REVISTA DE LA UNIÓN MATEMÁTICA ARGENTINA Volumen 45, Número 1, 2004, Páginas 7–14

ON HÖRMANDER'S CONDITION FOR SINGULAR INTEGRALS

M. LORENTE, M.S. RIVEROS AND A. DE LA TORRE

1. INTRODUCTION

In this note we present some results showing how singular integrals are controlled by maximal operators. The proofs will appear elsewhere ([4])

We start with some basic definitions:

Definition 1.1. • *Mf* will be the Hardy-Littlewood Maximal Operator.

- For 1 < t, $M_t f(x) = (M|f|^t(x))^{\frac{1}{t}}$.
- A singular integral will be an operator T of the form

$$Tf(x) = p.v. \int_{\mathbb{R}^n} K(x-y)f(y) \, dy$$

which is bounded on some L^p , 1 .

- A weight w is locally integrable nonnegative function.
- The class A_p , p > 1, will denote the class of all weights w for which the following inequality holds:

$$\int (Mf)^p w \le C \int |f|^p w$$

while A_1 is the set of weights w such that

$$\int_{\{x:Mf(x)>d\}} w \le \frac{C}{d} \int |f| w.$$

• $A_{\infty} = \bigcup_{p \ge 1} A_p$.

Remark 1.2. • Clearly $Mf(x) \le M_t f(x) \le M_r f(x)$ t < r for any f and x.

• An important property of A_p p > 1, is that $w \in A_p$ implies that there exists 1 < q < p so that $w \in A_q$.

In dimension one there is a theory of weights for the one-sided Hardy-Littlewood Maximal Operator

$$M^{+}f(x) = \sup_{h>0} \frac{1}{h} \int_{x}^{x+h} |f|$$

started by E. Sawyer. (See [11], [6] and [7].)

Definition 1.3. • A_p^+ is the class of weights for which M^+ maps $L^p(w)$ boundedly to itself.

• A_1^+ is the class of weights for which

$$\int_{\{x:M^+f(x)>d\}} w \le \frac{C}{d} \int |f|w.$$

• A_{∞}^+ is the union of the A_p^+ for 1 < p

Remark 1.4. Any increasing function is in A_1^+ . Since it is easy to see that this is not true for the weights in A_p , it follows $A_p^+ \supseteq A_p$

A classical result of Coifman (see [3],) states that if the kernel K satisfies the following condition:

There exists $\alpha > 0$, C > 0 and c > 1 such that

$$|K(x-y) - K(-y)| \le C \frac{|x|^{\alpha}}{|y|^{\alpha+n}}, \text{ if } |y| > c|x|$$
 (L)

then, for any $0 and <math>w \in A_{\infty}$, there exists a constant C such that

$$\int_{\mathbb{R}^n} |Tf(x)|^p w(x) \, dx \le C \int_{\mathbb{R}^n} (Mf(x))^p w(x) \, dx, \quad (C)$$

for any f for which the left hand side is finite.

From this result one can obtain the boundedness of the operator T in $L^p(w)$ for $w \in A_p$. This means that (L) is enough to obtain the weighted theory for T. But it is well known that in order to prove the boundedness of T in $L^p(dx)$ it is enough for the kernel to satisfy a weaker condition, namely the Hörmander condition.

$$\sup_{x \in \mathbb{R}^n} \int_{|y| > c|x|} |K(x-y) - K(-y)| \, dy < \infty. \quad (H)$$

For a long time it has been an open problem whether it was possible to obtain Coifman's result assuming only Hörmander's condition.

Recently Martell, Pérez and Trujillo ([5]) have proved that it is not possible. Actually they prove that (C) fails even if K satisfies certain conditions which are weaker than (L) but stronger than (H).

Definition 1.5. Let $1 \le r \le \infty$, we say that the kernel K satisfies the L^r -Hörmander condition if there exists $c_r > 1$ and $C_r > 0$, such that for any $x \in \mathbb{R}^n$ and $R > c_r |x|$

$$\sum_{m=1}^{\infty} (2^m R)^n \quad \left(\frac{1}{(2^m R)^n} \int_{2^m R < |y| \le 2^{m+1} R} |K(x-y) - K(-y)|^r \, dy\right)^{\frac{1}{r}} \le C_r,$$

if $r < \infty$

and

$$\sum_{m=1}^{\infty} (2^m R)^n \sup_{2^m R < |y| \le 2^{m+1} R} |K(x-y) - K(-y)| \le C_{\infty}, \quad if \quad r = \infty$$

We will denote by H_r the class of kernels satisfying this condition. It is clear that the classes are nested.

$$L \equiv H^* \subset H_\infty \subset H_r \subset H_s \subset H_1 \equiv H, \quad 1 < s < r.$$

It has been known for some time that if $K \in H_r$, then T can be controlled by a maximal operator.

Theorem (See [9]). Let $1 < r \leq \infty$ and T a singular integral whose kernel K belongs to H_r , then for any $0 and <math>w \in A_{\infty}$ there exists a constant C such that

$$\int_{\mathbb{R}^n} |Tf(x)|^p w(x) \, dx \le C \int_{\mathbb{R}^n} \left(M_{r'} f(x) \right)^p w(x) \, dx, \tag{1.6}$$

whenever the left hand side is finite

The result of Martell, Pérez and Trujillo is that it is not possible to improve (1.6).

Theorem. (See [5]) Let $1 \le r < \infty$ y $1 \le t < r'$. there exists a singular integral T, whose kernel K belongs to H_r , such that for any $0 , it is not true that for any <math>w \in A_{\infty}$

$$\int_{\mathbb{R}^n} |Tf(x)|^p w(x) \, dx \le C \int_{\mathbb{R}^n} \left(M_t f(x) \right)^p w(x) \, dx,$$

whenever the left hand side is finite.

This theorem leaves open the following question:

; What happens between H_{∞} and the intersection of the H_r , $1 \le r < \infty$?. More precisely:

1.) Is $\cap H_r \setminus H_\infty$ nonempty?

If this is the case:

2.) What can be said about the singular integrals with kernels in $\cap H_r \setminus H_\infty$?

Obviously for those kernels one has

$$\int_{\mathbb{R}^n} |Tf(x)|^p w(x) \, dx \le C \int_{\mathbb{R}^n} \left(M_t f(x) \right)^p w(x) \, dx, \quad \text{for any} \quad 1 < t. \tag{1.7}$$

But since $K \notin H_{\infty}$ we may not assert that

$$\int_{\mathbb{R}^n} |Tf(x)|^p w(x) \, dx \le C \int_{\mathbb{R}^n} \left(Mf(x) \right)^p w(x) \, dx. \tag{1.8}$$

This does not mean that we might not be able to improve (1.8) obtaining some estimates of the type,

$$\int_{\mathbb{R}^n} |Tf(x)|^p w(x) \, dx \le C \int_{\mathbb{R}^n} \left(M_{\mathcal{A}} f(x) \right)^p w(x) \, dx, \tag{1.9}$$

where $M_{\mathcal{A}}$ is a maximal operator such that $Mf(x) \leq M_{\mathcal{A}}f(x) \leq M_tf(x)$ for any f, $x \neq 1 < t$.

2. Main Results

Let us start with the first question

Theorem 2.10. There exists a vector valued operator U bounded in every L^p , $1 , whose kernel K is in <math>\cap H_r \setminus H_\infty$

There is no need to construct such example. It is in the literature (See [10]). Le us recall its definition:

Definition 2.11. Let f be any measurable function defined on \mathbb{R} . For each $n \in \mathbb{Z}$ we consider the average

$$A_n f(x) = \frac{1}{2^n} \int_x^{x+2^n} f = \int_{\mathbb{R}} \frac{1}{2^n} \chi_{(-2^n,0)}(x-y) f(y) dy.$$

We define the square function Sf by:

$$Sf(x) = \left(\sum_{n=-\infty}^{\infty} |A_n f(x) - A_{n-1} f(x)|^2\right)^{\frac{1}{2}}$$

This is not an operator of convolution type but it can be interpreted as such if we look at it as a vector valued operator.

We just define the operator U with values in ℓ^2 as

$$Uf(x) = \int_{\mathbb{R}} K(x-y)f(y)dy.$$

Where K is the vector valued kernel

$$K(x) = \left\{ \frac{1}{2^n} \chi_{(-2^n,0)}(x) - \frac{1}{2^{n-1}} \chi_{(-2^{n-1},0)}(x) \right\}_n$$

Then $||Uf(x)||_{\ell^2} = Sf(x).$

The definitions and results stated above for real valued kernels remain valid for vector valued operators, if instead of absolute values one uses norms.

For example, a kernel K is in H_r if

$$\sum_{m=1}^{\infty} (2^m R)^n \quad \left(\frac{1}{(2^m R)^n} \int_{2^m R < |y| \le 2^{m+1} R} \|K(x-y) - K(-y)\|^r \, dy\right)^{\frac{1}{r}} \le C_r,$$
(2.12)

and in H_{∞} if

$$\sum_{m=1}^{\infty} (2^m R)^n \sup_{2^m R < |y| \le 2^{m+1} R} \|K(x-y) - K(-y)\| \le C_{\infty}.$$
 (2.13)

The theorem of Rubio, Ruiz and Torrea takes the form:

Theorem ([9]). Let $1 < r \le \infty$ and let T be a singular integral such that $K \in H_r$, then for every $0 and <math>w \in A_\infty$ there exists a constant C such that

$$\int_{\mathbb{R}^n} \|Tf(x)\|^p w(x) \, dx \le C \int_{\mathbb{R}^n} \left(M_{r'}f(x)\right)^p w(x) \, dx,$$

whenever the left hand side is finite.

In order to prove that our kernel is not in H_{∞} we use the following property whose proof can be seen in ([10].)

Lemma 2.14. Let us assume that

$$0 < x < 2^i, \ 2^j < y \le 2^{j+1},$$

where i < j and $i, j \in \mathbb{Z}$.

Then $(K(x-y)-K(-y))_n = 0$ if $n \neq j$ and $(K(x-y)-K(-y))_j = \frac{\sqrt{2}}{2^j}\chi_{(2^j,x+2^j)}(y)$.

It follows that

$$||K(x-y) - K(-y)||_{l^2} = \frac{\sqrt{2}}{2^j} \chi_{(2^j, x+2^j)}(y).$$

From this equality it can easily be seen that the kernel K does not belong to H_{∞} . Indeed if $0 < x < 2^i$ and $R = 2^i$, then for any $m \in \mathbb{N}$

$$2^{m}2^{i} \sup_{2^{m+i} < y \le 2^{m+i+1}} \|K(x-y) - K(-y)\|_{l^{2}} = \frac{2^{m+i}\sqrt{2}}{2^{m+i}} = \sqrt{2}$$

and H_{∞} fails.

But the same equality and Hölder's inequality give that for any r > 1, $K \in H_r$ and therefore:

$$\int_{\mathbb{R}} \|Uf(x)\|_{\ell^{2}}^{p} w(x) \, dx = \int_{\mathbb{R}} (Sf(x))^{p} w(x) \le C \int_{\mathbb{R}} \left(M_{r'}f(x) \right)^{p} w(x) \, dx,$$

This last inequality, the definition of A_p and the property of the A_p weights stated in the introduction imply that S is a bounded operator in $L^p(w)$ for any p > 1. For p = 1 one cannot deduce from the inequality above that the operator S is of weak type (1, 1) with respect to the measure wdx for $w \in A_1$, but the following theorem can be proved.

Theorem 2.15. If the kernel K, of the singular integral T, is in H_r for every $\infty > r > 1$, then for any $w \in A_1$ there exists a constant C such that

$$w\{x: |Tf(x)| > d\} \le \frac{C}{d} \int |f(x)|w(x)dx$$

This means that in order to obtain the classical results about boundedness of the singular integrals with respect to A_p – weights one does not need property (L), not even H_{∞} . The intersection of the H_r is enough. (And H_{∞} is a proper subset of this intersection.) This gives a partial answer to the second question.

If we want to obtain a maximal operator $M_{\mathcal{A}}$ such that $Mf(x) \leq M_{\mathcal{A}}f(x) \leq M_t f(x)$ for any $f, x \neq 1 < t$ and

$$\int_{\mathbb{R}^n} |Tf(x)|^p w(x) \, dx \le C \int_{\mathbb{R}^n} \left(M_{\mathcal{A}} f(x) \right)^p w(x) \, dx,$$

we need to recall some basic ideas of Orlicz spaces. (See ([1]))

Definition 2.16. A function $\mathcal{B} : [0, \infty) \to [0, \infty)$ is a Young function if it is continuos, convex, increasing and satisfies $\mathcal{B}(0) = 0$, $\mathcal{B}(t) \to \infty$ when $t \to \infty$, $y \lim_{t\to 0^+} \frac{\mathcal{B}(t)}{t} = \lim_{t\to\infty} \frac{t}{\mathcal{B}(t)} = 0$.

The Luxemburg norm of f, induced by \mathcal{B} , is

$$||f||_{\mathcal{B}} = \inf \left\{ \lambda > 0 : \int \mathcal{B}\left(\frac{|f|}{\lambda}\right) \leq 1 \right\},$$

and the \mathcal{B} -average of f over a cube Q es

$$||f||_{\mathcal{B},Q} = \inf \left\{ \lambda > 0 : \frac{1}{|Q|} \int_Q \mathcal{B}\left(\frac{|f|}{\lambda}\right) \le 1 \right\}.$$

By $\overline{\mathcal{B}}$ we will denote the complementary function of \mathcal{B} . The usual Hölder's inequality takes the form,

$$\frac{1}{|Q|}\int_Q |f\,g| \leq ||f||_{\mathcal{B},Q} ||g||_{\overline{\mathcal{B}},Q}$$

The maximal operator associated to the Young function $\mathcal B$ is

$$M_{\mathcal{B}}f(x) = \sup_{x \in Q} \|f\|_{\mathcal{B},Q}$$

where sup is taken over all cubes containing x. Examples of Young functions are : $B(t) = t^r$, $B(t) = e^{t^{1/k}} - 1$, $B(t) = t(1 + \log^+(t))^k$. The corresponding maximal operators are M_r , $M_{\exp L^{1/k}}$ and $M_{L(1+\log^+L)^k}$. If $k \ge 0$, $k \in \mathbb{Z}$, then $M_{L(1+\log^+L)^k}$ is pointwise equivalent to M^{k+1} , where M^k is M iterated k times. Furthermore

$$Mf(x) \le CM_{L(1+\log^+ L)^k} f(x) \le CM_r f(x),$$

for any k > 0 and r > 1.

Definition 2.17. Let \mathcal{A} be a Young function, we say that the kernel K satisfies the condition $L^{\mathcal{A}}$ -Hörmander if there exist numbers $c_{\mathcal{A}} > 1$ y $C_{\mathcal{A}} > 0$ such that for any x and $R > c_{\mathcal{A}}|x|$,

$$\sum_{m=1}^{\infty} (2^m R)^n || (K(x-\cdot) - K(-\cdot)) \chi_{\{2^m R < |y| \le 2^{m+1} R\}}(\cdot) ||_{\mathcal{A}, B(0, 2^{m+1} R)} \le C_{\mathcal{A}}$$

The result that parallels that in ([9]) is

Theorem 2.18. Let T be a singular integral, whose kernel K belongs to H_A , then for any $0 and <math>w \in A_{\infty}$, there exists C tal que

$$\int_{\mathbb{R}^n} |Tf|^p w \le C \int_{\mathbb{R}^n} (M_{\overline{\mathcal{A}}}f)^p w,$$

for any f such that the left hand side is finite.

If we want to improve inequality (1.7)we just need to find a Young function \mathcal{A} such that $K \in H_{\mathcal{A}}$ and such that $M_{\overline{\mathcal{A}}}$ is between M and M_t for any 1 < t

Lemma 2.19. It follows from $lemma(2.14 \text{ that the kernel } K \text{ of the square function satisfies the condition <math>L^{\mathcal{A}}$ -Hörmander where $\mathcal{A}(t) \approx \exp t^{\frac{1}{1+\epsilon}}$.

If we use that the complementary function of \mathcal{A} is $\mathcal{B}(t) = t(1 + \log^+(t))^{1+\epsilon}$, we obtain that the inequality

$$\int_{\mathbb{R}} |Sf(x)|^p w(x) \, dx \le C \int_{\mathbb{R}} \left(M_t f(x) \right)^p w(x) \, dx \, t > 1$$

can be improved to

$$\int_{\mathbb{R}} |Sf(x)|^p w(x) \, dx \le C \int_{\mathbb{R}} \left(M^3 f(x) \right)^p w(x) \, dx,$$

In fact, looking at the proof more carefully we may obtain

$$\int_{\mathbb{R}} |Sf(x)|^p w(x) \, dx \le C \int_{\mathbb{R}} \left(M^2 f(x) \right)^p w(x) \, dx.$$

If we use the fact that the operator is one-sided (i.e. Sf(x) depends only on the values of f at the points y > x,) it can be proved that

$$\int_{\mathbb{R}} |Sf(x)|^p w(x) \, dx \le C \int_{\mathbb{R}} \left((M^+)^2 f(x) \right)^p w(x) \, dx,$$

for any $w \in A_{\infty}^+$, which is a better estimate since it controls $\int_{\mathbb{R}} |Sf(x)|^p w(x)$ by a smaller operator and allows a wider class of weights.

3. Different weights

C. Pérez has developed a technique that allows to pass from estimates for A_{∞} weights to inequalities with different weights of the type $(w, M_K w)$. Here w is arbitrary, i.e. not necessarily in A_{∞} and M_K is a maximal operator that depends on the regularity properties of the kernel of the singular integral T.

Definition 3.20. Let \mathcal{A} be a Young function. We say that $\mathcal{A} \in B_p$, p > 1, if there exists c > 0 such that

$$\int_{c}^{\infty} \frac{\mathcal{A}(t)}{t^{p}} \frac{dt}{t} \approx \int_{c}^{\infty} \left(\frac{t^{p'}}{\overline{\mathcal{A}}(t)}\right)^{p-1} \frac{dt}{t} < \infty.$$

The interest of this definition is that it characterizes the Young functions such that $M_{\mathcal{A}}$ is bounded in L^p (See [8]) Following his ideas one can prove:

Theorem 3.21. Let \mathcal{B} una función de Young (or $\mathcal{B}(t) = t$) and let T be a linear operator such that its adjoint, T^* , satisfies:

$$\int_{\mathbb{R}^n} |T^*f|^q w \le C \int_{\mathbb{R}^n} (M_{\mathcal{B}}f)^q w \,,$$

for any $0 < q < \infty$ and $w \in A_{\infty}$. Let $1 . Let us assume that there exist Young functions <math>\mathcal{E}$, \mathcal{F} and \mathcal{D} , so that $\mathcal{E} \in B_{p'}$, $\mathcal{E}^{-1}(t)\mathcal{F}^{-1}(t) \leq \mathcal{B}^{-1}(t)$ and $\mathcal{D}(t) = \mathcal{F}(t^{1/p})$. Then for any weight w,

$$\int_{\mathbb{R}^n} |Tf|^p w \le C \int_{\mathbb{R}^n} |f|^p M_{\mathcal{D}} w \,.$$

Remark 3.22. This theorem cannot ve applied to the square function S since it is not a linear operator.

But there is a linear operator to which it can be applied. It is proved in ([2]) that for any sequence (v_n) in ℓ^{∞} , the operator $Tf(x) = \sum v_n(A_n - A_{n-1})f(x)$ is a, one sided, singular integral whose kernel satisfies $H_{\mathcal{A}}$ with the same \mathcal{A} as the square function and in general does not satisfy H_{∞} . For this operator, keeping in mind that it is one sided, the preceding theorem yields:

Theorem 3.23. For any weight w and 1

$$\int_{\mathbb{R}} |Tf|^p w \le C \int_{\mathbb{R}} |f|^p (M^-)^{[2p]+1} w,$$

where [t] is the integer part of t. and $M^{-}f(x) = \frac{1}{h} \sup_{h>0} \int_{x-h}^{x} |f|$

References

- [1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York, (1998).
- [2] A.L. Bernardis, M. Lorente, F.J. Martín-Reyes, M.T. Martínez, A. de la Torreand J.L. Torrea, Differential transforms in weighted spaces, Preprint (2004).
- [3] R. Coifman, Distribution function inequalities for singular integrals, Proc. Acad. Sci. U.S.A. 69, (1972), 2838-2839.
- [4] M. Lorente, M.S. Riveros, A. de la Torre Weighted estimates for singular integral operators satisfying Hörmander's conditions of Young type, preprint.
- [5] J.M. Martell, C. Pérez, and R. Trujillo-González, Lack of natural weighted estimates for some singular integral operators, to appear in Trans. Amer. Math. Soc.
- [6] F.J. Martín-Reyes, P. Ortega and A. de la Torre, Weighted inequalities for one-sided maximal functions,/ Trans. Amer. Math. Soc. 319 (2), (1990), 517-534.
- [7] F.J. Martín-Reyes, L. Pick and A. de la Torre, A^+_{∞} condition, Canad. J. Math. **45** (1993), 1231-1244.
- [8] C. Pérez, On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted L^p-spaces with different weights, Proc. London Math. Soc. 71 (3), (1995) 135-157.
- [9] J.L. Rubio de Francia, F.J. Ruiz and J. L. Torrea, Calderón-Zygmund theory for vector-valued functions, Adv. in Math. 62, (1986) 7-48.
- [10] A. de la Torre and J.L. Torrea, One-sided discrete square function, Studia Math. 156 (3), (2003), 243-260.
- [11] E. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood maximal functions. Trans. Amer. Math. Soc. 297 (1986), 53-61.

M. Lorente, Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain. lorente@anamat.cie.uma.es

M. S. Riveros, FaMAF Universidad Nacional de Córdoba CIEM (CONICET). (5000) Córdoba, Argentina. sriveros@mate.uncor.edu

A. de la Torre Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain. torre@anamat.cie.uma.es

Recibido: 11 de febrero de 2005 Revisado: 20 de marzo de 2005