,1]) on L%([0,1]). For
that, we consider the function

f=h"9)xp
on M([0,1]), where

K b(z)™7

(ff;z br'/p ds)p
and K such that k(1) = 1. Note that h is decreasing and so f is well defined.
First we see that f is in L¥([0,1]). Since [[®b77/? = oo and 67"/ is decreasing,

there exists a sequence {x,}32, such that [ b7 = p and lim,_e0 Tp, = 00.
If we call zo =1,

/ b(s) h(s) d /00 )p/p
s s =
K (fopbrr)” p/,,)
/zn+1 p/p p
5 ds
f1/2b P/P)

b(s)"”'/p x© /wn+1 b(s)fp'/p
——ds+ T 4S
I R Rk

forxz>1

h(z) =

The first term of the last expression is bounded by
1

(f]1/2 b-p’/p>p

<0

and the second by
© flw"H pp'/p _ flzn pr/p 1

( lz" b*p’/p)p = Z E’- < 00.

n=1

Hence, from the fact that w({f > s}) = h(s) for s > 1,

/ V(| f (@) w(z) dz = /Ooo b(s)w({f > s})ds

0
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Now we will see that H,f is not in L®([0,1],v), even more, we will show that
H,f(xz) = oo for all x € [0,1]. Since H,f is decreasing, it is enough to show
H,pf(1) = co. In fact,

1 1 o _
mﬂpf(l) = W/o h g(r)r' /P dr

- Klf/p /0 h™H(g(#7)) dt

= Kll/P /1°° 97! (h(r))] """ dr

and from inequality (22},

Khll/;/;oo [9_1(/L(T))]l/p dr > W/m h(r)"? dr

1 —p/p
l/p/ f1/2b P/P

Finally, we have
~p /p Tn+1 —p'/p
ds
/ fl/zb p/p Z/ f1/2b ?'/p
Tnt1 -v'/p
/In f’””*‘ b— p/p

f’”n+1b p/p_fznb P'/p

Zfl/zb P/p 4 f’"“b P'/p
> 1

=3 = 0.
n=0

= fl/Qb PP+ 1+m

4 CONVERSE INEQUALITY

It is well known that when we have a function f whose maximal M f belongs to
LY(T) we can assure that f is in Llog L(T). This is generalized in [3] where the
author finds that under appropriate assumptions on a and b, there exist constants
c; and ¢y such that

/T U (elf]) < 2t e /T 3 (M) (27)

for all f with ||f||ziry = 1 if, and only if, there exists a constant c3 such that

S

t
b(est)es < / @ ds for all ¢t > 1.
1
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In this section we will analyze inequalities of the type (27) when we replace M by
M, or M,
First we deal with the operator M, and we start with the following lemma.
Lemma 2. Ifp > 1,
1 o0
2P
Proof. For p =1 see [9], p.93. If p > 1, let f be in L?([0,1]) and ¢ > || f||Le(o,1)

pr(s)sP ™ ds < pag, £ (t) for all t > || fllrro,1))-

1/p
( f[o I fp) . Since the assertion is true for the maximal function M = M;, we
have

1 (o0 o0
- p-1 g~
i || mree s = o [Ty
< parge(tF)
= uMpf(t)'
(]
Theorem 7. There ezists a constant C' such that
| wimzoo [ e (28)
{0,1] [0,1}
for all f € M([0,1]) with || f||Lrqo,17) = 1 if, and only if, for some constant C
ct
b(t) < Ctr! / %ds forallt > 1. (29)
1

Proof. Suppose that inequality (29) holds. Let f be a function in 9([0,1]) such

that fi, ,, f? =1,
A) REE / B(t) 11 (1)

([ )

<)+ /b(t)uf(f)dt

J1

From inequality (29), Fubini’s Theorem and Lemma 2, we get

[ womase [ (e [7EGhas) o
<c /°° a(s) (/Oo tp—luf(t)dt> ds

<90 / S)ne, s (s/C) ds

[0,1]
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proving that (29) implies (28).
We now see that (29) is a consequence of (28). For t > 1, let f, = tx(0,1/r)-

[ v = [ s o) as

1

_1 tb(s) ds (30)

|
l\')
~~
'3
,_.

where we used that b is increasing.
On the other hand,

/[;]1 pft =/ MMpft )d

<a(1)+ / a(s) sty (5) d (31)

1)+A/1 a—isld

Where in the last inequality we used the weak type (p,p) of M,,.
t
The proof is completed, since / a—(j-) ds increases with ¢. |
N

For the operators M and M with o = 1/p things are different. We are interested
in what happens when a and b satisfy an inequelity opposite to (4), i.e.,

00 ) -p/p' Ct (L(S)
(/ b(s)™P'1? ds) <C / 7 ds forallt>1, (32)
t 1

and some constant C.

If f is increasing then M, f = f. This implies that a result analogous to Theorem
7 is not possible. In fact, the pair a(s) = s” and b(s) = sP~!log? () satisfies (32),
but we may find an increasing function f on [0, 1] such that f[o I (If]) < oo and
f[0,1] ®(c|f]) = oo for all ¢ > 0 (take fo instance f(z) = h7'(1 — z)x(p,1j(z), with
h(t) = Giogry)-

The lateral nature of M, implies that the operator does not enlarge increasing
functions. However, for decreasing functions, an analogous of Lemma 2 is valid.

Lemma 3. Let f be positive and decreasing function defined on [0,1]. Then,

[i/ f(z) P! dg ' <z My f(z) > t}] (33)
Pt Jipsy - VP ’

for all t > || fllp2 = I fllzr o,
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Proof. Since f is decreasing,

1
1 fllps = 1—1) /0 f(z)z'P Vg,

1 T
Let £ > || fllp,1- Since My, f(z) = W/ f()y**~' dy is decreasing and continu-

ous, we have {z : M, f(z) >t} = (0,z;). For t > ||f|l,, = ]\Il_/pf(l),
1 Zt 1/p-1
t=—5 | Sy dy (34)
pxy - Jo

1 Tt 3 p
ro= |5 [ rwal (35)
Pt Jo
We olso have f(x) < M, f(z) for all z, then

p
[i/ f(x)xl/”"ldxr }—/ f(:v)a:l/”*lda:
ARV Pt Jiny, ro0)

_ [pit / " Fla)ele dx] ' (%6)

=au= os My, /@) > 1)),

or

IN

O

Having proved Lemma 3 we would expect a result analogous to Theorem 7 for
decreasing functions to be true: if a and b satisfy (32) then

| wisscre [ e (57)
[0,1] [0,1])

for all decreasing f with || f]|,1 = 1.

However, this is not true as the following example shows.

Consider the functions ®(¢) = at'/* and ¥(t) = t'/*[log(1 + t)]'/*. For n > 1, let
fn = nX(0,1/n1/0)- We have || full1/a, = afol fa(x)z?tdz = 1, for all n > 1. We will
see that inequality (37) can not be true for all f,,.

If z € [0,1/n'/%), we have M f,(z) = n; in fact, if 0 < ¢ <

(fa—c)—a/czfn(y)(y—d““’ W= e / (y—c)* 'y

<z—c)a/o v dy

=n
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1
If z € [1/n'/, 1) we have M, f,(z) = —. To see this, let 0 < ¢ < z. If 1/n!/® <
xa

¢ <, then / fu@)(y—e)* tdy = 0. If c < 1/n'/*, we have
1/nl/e
" _ a 1d — an / —c a—1 d
/f ) dy = @0 ). (y—o)* dy
an l/nl/a—-c .
= a1l d
(=0 / s
nl/a _ \a
n(1/n c) <L
(z—c)> — a°
and z
a [* 1
- n a d —
el (Y)y* dy = —
Therefore,
_ n ifz € (0,1/n'/?]
M, f.(z) =
Otf (:E) {ILO 1fx€ (l/nl/a,l]
and its distribution function is
0 ift>n
Pz, (0) = = ifl<t<n
1 if0<t<l,
while the distribution function of f, is given by
0 ift>n
pr(t)=<1/n* ifl<t<n
1 ifo<t<1.
Now,
U(n o .
[ vt =22 = og1-+ ) (38)
[0,1] n/e
and

/ SCM.f,)=C / a(C 8)pp= 4, (5) ds
Jo 0

=o(C) + Co‘*l/ %ds = ®(C) + C*'log(n).

1

(39)

Therefore, by letting n go to infinity, we see that there is no constant C independent
of f, such that

/ U(f)<C+C ®(CM,f,) foralln>1. (40)
0,1

[0,1]
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