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THE HADAMARD FRACTIONAL POWER IN
MIKHLIN-BESOV INCLUSIONS
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This paper is dedicated to the memory of Angel Rafael Larotonda,
deep mathematician and pioneer of Banach algebras in Argentina.

Abstract. Banach algebras defined by fractional Mikhlin-type conditions are
continuously contained in Besov spaces, in such a way that the difference between

the corresponding degrees of derivation can be made arbitrarily small. In this

note a proof of this inclusion is given which is based on the Hadamard fractional
operator and its adjoint integration operator on the positive half-line.

§1. Introduction.
For 0 < θ < π, put Sθ := {z ∈ C \ {0} : | arg z| < θ}. Let H∞(Sθ) the usual

Banach algebra of bounded, holomorphic functions on Sθ. Let X be a Banach space.
An injective, closed operator A on X with domain and range dense is said to be a
sectorial operator of type 0 if the spectrum σ(A) is contained in [0,∞) and, for every
θ > 0,

‖λ(λ−A)−1‖ ≤ Cθ (λ ∈ Sθ).
Let L(X) denote the Banach algebra of bounded operators on X. On the basis of the
classical Dunford-Riesz formula, a certain mapping can be constructed, which takes
functions f of H∞(Sθ) into closed, non necessarily bounded, operators f(A) on X.
When f(A) is in L(X), then the correspondence f 7→ f(A) defines a bounded Banach
algebra homomorphism H∞(Sθ) → L(X), and we say that A has an H∞ functional
calculus [CDMY], [M]. The existence of the (suitably scaled) H∞ calculus for A is
shown to be equivalent to the existence of a functional calculus defined on the Besov
space Λα

∞,1(R
+) in the following terms.

For all ξ ∈ R, let define

φ0(ξ) := (2− 2|ξ|)+ − (1− 2|ξ|)+; φ1(ξ) = (1− 2|ξ − 1|)+ + (1/2− |ξ − 3/2|)+,

and φkε(ξ) = φ1(21−k ε ξ) if k ∈ N, ε ∈ {−1,+1}. Let α > 0. The Besov space
Λα
∞,1(R

+) is defined as the set of all bounded continuous functions f on R+ such
that

‖f‖Λ,α :=
∞∑

k=−∞

2|k|α‖fe ∗ φ̌k‖∞ < ∞

This research has been partially supported by Project BFM2001-1793, M.C.YT.D.G.I. and F.E.D.E.R., Spain,
and Project E12/25, D.G.A., Spain.

Mathematics Subject Classification (2000): Primary 47A60, 26A33; Secondary 43A22, 47B48

Keywords and phrases: fractional calculus, Hadamard fractional power, functional calculus, Mikhlin multipliers.

15



16 JOSÉ E. GALÉ

where fe(x) := f(ex), x ∈ R, see [CDMY, p. 73]. Then Λα
∞,1(R

+) is a Banach space
with respect to the norm ‖f‖Λ,α. Moreover, it is a Banach algebra with respect to
pointwise multiplication [BL].

Theorem A. ([CDMY, Theorem 4.10]) Suppose that A is an injective, sectorial
operator of type 0. Then the following conditions are equivalent:

(i) There exist constants α, C > 0 such that, for every θ > 0 the operator A has a
functional calculus H∞(Sθ) → L(X) with

‖f(A)‖ ≤ Cθ−α‖f‖∞
for every f ∈ H∞(Sθ).

(ii) There exists a functional calculus Λα
∞,1(R

+) → L(X).

The above result quantifies H∞ holomorphy on all sectors in terms of Mikhlin-
Hörmander conditions [CDMY, p. 75]. The connection between Mikhlin-Hörmander
conditions and Besov spaces is exemplified in [CDMY, p. 73] by noticing that every
N -differentiable function f on R+ obeying Mikhlin conditions like

sup
t>0

tj |f (j)(t)| < ∞ (j = 0, 1, ..., N).

belongs to Λα
∞,1, provided that N > α. A proof of this property relies on elementary,

but not trivial, Fourier analysis as indicated in [CDMY]. This consists of considering
the integration operator If(x) =

∫ x

−∞ f(y)dy, and then using the estimate ‖IN φ̌k‖1 ≤
CN2−|k|N in the product fe ∗ φ̌k = f

(N)
e ∗ INφk. In [GM], a closer look at the

relationships between Mikhlin conditions and Besov spaces is done using fractional
derivation. Let h be a locally integrable function on R+. Suppose that α > 0, n = [α]
and α = n + δ with 0 < δ < 1. If ω > 0, we put

Iδ
ωh(t) :=

1
Γ(δ)

∫ ω

t

(s− t)δ−1h(s) ds,

when 0 < t < ω, and Iδ
ωh(t) := 0 when t ≥ ω. Then, let define

h(δ)(t) := lim
ω→∞

(− d

dt
)(I1−δ

ω h)(t).

and

h(α)(t) := (
d

dt
)nh(α−n)(t), t > 0,

whenever the two right-hand side members of the equalities exist. This definition is
from [C], see also [GT]. In the sequel, when we consider h(α), we will be assuming that
the above limit and derivatives exist and that I1−δ

ω h, for ω > 0, and h(δ), . . . , h(α−1)

are locally absolutely continuous functions on R+.
Let WBV∞,α denote the set of functions so-called of weak bounded variation,

formed by all functions h in L∞ ∩ C(R+) for which there exists h(α) and ‖h‖∞,α :=
‖h‖∞ + ‖tαh(α)(t)‖∞ < ∞. Then WBV∞,α is a Banach space with respect to the
norm ‖ · ‖∞,α and we have continuous inclusions WBV∞,β ↪→ WBV∞,α if 0 < α ≤ β,
see [GT].

Let m be an integer. Suppose that F is a bounded, C(m) function on R+ such that
sups>0 |F (m)(s)sm| < ∞. Then, for every ε > 0, there exists f ∈ C(∞)(R+) such
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THE HADAMARD FRACTIONAL POWER 17

that sups>0 |F (k)(s) − f (k)(s)|sk < ε for k = 0,m. To see this, take h in C(∞)(R+)
such that |F (m)(x)− h(x)| ≤ ε(1 + x2)−(m+1) and define

ϕ(s) = (−1)m

∫ ∞

s

∫ ∞

s2

. . .

∫ ∞

sm

[
F (m)(sm+1)− h(sm+1)

]
dsm+1 . . . ds2,

for every s > 0. It is not difficult to check that ϕ ∈ C(m)(R+), ϕ(m) = F (m)− h, and
|ϕ(k)(s)| ≤ (π/2)m−kε(1+ s2)−(k+1) for k = 0, 1, . . . ,m and s > 0. If f := F −ϕ then
f ∈ C(m)(R+) and f (m) = F (m) − ϕ(m) = h, so the function f is a C(∞) function.
Moreover,

sup
s>0

|(F − f)(m)(s)|sm = sup
s>0

|F (m)(s)− h(s)|sm ≤ sup
s>0

(
sm

(1 + s2)m+1

)
ε < ε

and ‖F − f‖∞ ≤ (π
2 )mε.

This approximation property motivates our definition of Mikhlin-type space. For
α > 0, let M(α)

∞ denote the closure in WBV∞,α of WBV∞,α ∩ C(∞)(R+). We call
here M(α)

∞ the Mikhlin space of order α. Using the Leibniz formula of [GP, p. 316],
it can be proved that M(α)

∞ is a Banach algebra for pointwise multiplication. This is
given in [GM] together with the following theorem and corollary.

Theorem B. For every α > β > 0,

M(α)
∞ ↪→ Λβ

∞,1(R
+) ↪→M(β)

∞ .

On the other hand, it happens that H∞(Sθ) ↪→M(α)
∞ for all θ, α > 0. This is also

shown in [GM] using a sort of Cauchy formula for fractional derivatives of holomorphic
functions.

Theorem B and the above remark tell us to what extent Besov calculus and Mikhlin
calculus are close to each other.

Corollary. Suppose that A is a sectorial operator of type 0. Let β > 0. Then
the following assertions are equivalent.

(i) For all θ > 0 there is a functional calculus for A, H∞(Sθ) ↪→ L(X), such that

‖h(A)‖ ≤ Cαθ−α‖h‖∞
for every h ∈ H∞(Sθ), if α > β, where Cα is a constant which only depends on
α.

(ii) A has a functional calculus Λα
∞,1(R

+) ↪→ L(X) for every α > β.

(iii) A admits a functional calculus M(α)
∞ ↪→ L(X) for every α > β.

The continuous inclusion M(α)
∞ ↪→ Λβ

∞,1(R
+) of Theorem B is proved in [GM] by

considering a suitable integral expression of the Besov space, see [P, pp. 9, 11]. In the
present paper, a different argument is given, where the key tool is the Hadamard frac-

tional power (−s
d

ds
)α on R+ (let us recall that, for integer n, the operator (s(d/ds))n

on R+ corresponds to usual derivation (d/ds)n on R through the change of variable
s = exp(x), x ∈ R).
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18 JOSÉ E. GALÉ

In order to make the link between Λβ
∞,1(R

+) and M(α)
∞ explicit, we will work

directly on R+. Thus we redefine Λβ
∞,1(R

+) as the Banach algebra of all functions
in L∞ ∩ C(R+) normed by

‖f‖Λ,β :=
∞∑

k=−∞

2|k|β‖f ∗ σk‖∞

where σk(s) := φ̌k(log s) and (f ∗ σk)(s) :=
∫ ∞

0

f(s/t) σk(t)
dt

t
for every s > 0 and

k ∈ N.
Our argument to prove M(α)

∞ ↪→ Λβ
∞,1(R

+), α > β, follows the pattern indicated
in [CDMY] and so it consists of, roughly speaking, showing that

‖J ασk‖1 ≤ Cα,k(2−|k|α)

and then applying this estimate in the convolution

(1.1)
∫ ∞

0

f(s/t) σk(t)
dt

t
=
∫ ∞

0

(−t
d

dt
)αf(s/.)(t) J ασk(t)

dt

t
,

for every f ∈M(α)
∞ . Here, J α is the adjoint operator of (−s

d

ds
)α [SKM, p. 330] (see

below), and ‖J αhk‖1 refers to the standard norm in L1(R+, ds/s).
The equality (1.1) is not a trivial one because f(s/.), σk do not satisfy the general

conditions which make formulae on integration by parts in R+ valid, see [BKT]. This
note is devoted to prove equality (1.1). Doing so, the paper is partly intended as an
example of the usage of fractional tools in Fourier analysis.

§2. Some Fourier analysis.
The results of this section are of a rather expected nature. Their proofs are included

here for the sake of completeness.
Let ϕ be a finite linear combination of tent functions on R with 0 /∈ supp ϕ.

Lemma 2.1. For α ∈ R,

Fα(x) :=
1√
2π

∫ ∞

−∞
eixξ ϕ(ξ) |ξ|−α dξ

is an entire function in x ∈ R such that Fα(x) = O(x−2) as |x| → ∞.

Proof: We can assume that ϕ is a single tent function. Suppose that supp ϕ = [a, b]
with 0 < a < b, and that ϕ has its pick at c ∈ (a, b). Put Jα(x) :=

∫
I

eixξ ξ−α dξ,
(x, α ∈ R) where either I = [a, c] or I = [c, b]. Then Jα is bounded on R for every α
whence, integrating by parts, we have that Jα(x) = O(x−1) as |x| → ∞, for every α.

Analogously, there exist two constants C,D > 0 such that

(2.1) ix Fα(x) := C

∫ c

a

eixξ ξ−α dξ + D

∫ b

c

eixξ ξ−α dξ + α Fα+1(x)

and therefore Fα(x) = O(x−1) as |x| → ∞, for all α. Using this estimate once more
in (2.1) we obtain that Fα(x) = O(x−2) as |x| → ∞.

Finally, if supp ϕ ⊂ (−∞, 0) then Fα(x) :=
∫∞
−∞ e−ixη ϕ(−η) |η|−α dη, so Fα(x) =

O(x−2) as |x| → ∞ from the above.
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THE HADAMARD FRACTIONAL POWER 19

From now on, g will denote the inverse Fourier transform of ϕ. We need to consider
the integration operator, acting on g, which is defined by

Ig(x) :=
∫ x

−∞
g(y) dy; Iδg(x) :=

1
Γ(δ)

∫ x

−∞
(x− y)δ−1g(y) dy, x ∈ R,

and

Iα = InIδ; I−α =
dn+1

dxn+1
I1−δ

if α = n + δ ≥ 0 with n = [α], 0 ≤ δ < 1.

Lemma 2.2. Let α, g be as above. Then Iαg = cαFα for a certain constant cα,
and therefore Iαg(x) = O(x−2) as |x| → ∞.

Proof: It is enough to assume that ϕ = ĝ is a single tent. Suppose first that supp(φ) ⊂
(0,∞). Take 0 < δ < 1. Then Iδg = 1

Γ(δ)y
δ−1
+ ∗ g and therefore

(Iδg)b(ξ) =
1

Γ(δ)
ŷδ−1
+ (ξ)ĝ(ξ) = (iξ)−δ ĝ(ξ),

for every ξ ∈ R. Hence Iδg = e−iδ(π/2)Fδ.
Let α = n + δ where n = [α]. By Lemma (2.1), Iδg(x) = O(x−2) as |x| → ∞ and

then, integrating by parts, I(Iδ+1g′) = Iδg. It follows that

(Iδ+1g)′ = I(Iδ+1g′) = Iδg = e−iδ(π/2)Fδ = (e−i(δ+1)(π/2)Fδ+1)′.

Hence, there exists a constant C such that Iδ+1g = e−i(δ+1)(π/2)Fδ+1 + C. As
Iδ+1g(−∞) = 0 = Fδ+1(−∞) we get C = 0 and so Iδ+1g = e−i(δ+1)(π/2)Fδ+1.
Proceeding by induction we obtain that Iαg = e−iα(π/2)Fα.

Now, through derivation under integral we have that I−αg = (dn+1/dxn+1)I1−δg =
e−i(1−δ)(π/2)(dn+1/dxn+1)Fδ−1 = e−i(δ+n)(π/2)F−(δ+n) = e−iα(π/2)F−α.

If supp ϕ ⊂ (−∞, 0) then we obtain in a similar way that Iαg = eiα(π/2)Fα.

REMARKS.- (i) We have used the well known fact that the distributional Fourier
transform of 1

Γ(δ)y
δ−1
+ is (iξ)−δ, at each ξ ∈ R. Such a calculation can be done with

fractional calculus, via the fractional semigroup: Let L denote the Laplace transform.
If φ is in the Schwarz class then

〈 1
Γ(δ)

yδ−1
+ , φ̂〉 = lim

ε→0+

1
Γ(δ)

∫ ∞

0

yδ−1e−εyφ̂(y)dy

= lim
ε→0+

∫ ∞

−∞
L
(

yδ−1e−εy

Γ(δ)

)
(iξ)φ(ξ)dξ

= lim
ε→0+

∫ ∞

−∞
(ε + iξ)−δφ(ξ) dξ =

∫ ∞

−∞
(iξ)−δφ(ξ) dξ.

(ii) Incidentally, it follows from Lemma 2.2 that Iα+βg = IαIβg for all α, β ∈ R.

To finish this section we give the following inversion result.

Lemma 2.3. For 0 < δ < 1 and g as above,

g(x) =
1

Γ(−δ)

∫ ∞

0

(Iδg)(x− y)− (Iδg)(x)
y1+δ

dy
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20 JOSÉ E. GALÉ

for every x ∈ R.

Proof: Take x ∈ R. Let DIδg(x) denote the integral of the statement (DIδ is a
Marchaud type derivative, see [SKM]). By Lemma 2.1 and Lemma 2.2, Iδg(x) =
O(x−2) as |x| → ∞ and then we have

DIδg(x) =
1

Γ(1− δ)
d

dx

∫ x

−∞
(x− y)−δ(Iδg)(y)dy,

see [SKM, pp. 109]. Thus

DIδg(x) = d
dx

(
I1−δ(Iδg)

)
(x) = d

dx (I1g)(x) = d
dx

∫ 0

−∞ g(x + u)du

=
∫ 0

−∞ g′(x + u)du = g(x)− g(−∞) = g(x).

§3. The Hadamard fractional operator.
Let g be as above and put h(s) := g(log s) if s > 0. For α = n + δ, where n = [α],

let define

(3.1) J αh(s) :=
1

Γ(δ)

∫ s

0

∫ s1

0

. . .

∫ sn

0

(
log

s

t

)δ−1

h(t)
dt

t

dsn

sn
. . .

ds1

s1

ds

s
,

see [SKM, p. 330], [BKT]. Note that J αh(s) = Iαg(log s) if s > 0. Hence J αh(s) =
O
(
(log s)−2

)
as s → 0+,∞.

The Hadamard fractional power (−s
d

ds
)α is the adjoint operator of J α, and it is

explicitely given by

(−s
d

ds
)δf(s) =

1
Γ(−δ)

∫ ∞

s

f(t)− f(s)
(log(t/s))1+δ

dt

t

and
(−s

d

ds
)αf = (−s

d

ds
)n (−s

d

ds
)δf,

for f ∈M(α)
∞ ∩C(n+1)(R+) in particular [SKM, p. 332]. The interest of the Hadamard

operator in this paper relies on the following result.

Lemma 3.1. ([GM, Corollary 2.3]) Let α > 0. Then sup
0≤γ≤α

sup
s>0

|(−s
d

ds
)γf(s)|

defines a norm in M(α)
∞ which is equivalent to ‖ · ‖∞,α.

As said before, we want to prove the formula

(3.2)
∫ ∞

0

f(s) h(s)
ds

s
=
∫ ∞

0

(−s
d

ds
)αf(s) J αh(s)

ds

s

for f ∈ M(α)
∞ ∩ C(n+1)(R+). According to the lemma, and the fact that h(s) and

J αh(s) are O
(
(log s)−2

)
as s → 0+,∞, both integrals are defined.

Lemma 3.2. Let α = n + δ, n = [α], f ∈M(α)
∞ ∩ C(n+1)(R+). Then∫ ∞

0

(−s
d

ds
)αf(s) J αh(s)

ds

s
=
∫ ∞

0

(−s
d

ds
)δf(s) J δh(s)

ds

s
.

Rev. Un. Mat. Argentina, Vol 45-1



THE HADAMARD FRACTIONAL POWER 21

Proof: Note that J kh(0) = Ikg(−∞) = 0 = Ikg(+∞) = J kh(+∞) in particular for

every k = δ + 1, ..., δ + n. Also, sup
s>0

|(s d

ds
)kf(s)| < ∞ for k = δ, δ + 1, ..., δ + n by

Lemma 3.1. Now, it is sufficient to integrate by parts n times in the integral of the
right hand member of the equality.

Lemma 3.3. For ρ > 1, set

H1,ρ :=
1

Γ(−δ)

∫ ∞

0

∫ ρs

s

f(t)− f(s)
(log(t/s))1+δ

dt

t
J δh(s)

ds

s
.

Then
lim
ρ→1

H1,ρ = 0.

Proof: Let consider H1,ρ in the form

H1,ρ =
1

Γ(−δ)

∫ ∞

0

∫ ρ

1

f(ts)− f(s)
(log t)1+δ

dt

t
J δh(s)

ds

s
.

Take ε such that δ < ε < 1. By [GT, p. 256],

f(ts)− f(s) =
1

Γ(ε)

∫ ∞

0

{(u− ts)ε−1
+ − (u− s)ε−1

+ }f (ε)(u) du,

for every t such that 1 ≤ t ≤ ρ. From this, it follows that |f(ts)− f(s)| ≤ Cε(t− 1)ε

uniformly in s > 0 [GM]. Hence,

|H1,ρ| ≤ Cε

∫ ∞

0

∫ ρ

1

(t− 1)ε(log t)−(1+δ)t−1 dt |J δh(s)|s−1 ds

= Cε

(∫ ρ

1

(t− 1)ε(log t)−(1+δ)t−1 dt

)(∫ ∞

0

|J δh(s)|s−1 ds

)
−→ρ→1+ 0

since the function (t − 1)ε(log t)−(1+δ)t−1 is integrable on (1, 2) and the function
J δh(s) s−1 is integrable on (1,∞).

Lemma 3.4. For ρ > 1, set

H2,ρ :=
1

Γ(−δ)

∫ ∞

0

∫ ∞

ρs

f(t)− f(s)
(log(t/s))1+δ

dt

t
J δh(s)

ds

s
.

Then

lim
ρ→1

H2,ρ =
∫ ∞

0

f(t) h(t)
dt

t
.

Proof: Since J δh(s) s−1 is integrable on (1,∞) we can apply Fubini Theorem to
obtain∫ ∞

0

∫ ∞

ρs

f(t)
(log(t/s))1+δ

dt

t
J δh(s)

ds

s
=
∫ ∞

0

∫ t/ρ

0

J δh(s)
(log(t/s))1+δ

ds

s
f(t)

dt

t
.

On the other hand,∫ ∞

0

∫ ∞

ρs

f(s)
dt

t(log(t/s))1+δ
J δh(s)

ds

s
=
∫ ∞

0

δ−1(log ρ)−δf(s)J δh(s)
ds

s
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22 JOSÉ E. GALÉ

=
∫ ∞

0

∫ s/ρ

0

J δh(s)
(log(s/u))1+δ

du

u
f(s)

ds

s
≡
∫ ∞

0

∫ t/ρ

0

J δh(t)
(log(t/s))1+δ

ds

s
f(t)

dt

t
.

Hence

H2,ρ =
1

Γ(−δ)

∫ ∞

0

∫ t/ρ

0

J δh(s)− J δh(t)
(log(t/s))1+δ

ds

s
f(t)

dt

t
= K2,ρ + L2,ρ

where

K2,ρ =
1

Γ(−δ)

∫ ∞

0

∫ t

0

J δh(s)− J δh(t)
(log(t/s))1+δ

ds

s
f(t)

dt

t
,

L2,ρ =
1

Γ(−δ)

∫ ∞

0

∫ t

t/ρ

J δh(s)− J δh(t)
(log(t/s))1+δ

ds

s
f(t)

dt

t
.

After suitable change of variable in Lemma 2.3 we get that

h(t) =
1

Γ(−δ)

∫ t

0

J δh(s)− J δh(t)
(log(t/s))1+δ

ds

s

for t > 0, whence

K2,ρ =
∫ ∞

0

f(t) h(t)
dt

t
.

So, to prove the lemma, it only remains to show that limρ→1 L2,ρ = 0.

First, let us write L2,ρ as

L2,ρ =
∫ ∞

0

∫ 1

1/ρ

J δh(ts)− J δh(t)
(− log s)1+δ

ds

s
f(t)

dt

t

=
∫ ∞

0

∫ 1

1/ρ

∫ st

t

(J δh)′(u)du
ds

s(− log s)1+δ

dt

t
.

Recall that J αh(s) = O
(
(log s)−2

)
, as s → 0+,∞. This automatically implies that

(J αh)′(s) = O
(
s(log s)−2

)
, as s → 0+,∞. Thus, if t > 0 and (1/ρ) < s < 1,∫ t

st

|(J δh)′(u)|du ≤ C

∫ t

st

du

u(log u)2
= C{ 1

log(st)
− 1

log t
} = C

| log s|
| log t| | log st|

.

Now, if 0 < t < (1/2) and (1/ρ) < s < 1 then log(st) < log t < 0 and therefore
| log(st)|−1 < | log t|−1. For t > 2 and (1/ρ) < s < 1, take 1 < ρ < (3/2). Then
0 < log(2t/3) < log(st) whence | log(st)|−1 < | log(2t/3)|−1.

Put M := sup(1/2)<u<2 |J δh)′(u)|. We have

L2,ρ ≤ C

(∫ 1

1/ρ

ds

s(− log s)δ

)(∫ 1/2

0

dt

t(log t)2
+
∫ ∞

2

dt

t(log t)(log(2t/3)

)

+
∫ 2

1/2

M

∫ 1

1/ρ

(1− s)
ds

s(− log s)1+δ
dt

≡ C1(log ρ)δ + C2

∫ 1

1/ρ

(1− s)
ds

s(− log s)1+δ
−→ 0

as ρ → 1+, as we wanted to show.
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§4. Proof of the inclusion M(α)
∞ ↪→ Λβ

∞,1(R
+).

Let β > 0. Recall that Λβ
∞,1(R

+) is normed by ‖f‖Λ,β =
∑∞

k=−∞ 2|k|β‖f ∗ σk‖∞.
For convenience, we express the convolution in a slightly different way. This is

(f ∗ σk)(s) =
∫ ∞

0

f(s/t) σk(t)
dt

t
=
∫ ∞

0

fs(u) hk(u)
du

u

where fs(u) := f(su) and hk(u) := σk(1/u) (u, s > 0). Note that hk(u) := φ̌k(− log u)
or, alternatively, hk(u) = gk(log u) where gk(x) := φ̌k(−x) if x ∈ R.

Let α > β with n = [α] and δ = α − n. Take f in M(α)
∞ ∩ Cn+1(R+). Let s > 0.

Using the Marchaud formula

f (α)(u) =
1

Γ(−δ)
dn

dun

∫ ∞

0

f(t + u)− f(u)
t1+δ

dt.

(see [GT, p. 256]) we have that f
(α)
s (u) = sαf (α)(su) for all u > 0. Hence fs ∈M(α)

∞
with ‖fs‖∞,α = ‖f‖∞,α for every s > 0.

Thus we can apply, and we do, the results of Section 3 to f ≡ fs and h ≡ hk, with
s > 0, k ∈ Z.

By formula (3.2),

(f ∗ σk)(s) =
∫ ∞

0

(−u
d

du
)αfs(u) J αhk(u)

du

u

whence, from Lemma (3.1), we obtain that

|(f ∗ σk)(s)| ≤ C‖f‖∞,α

∫ ∞

0

|J αhk(u)| du

u

for all s > 0, k ∈ Z. Now, writing hk(u) := φ̌k(− log u) = ±2|k|−1φ̌1(∓2|k|−1 log u) in
formula (3.1), or, alternatively, the corresponding expression of gk in formula Iα =
InIδ, it is straightforward to check that

‖J αhk‖1 = C‖J αh1‖1 = Cα2−|k|α.

Since α > β it implies that ‖f‖Λ,β ≤ C‖f‖∞,α as we wanted to show.
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