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WAVELET APPROXIMATION METHODS IN IMAGE AND
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Abstract. The material in this paper comes from various conferences given by

the authors. We start with a brief survey of harmonic analysis methods in linear
and non-linear approximation related to signal compression. Special emphasis is

made on wavelet-based methods and some of the mathematical theory of wavelets

behind them. We also present recent results of the authors concerning non-
linear approximation in sequence spaces and the validity of Jackson and Bernstein

inequalities in general smoothness spaces.

1. Introduction

Real world images can be mathematically described in various ways [1]. A par-
ticularly simple model considers (analog) images as non-negative functions of two
variables f(x, y) supported in the unit square [0, 1]2, which physically may be inter-
preted as light intensity fields upon a given screen. Precise mathematical expressions
of images are sometimes known (e.g. in fractal type designs), although often this
is not the case (as in most pictures from the real world). Analog images must be
“digitized” in order to be stored and manipulated by computers. We briefly describe
how to produce a digital version of f(x, y) (we follow [4, p. 324]): a measuring device
(a photometer) averages the light intensity over small squares (of side length 2−M )
distributed dyadically along the picture frame [0, 1]2. So if M is large (typically,
M ≥ 8), we can codify the image as a sequence of 22M coefficients:

pk = p
(M)
k =

1
|IM,k|

∫ ∫
IM,k

f(x, y) dxdy, 0 ≤ k1, k2 < 2M , (1.1)

where IM,k denotes the dyadic square [ k1
2M , k1+1

2M ] × [ k2
2M , k2+1

2M ]. These squares are
usually called pixels (or picture elements) located at positions 2−Mk, and correspond
in practice to the number of “dots” that form a computer screen. To each of them
we associate a single number pk (typically a rounded integer between 0 and 28),
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26 G. GARRIGÓS, E. HERNÁNDEZ

which represents the “color level” of the picture at that point. In this way we have
converted f(x, y) into a “digital image” {pk}, a sequence of “bits” which can be stored
and processed by computers.

For the mathematical model, this process may be reversed. Given a sequence of
bits {pk}, we construct a so-called observed image f (o)(x, y) by:

f (o)(x, y) =
∑
k

pk φM,k(x, y), (1.2)

where φM,k(x) = φ(2Mx− k) and the function φ may be simply chosen as χ[0,1]2 or
replaced by smoother versions such as splines or wavelet-type scaling functions. In
general, when M is sufficiently large, f (o)(x, y) is an almost indistinguishable copy of
f(x, y), and thus can be identified for mathematical purposes with the original image.
The compression problem then consists in representing f (o)(x, y) with much less than
22M coefficients without loosing the visual resemblance with the original image.

With this example in mind, we can describe a general mathematical setting for
compression problems, which is based in classical approximation theory. We are given
a general class of functions F (typically a Banach space), endowed with a metric dF ,
and an increasing sequence of subsets DN ⊂ F , N = 1, 2, . . . We define the error of
approximation of f ∈ F to DN by

σ(f,DN )F ≡ inf
g∈DN

dF (f, g), N = 1, 2, . . . (1.3)

Then, the following questions must be studied:

1. Decide, depending on applications, what metric dF and what classes DN are
suitable in order to approximate functions in F .

2. Find simple and fast algorithms to produce approximations fN ∈ DN which are
close to realize the infimum described in (1.3).

3. Investigate the rate of decay of the approximation error σ(f,DN )F . More pre-
cisely, given a prescribed rate, say N−ε, determine the class of functions f ∈ F
for which σ(f,DN )F ≤ N−ε for all N = 1, 2, . . .

In the above example of images, one can take F = L2
(
[0, 1]2

)
and let DN be a

certain subset of functions with at most N non-null coefficients in the expansion (1.2)
(or in a given orthogonal expansion). Then, when N � 22M the best approximation
fN can be seen as a “compressed version” of the original image f(x, y), from which
we have removed the less essential information in order to speed up transmissions
or reduce storage memory. Understanding the interplay between “quality” of the
compressed signal and number of coefficients employed is the main point in this theory.

Of course, this setting of approximation can also be applied to other situations,
such as the processing of other types of signals (music, digital TV,...) or the numerical
solutions of PDE’s. In this last case fN is an approximation by a certain numerical
method of the (unknown) solution f . In all these cases it is essential that the com-
pressed signal fN is a faithful representation of the original f , for which often we do
not know a precise expression or this cannot be measured in the whole continuous
range of space.
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WAVELET APPROXIMATION METHODS 27

The purpose of this article is to give a brief introduction to harmonic analysis
methods for compression problems. More precisely, we describe the so-called linear
and non-linear approximation methods, both by means of wavelets and Fourier bases,
showing the different roles played in each case by Sobolev and Besov spaces. In the
wavelet case, the fact that these are unconditional bases for many function spaces
allows to reduce matters to the study of sequence spaces. The first part of the paper
is a survey of results from [15, 5, 7, 4], and the second part contains theorems from
the recent papers [13, 9] and some other sources. Finally, we wish to cite [17] for a
wider and deeper perspective on the mathematics underlying image processing.

2. Linear approximation in Hilbert spaces

Let {ej : j = 1, 2, . . . } be a fixed orthonormal basis of a Hilbert space H. We
select as approximating sets the linear subspaces LN = span{e1, . . . , eN}. Then, the
infimum defined by σ(f, LN )H as in (1.3) is attained by the orthogonal projection of
f onto LN , that is

fN =
N∑

j=1

〈 f , ej 〉ej . (2.1)

This gives a precise estimate of the error of f ∈ H:

σ(f, LN )H = ‖f − fN‖H =
( ∞∑

j=N+1

|〈 f , ej 〉|2
)1/2

. (2.2)

Since
∑∞

j=1 |〈 f , ej 〉|2 < ∞, we always have limN→∞ σ(f, LN )H = 0. The question
now is to find subspaces of H for which the decay rate of σ(f, LN )H is prescribed.

At this point it is convenient to work with sequences since H is isomorphic to the
sequence space `2. We denote by c = (cj)∞j=1 a sequence of complex numbers and
ej , j = 1, 2, . . . , the canonical basis of `2, so that c =

∑∞
j=1 cjej . Given s ∈ R, we

define

hs
2 = hs

2(N) =
{
c = (cj)∞j=1 : ‖c‖hs

2
=

( ∞∑
j=1

j2s|cj |2
)1/2

<∞
}

Notice that h0
2 = `2 and hs

2 ⊂ `2 if s ≥ 0.

THEOREM 2.3. Let s > 0.

(a) If c ∈ hs
2 then σ(c, LN )`2 ≤ N−s‖c‖hs

2
, ∀ N = 1, 2, . . .

(b) If a ∈ LN , then ‖a‖hs
2
≤ Ns‖a‖`2 , ∀ N = 1, 2, . . .

(c) If c ∈ `2 and σ(c, LN )`2 ≤ cN−s for some c > 0 and all N = 1, 2, . . . , then
c ∈ hs−ε

2 for all ε > 0.

PROOF: (a) If j ≥ N + 1, we have 1
j <

1
N . Thus,

σ(c, LN ) =
( ∞∑

j=N+1

|cj |2
)1/2

=
( ∞∑

j=N+1

j−2sj2s|cj |2
)1/2

≤ N−s‖c‖hs
2
.
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28 G. GARRIGÓS, E. HERNÁNDEZ

(b) Let a =
∑N

j=1 ajej ∈ LN . Since j ≤ N we obtain

‖a‖hs
2

=
( N∑

j=1

j2s|aj |2
)1/2

≤ Ns
( N∑

j=1

|aj |2
)1/2

= Ns‖a‖`2 .

(c) For c = (cj)∞j=1 ∈ `2 write an =
∑2n

j=1 cjej ∈ L2n . Then,

c =
∞∑

j=1

cjej = a0 +
∞∑

n=1

(an − an−1) .

Using the triangle inequality and (b) we deduce

‖c‖hs−ε
2

≤ ‖a0‖hs−ε
2

+
∞∑

n=1

‖an − an−1‖hs−ε
2

≤ |c1|+
∞∑

n=1

2n(s−ε)‖an − an−1‖`2 .

Since

‖an − an−1‖`2 ≤ ‖an − c‖`2 + ‖c− an−1‖`2 = σ(c, L2n)`2 + σ(c, L2n−1)`2

we use our hypothesis to obtain

‖c‖hs−ε
2

≤ |c1|+
∞∑

n=1

2n(s−ε)[c2−ns + c2−(n−1)s] = |c1|+ c′
∞∑

n=1

2−nε <∞ .

2

Inequalities of the type (a) and (b) in Theorem 2.3 are usually called of Jackson
and Bernstein type. They were first proved by these authors in the context of ap-
proximation of continuous periodic functions by trigonometric polynomials, but using
L∞ norms rather than L2 norms (see [3] for details).

Consider now the particular case of the Hilbert space H = L2[0, 1], and its Fourier
basis

em(t) = e2πimt, m ∈ Z.
This is an orthonormal basis for L2[0, 1], so that any function f can be represented
in terms of its Fourier series:

f(t) =
∑
m∈Z

〈 f , em 〉 em(t) =
∑
m∈Z

f̂(m) em(t),

with convergence in the L2-sense. In the last identity we denote by f̂ the Fourier
transform of f :

f̂(ω) =
∫ ∞

−∞
f(t) e−2πiωt dt,

where f has been extended to be zero outside [0, 1]. Using the Fourier basis, the space
hs
2, s > 0, defined above corresponds to the fractional (periodic) Sobolev space

Hs
2 [0, 1] =

{
f ∈ L2[0, 1] : |f |Hs

2
≡

( ∑
m∈Z

|m|2s|f̂(m)|2
)1/2

<∞
}
. (2.4)

When s = k ∈ N, it is easy to see that Hk
2 [0, 1] is the classical Sobolev space of

functions whose derivatives f ′, . . . , f (k) belong to L2[0, 1]. The following restatement
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WAVELET APPROXIMATION METHODS 29

of Theorem 2.3 establishes a link between the smoothness of a function f and the
rate of decay of its Fourier approximation:

THEOREM 2.5. Let s > 0 and f ∈ L2[0, 1].
(a) If f ∈ Hs

2 [0, 1], then σ(f, LN )L2 ≤ N−s|f |Hs
2 [0,1], ∀ N = 1, 2, . . .

(b) If σ(f, LN )L2 ≤ cN−s for all N = 1, 2, . . . , then f ∈ Hs−ε
2 [0, 1] for all ε ∈ (0, s).

REMARK 2.6. We remark thatHs
2 [0, 1] can actually be characterized as the subspace

of all f ∈ L2[0, 1] for which
∞∑

N=1

(
Nsσ(f, LN )L2

)2 1
N

< ∞ .

Details can be found in [15, Ch.9.1].

We can conclude from the previous theorem that Linear Fourier Approximation is a
good method to analyze signals with “uniform smoothness”. These can be coded using
Fourier coefficients, and may be easily handled with the precise expression for the error
of approximation. When dealing with digital signals, one can estimate numerically
the best s for which f ∈ Hs

2 by looking at the decay rate of successive errors of
approximation. Examples of signals to which this technique can be applied are, for
instance, audio recordings, which are only perceived in a limited range of low frequency
harmonics (typically, smaller than 20 kHz), and therefore have a reasonably high
uniform smoothness over R [15, p. 49]. Linear Fourier Approximation is however a
bad model for images, since a single discontinuity at a point will turn in a low exponent
of global smoothness. For instance, if f = χ[a,b] is the characteristic function of an
interval in R, then the error decay is like N− 1

2 (see [15, p. 380]). The representation of
such signals can be largely improved by using non-linear approximation and wavelet
bases.

3. Wavelet bases and local regularity

Before continuing with more modern approaches to signal compression, we spend
some time describing the main features of wavelet bases. We say that a function
ψ ∈ L2(R) is an orthonormal wavelet whenever the system formed by translating and
dilating this function

ψj,k(t) = 2
j
2ψ(2jt− k), j, k ∈ Z, (3.1)

is an orthonormal basis for L2(R).
The most classical example is the Haar wavelet, given by

ψ(x) = χ[0, 1
2 ) − χ[ 12 ,1) =

{
1, if 0 ≤ x < 1

2
−1, if 1

2 ≤ x < 1.

The two main properties of the Haar system {ψj,k}, which are shared by most wavelet
systems, are time localization and vanishing moments:

Suppψj,k ⊂
[

k
2j ,

k+1
2j

]
and

∫ ∞

−∞
ψj,k(t)dt = 0 =

∫ ∞

−∞
ψ(t)dt. (3.2)
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30 G. GARRIGÓS, E. HERNÁNDEZ

It is easy to verify from these two facts that {ψj,k} is actually an orthonormal basis
of L2(R). We point out, however, that constructing orthonormal wavelets which are
smooth and have a good decay is typically a difficult question (see [16, 11]).

If one is interested in signal analysis, this elementary example already illustrates
a main feature of wavelet bases: they are excellent detectors of local singularities.
Roughly speaking, the quantity 2

j
2 〈 f , ψj,k 〉 subtracts the means of f over the left-

half and right-half parts of the dyadic interval Ij,k. If f is very smooth, so that
f(t) ∼ f(t0) in a small interval around t0, then 2

j
2 〈 f , ψj,k 〉 ∼ 0 for ψj,k’s supported

very close to t0. On the other hand, if f has a jump at t0, then |2
j
2 〈 f , ψj,k 〉| has

essentially the size of the jump for ψj,k’s with a small support centered at the singular
point t0.

This zoom property is common to all wavelet systems, constituting a major dif-
ference with Fourier systems for the detection of local singularities. We recall that
singularities carry essential information of signals in many applied problems, such as
the presence of edges in images. This makes wavelet bases very good tools for image
processing, in detriment of Fourier bases. A general theorem which presents with
more rigor the above arguments is given below. The statement is a simplified version
of Theorem 9.7 in the first edition of [15].

THEOREM 3.3. Let α ∈ (0, 1].

1. Let f ∈ L2(R) be a signal with local smoothness Lipα(t0), that is

|f(t)− f(t0)| ≤ Ct0 |t− t0|α, t ∈ R. (3.4)

Then, the wavelet coefficients decay as:

|〈 f , ψj,k 〉| . 2−j(α+ 1
2 ) (1 + |2jt0 − k|α). (3.5)

2. Conversely, if for some ε > 0 it holds

|〈 f , ψj,k 〉| . 2−j(α+ 1
2 ) (1 + |2jt0 − k|α−ε),

then f belongs to Lipα(t0).

PROOF: We sketch the proof of the first part, since it shows in a very transparent
way the role of vanishing moments for the detection of local singularities:

|〈 f , ψj,k 〉| =
∣∣∣ ∫

(f(t)− f(t0))ψj,k(t) dt
∣∣∣

.
∫

|t− t0|α |ψj,k(t)| dt

= 2−
j
2

∫
|2−jt+ 2−jk − t0|α |ψ(t)| dt

. 2−j( 1
2+α)

∫
|t|α |ψ(t)| dt + 2−

j
2 |2−jk − t0|α.

We observe that this proof is valid for 0 < α ≤ 1, while for n−1 < α ≤ n one needs a
slightly different definition in (3.4) (with a Taylor polynomial of degree n− 1, rather
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WAVELET APPROXIMATION METHODS 31

than just f(t0)) and also more moment conditions in the wavelet∫ ∞

−∞
t` ψ(t) dt = 0, ` = 0, 1, . . . , n− 1.

Finally, about the second part, we just mention that it is a deeper theorem of S. Jaf-
fard, where finer techniques in Harmonic Analysis involving Littlewood-Paley theory
must be used (see [15, p. 173]). 2

Before concluding this section we would like to mention how to construct wavelet
bases in d-dimensions. Let D be the set of all dyadic cubes in Rd of the form Ij,k =
2−j([0, 1]d + k), j ∈ Z, k ∈ Zd; observe that |Ij,k| = 2−jd. A collection of functions
Ψ = {ψ1, . . . , ψL} ⊂ L2(Rd) is a wavelet family if the set

{ψ`
Ij,k

(x) = 2jd/2ψ`(2jx− k) : Ij,k ∈ D, ` = 1, 2, . . . , L}

is an orthonormal basis for L2(Rd). The reason to consider families Ψ with finitely
many generators is because in Rd one typically needs L = 2d − 1 functions ψ` in
order to obtain an orthonormal basis for L2(Rd) (this is always the case when the
ψ`’s have sufficiently good decay). For instance, the Haar wavelet family in R2,
ΨH = {ψ1, ψ2, ψ3}, takes the form

ψ1(x, y) = φH(x)ψH(y), ψ2(x, y) = ψH(x)φH(y), ψ3(x, y) = ψH(x)ψH(y),

where φH = χ[0,1) and ψH = χ[0,1/2) − χ[1/2,1) are the Haar scaling function and
wavelet respectively. We refer to [15, Ch. 7.7] for other examples of wavelet families
in d-dimensions constructed as tensor products of 1-dimensional wavelets.

4. Wavelet bases, Lebesgue and Sobolev spaces

Under certain decay and smoothness conditions, wavelet bases provide characteri-
zations of classical Lebesgue and Sobolev spaces. For p ∈ (1,∞) (and wavelets with
enough decay) it is known that

‖f‖Lp(Rd) ≈
∥∥∥[ L∑

`=1

∑
I∈D

(
|I|− 1

2 |〈 f , ψ`
I 〉|χI(·)

)2
]1/2∥∥∥

Lp(Rd)
. (4.1)

Equivalence (4.1) reduces to Plancherel theorem for p = 2 and it is essentially a
Littlewood-Paley characterization of Lebesgue spaces for p 6= 2. Conditions on Ψ =
{ψ1, . . . , ψL} for which (4.1) holds can be found, for instance, in [16, 11] or [20]. A
collection Ψ = {ψ1, . . . , ψL} of functions in L2(Rd) for which (4.1) holds will be called
admissible wavelet family for Lp(R).

When p ∈ (1,∞) and s > 0, Sobolev spaces on Rd can be defined in analogy to
(2.4) as:

Hs
p(Rd) =

{
f ∈ Lp(Rd) : F−1[(1 + |ξ|2)s/2f̂(ξ)] ∈ Lp(Rd)

}
. (4.2)
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32 G. GARRIGÓS, E. HERNÁNDEZ

They also have a characterization using wavelets. When ψ` have enough smoothness
and decay it is known that

|f |Hs
p(Rd) ≈

∥∥∥[ L∑
`=1

∑
I∈D

(
|I|− s

d−
1
2 |〈 f , ψ`

I 〉|χI(·)
)2

]1/2∥∥∥
Lp(Rd)

. (4.3)

We refer to [16, 11, 14] for conditions under which the collection Ψ is an admissible
wavelet family for Hs

p(Rd).

The characterizations (4.1) and (4.3) allow us to work with sequence spaces when
we study the problem of approximation. When p > 0 and s ∈ R we define the sequence
space hs

p = hp
s(D) as the set of all sequences of complex numbers c = {cI}I∈D for

which

‖c‖hs
p

=
∥∥∥[ ∑

I∈D

(
|I|− s

d−
1
2 |cI |χI(·)

)2
]1/2∥∥∥

Lp(Rd)
< ∞. (4.4)

With this notation, for admissible wavelets, we have

|f |Hs
p(Rd) ≈

L∑
`=1

∥∥{〈 f , ψ`
I 〉}I∈D

∥∥
hs

p
, ∀ p ∈ (1,∞), ∀ s ≥ 0 . (4.5)

5. Linear multiresolution approximation

Using the characterization of Lebesgue and Sobolev spaces in section 4 we can
describe very simply the linear approximation with wavelet bases when the errors
are measured in the norm of Lp(Rd) and p ∈ (1,∞) is fixed. If Ψ = {ψ1, . . . , ψL}
is an admissible wavelet family, then a natural choice for the linear approximating
subspaces is:

Vn = spanLp(Rd)

{
ψ`

j,k : j ≤ n, k ∈ Zd, ` = 1, . . . , L
}
, n = 0, 1, 2 . . . ,

Observe that in Vn are only involved wavelets ψ`
I with “resolutions” |I| ≥ 2−nd. In

wavelet theory, the collection of spaces {Vn}n∈Z is called a “multiresolution analysis”,
so we shall refer to this kind of approximation as linear multiresolution approximation.

As in Hilbert spaces, the orthogonal projection into Vn gives a good candidate for
best approximation of f ∈ Lp(Rd). More precisely, let

Pn(f) =
L∑

`=1

∑
j≤n

∑
k∈Zd

〈 f , ψ`
j,k 〉ψ`

j,k . (5.1)

When p ∈ (1,∞), the characterization of Lebesgue spaces given in (4.1) guarantees
the existence of a constant Ap > 0 such that

‖Pn(f)‖Lp(Rd) ≤ Ap ‖f‖Lp(Rd), ∀n = 0, 1, 2, . . . , ∀ f ∈ Lp(Rd),

and moreover that the series in (5.1) converges in Lp(Rd). We denote the errors of
approximation of f by Pn(f) and Vn by

E(Pn(f))Lp = ‖f − Pn(f)‖Lp and σ(f, Vn)Lp = inf
g∈Vn

‖f − g‖Lp .
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WAVELET APPROXIMATION METHODS 33

Then we claim that there exists cp > 0 such that

σ(f, Vn)Lp(Rd) ≤ E(Pn(f))Lp(Rd) ≤ cp σ(f, Vn)Lp(Rd) (5.2)

for all n = 0, 1, 2, . . . and all f ∈ Lp(Rd). The left-hand inequality of (5.2) follows
from Pnf ∈ Vn. To see the right-hand side, take any ε > 0 and choose a function
gn,ε ∈ Vn such that ‖f − gn,ε‖Lp

≤ σ(f, Vn)Lp
+ ε. Then

‖f − Pn(f)‖Lp(Rd) ≤ ‖f − gn,ε‖Lp(Rd) + ‖gn,ε − Pn(f)‖Lp(Rd)

≤ ‖f − gn,ε‖Lp(Rd) +Ap ‖gn,ε − f‖Lp(Rd)

≤ (1 +Ap) (σ(f, Vn)Lp(Rd) + ε) ,

which proves the right-hand side. In view of (5.2) the compression problems stated
in the introduction can be treated, for multiresolution approximation, using either
σ(f, Vn) or E(Pn(f)).

Using the terminology of sequence spaces in section 4, we can prove the following
theorem in analogy to Theorem 2.3 for Hilbert spaces.

THEOREM 5.3. Let 1 < p <∞ and s > 0.
(a) If c ∈ hs

p then σ(c, Vn)h0
p
≤ E(Pn(c))h0

p
≤ 2−ns‖c‖hs

p
, ∀ n = 0, 1, 2 . . .

(b) If a ∈ Vn then ‖a‖hs
p
≤ 2ns‖a‖h0

p
, ∀ n = 0, 1, 2, . . .

(c) If c ∈ h0
p and σ(c, Vn)hp ≤ C2−ns for all n = 0, 1, 2, . . . , then c ∈ hs−ε

p for all
0 < ε < s.

PROOF: (a) This follows easily from

‖c− Pn(c)‖h0
p

=
∥∥∥[ ∑

|I|<2−nd

(
|I|− 1

2 |cI |χI(·)
)2

]1/2∥∥∥
Lp(Rd)

≤ 2−ns
∥∥∥[ ∑

|I|<2−nd

(
|I|− s

d−
1
2 |cI |χI(·)

)2
]1/2∥∥∥

Lp(Rd)
.

(b) If a =
∑
|I|≥2−nd aIeI ∈ Vn, we have

‖a‖hs
p

=
∥∥∥[ ∑

|I|≥2−nd

(
|I|− s

d−
1
2 |cI |χI(·)

)2
]1/2∥∥∥

Lp(Rd)
≤ 2ns‖a‖h0

p
.

(c) For c = (cI) ∈ h0
p write an = Pn(c) =

∑
|I|≥2−nd cIeI ∈ Vn, n = 0, 1, 2, . . .

Then, it is easily seen that

c = a0 +
∞∑

n=1

(an − an−1) ,

at least with pointwise convergence. The proof now follows the same lines as in part
(c) of Theorem 2.3 with obvious modifications (that includes the use of (5.2)). 2

The theorem we just proved together with the equivalences in (4.5) allow us to
conclude the following result:
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THEOREM 5.4. If p ∈ (1,∞) and s > 0, then there exists c > 0 such that for all
f ∈ Hs

p(Rd)
σ(f, Vn)Lp(Rd) ≤ c 2−ns|f |Hs

p(Rd), n = 0, 1, 2, . . .

Conversely, if σ(f, Vn)Lp(Rd) ≤ c 2−ns for some c > 0 and all n = 0, 1, 2, . . . , then we
deduce f ∈ Hs−ε

p (Rd) for all 0 < ε < s.

Finally observe that, when the wavelets ψ` are compactly supported and f has
support in [0, 1]d we can write

f = P0f +
L∑

`=1

∑
j≥1

∑
|k|≤c2j

〈 f , ψ`
j,k 〉ψ`

j,k.

Therefore, the approximation from Vn only takes about N = 2nd coefficients from
the wavelet expansion (together with P0f), with a decay error of the order of N−s/d.
Thus, the use of wavelet bases for linear approximation does not seem to improve the
results we obtained with the Fourier basis in §2 (see [15, p.381] for explicit examples).
In particular, if f = χR with R = [a, b] × [c, d] ⊂ R2, it is not difficult to see that
f ∈ Hs

2(R2) if and only if s < 1/2. Hence the linear error of approximation in L2(R2)
for this function decays like N−( 1

4−ε) for any ε > 0. 1

6. Besov spaces and wavelets

In the same way as Sobolev spaces arise naturally from linear approximation meth-
ods, non-linear approximation leads to a different type of smoothness classes: the
Besov spaces. In the classical setting these can be defined as follows. We use the
notation ∆hf(x) = f(x+ h)− f(x) and ∆k

hf = ∆h(∆k−1
h f).

DEFINITION 6.1. If α > 0 and 0 < τ, q ≤ ∞, the Besov space Bα
τ,q(Rd) is the set

of all f ∈ Lτ (Rd) for which

|f |Bα
τ,q

:=
d∑

i=1

[ ∫ ∞

0

(‖∆[α]+1
tei

f‖τ

tα

)q dt

t

] 1
q

< ∞.

There exist other definitions of Besov spaces using Littlewood-Paley theory, which
coincide with the previous one at least when α > d(1/τ − 1)+ (see [18]), as well
as extensions of these definitions to all α ∈ R and even to anisotropic smoothness
parameters. We observe that in non-linear approximation it will be common to use
Besov spaces with indices τ < 1.

It is well known in wavelet theory that, at least when α > d(1/τ − 1)+, under
sufficient smoothness and decay in the wavelet family Ψ one has

|f |Bα
τ,q
≈

[ L∑
`=1

∑
j∈Z

( ∑
k∈Zd

(
|Ij,k|−

α
d + 1

τ−
1
2 |〈 f , ψ`

Ij,k
〉|

)τ
) q

τ
] 1

q

<∞ . (6.2)

We refer to [16, 2, 10] for conditions under which such characterizations hold.

1Actually, in this example, one can remove the “ε” (see exercise 9.5 in [15, p.431].
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As in the case of Lebesgue and Sobolev spaces, (6.2) will allow us to work with
sequence spaces to study the problems of approximation. When α ∈ R and 0 <
τ, q ≤ ∞, define the sequence space bα

τ,q = bα
τ,q(D) as the set of all complex sequences

c = {cI}I∈D such that

‖c‖bα
τ,q
≡

[∑
j∈Z

( ∑
|I|=2−jd

(
|I|−α

d + 1
τ−

1
2 |cI |

)τ
) q

τ
] 1

q

<∞ , (6.3)

so that, for admissible wavelets,

|f |Bα
τ,q(Rd) ≈

L∑
`=1

∥∥∥ {〈 f , ψ`
I 〉}I∈D

∥∥∥
bα

τ,q

. (6.4)

It is interesting to observe that, when τ = q these spaces are isomorphic to `τ (D).
In fact the quasi-norm of bα

τ,τ can be written as

‖c‖bα
τ,τ

=
[∑

I∈D

(
|I|−α

d + 1
τ−

1
2 |cI |

)τ
] 1

τ

=
[∑

I∈D
‖cIeI‖τ

bα
τ,τ

] 1
τ

. (6.5)

Finally we point out a main difference between Sobolev and Besov spaces. When
α ∈ [ 12 ,

d
2(d−1) ), the space Bα

τ,τ (Rd) with 1
τ = α

d + 1
2 contains characteristic functions of

sets while these cannot belong to Hα
2 (Rd) (see §7 below for details). This makes Besov

spaces more suitable than Sobolev spaces for the analysis of discontinuous functions
and as a consequence for applications to image processing.

7. Non-linear wavelet approximation

We return to the problem of wavelet approximation, this time using a non-linear
approach. We fix p ∈ (1,∞) and a wavelet family Ψ = {ψ1, . . . , ψL} which we assume
admissible for Lp(Rd). For simplicity we just let L = 1. We define the following
approximating sets

ΣN =
{
f =

∑
I∈Λ

cIψI : Λ ⊂ D with Card Λ ≤ N, cI ∈ C
}
, N = 0, 1, . . .

Observe that ΣN + ΣN ⊂ Σ2N , and that ΣN is not a linear space. This kind of
non-linear approximation is called N -term approximation.

An algorithm to produce good approximations by ΣN is to consider the N basis co-
efficients of f with largest absolute values. More precisely, if f =

∑
I∈D 〈 f , ψI 〉ψI ∈

Lp(Rd) and we consider the non-increasing rearrangement

‖〈 f , ψI1 〉ψI1‖Lp(Rd) ≥ ‖〈 f , ψI2 〉ψI2‖Lp(Rd) ≥ . . . , (7.1)

then the so-called greedy algorithm is defined by

f 7→ GN (f) =
N∑

i=1

〈 f , ψIi
〉ψIi

∈ ΣN . (7.2)

A theorem due to V. Temlyakov [19] shows that, when p ∈ (1,∞), there exists cp > 0
such that

‖f −GN (f)‖Lp(Rd) ≤ cp σ(f,ΣN )Lp
, ∀ N = 1, 2, . . . , ∀ f ∈ Lp(Rd). (7.3)
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Thus, for the purposes of N -term approximation in Lp(Rd) we may use indistinctly
σ(f,ΣN )Lp or E(GN (f))Lp := ‖f − GN (f)‖Lp(Rd). An elementary proof of (7.3)
using the associated sequence spaces h0

p can be found in [12, 9] (see Theorem 2.1 and
Proposition 3.2 in [9]).

Taking into account these facts, we wish to prove Jackson and Bernstein type
inequalities for non-linear approximation with ΣN . The proofs are somewhat more
difficult than in the linear case. All the results will be stated and proved in the
setting of sequence spaces. A key step will be the following proposition, whose proof
can be found in [12, 9].

PROPOSITION 7.4. Let p ∈ (1,∞). Then there exists a constant cp > 0 so that for
all finite sets Γ ⊂ D

c−1
p (CardΓ)

1
p ≤

∥∥∥∑
I∈Γ

eI

‖eI‖h0
p

∥∥∥
h0

p

≤ cp (CardΓ)
1
p . (7.5)

PROPOSITION 7.6. Jackson’s inequality
Let 1 < p < ∞ and 0 < τ < p. Choose α > 0 such that α

d = 1
τ −

1
p . Then, for all

s ∈ bα
τ,τ we have,

σ(s,ΣN )h0
p
≤ E(GN (s))h0

p
≤ cN−α

d ‖s‖bα
τ,τ
, N = 1, 2, 3, . . .

PROOF: Consider the non-increasing order

‖sI1eI1‖h0
p
≥ ‖sI2eI2‖h0

p
≥ ‖sI3eI3‖h0

p
≥ . . . (7.7)

By the triangle inequality we can write

E(GN (s))h0
p

= ‖s−GN (s)‖h0
p
≤

∞∑
j=0

∥∥∥ ∑
N2j<k≤N2j+1

sIk
eIk

∥∥∥
h0

p

. (7.8)

The non-increasing ordering (7.7) implies that ‖sIk
eIk

‖h0
p
≤ ‖sIN2j eIN2j ‖h0

p
for all k

such that N2j < k ≤ N2j+1. Hence,∥∥∥ ∑
N2j<k≤N2j+1

sIk
eIk

∥∥∥
h0

p

≤
∥∥∥sIN2j eIN2j

∥∥∥
h0

p

∥∥∥ ∑
N2j<k≤N2j+1

eIk

‖eIk
‖h0

p

∥∥∥
h0

p

.

Using the right hand side inequality in Proposition 7.4 we obtain∥∥∥ ∑
N2j<k≤N2j+1

sIk
eIk

∥∥∥
h0

p

≤ cp

∥∥∥sIN2j eIN2j

∥∥∥
h0

p

(N2j)
1
p

Substituting this result in (7.8) we deduce

E(GN (s))h0
p
≤ cp

∞∑
j=0

‖sIN2j eIN2j ‖h0
p
(N2j)

1
p (7.9)

Now, observe that by the non-increasing ordering in (7.7) we have

‖sIN2j eIN2j ‖h0
p
≤

( 1
N2j

N2j∑
k=1

‖sIk
eIk

‖τ
h0

p

) 1
τ

,
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and also that for all I ∈ D

‖sIeI‖h0
p

= |I|
1
p−

1
2 |sI | = |I|−α

d + 1
τ−

1
2 |sI | = ‖sIeI‖bα

τ,τ
. (7.10)

Thus, using the observation in (6.5) we can write

‖sIN2j eIN2j ‖h0
p
≤ (N2j)−

1
τ

( ∞∑
k=1

‖sIk
eIk

‖τ
bα

τ,τ

) 1
τ = (N2j)−

1
τ ‖s‖bα

τ,τ
.

Substituting in (7.9) we obtain,

E(GN (s))h0
p
≤ cp ‖s‖bα

τ,τ
N

1
p−

1
τ

∞∑
j=0

2−j α
d = c′N−α

d ‖s‖bα
τ,τ
,

which establishes the proposition. 2

Our next result is a Bernstein type inequality in the context of non-linear approx-
imation with ΣN .

PROPOSITION 7.11. Bernstein’s inequality
Let 1 < p <∞ and 0 < τ < p. Choose α > 0 such that α

d = 1
τ −

1
p . Then,

‖s‖bα
τ,τ

≤ CN
α
d ‖s‖h0

p

for all s ∈ ΣN and all N = 1, 2, 3, . . .

PROOF: Let s =
∑N

k=1 sIk
eIk

∈ ΣN , where we can assume that

‖sI1eI1‖h0
p
≥ ‖sI2eI2‖h0

p
≥ · · · ≥ ‖sIN

eIN
‖h0

p
. (7.12)

By (6.5) and (7.10) we can write

‖s‖bα
τ,τ

=
( N∑

k=1

‖sIk
eIk

‖τ
bα

τ,τ

) 1
τ

=
( N∑

k=1

‖sIk
eIk

‖τ
h0

p

) 1
τ

.

The ordering (7.12) together with the left hand side inequality that appears in Propo-
sition 7.4 gives

‖s‖bα
τ,τ

≤ cp

[ N∑
k=1

(
k−

1
p

∥∥ k∑
`=1

sI`
eI`

∥∥
h0

p

)τ] 1
τ

≤ cp ‖s‖h0
p

( N∑
k=1

k−
τ
p

) 1
τ

= c′N
α
d ‖s‖h0

p
.

2

PROPOSITION 7.13. Let 1 < p <∞ and α > 0. If for s ∈ h0
p we have σ(s,ΣN )h0

p
≤

CN−α
d for all N = 1, 2, . . . , then s ∈ bβ

t,t, for all β ∈ (0, α) provided 1
t = β

d + 1
p .
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PROOF: For s ∈ h0
p write bn = G2n(s) ∈ Σ2n , n = 0, 1, 2, . . . Then,

s = b0 +
∞∑

k=1

(bn − bn−1) .

The proof now follows the same lines as the proof of part (c) in Theorem 2.3 with
some obvious modifications, which includes the use of (7.3). 2

COROLLARY 7.14. Let 1 < p <∞, 0 < τ < p. Choose α > 0 such that α
d = 1

τ −
1
p .

Then, there exists C > 0 such that for all f ∈ Bα
τ,τ (Rd),

σ(f,ΣN )Lp(Rd) ≤ CN−α
d |f |Bα

τ,τ (Rd) , N = 1, 2, 3, . . .

Moreover, if for f ∈ Lp(Rd) ∩ Lτ (Rd) and we have σ(f,ΣN )Lp(Rd) ≤ CN−α
d for all

N = 1, 2, . . . , then f ∈ Bβ
t,t(Rd) for all β ∈ (0, α) provided 1

t = β
d + 1

p .

In particular, when f = χR, for R a “rectangle” in Rd, it is not difficult to see
that f ∈ Bα

τ,τ (Rd) when d( 1
τ − 1)+ < α < 1

τ . Therefore, for non-linear approximation
in L2(Rd) we have σ(f,ΣN )L2(Rd) . N−α/d for all α ∈ (0, d

2(d−1) ). When d =
1, this improves dramatically the power N−1/2 obtained in §2 and §5 with linear
approximation. When d = 2, the non-linear approximation in L2(R2) gives the bound
N−( 1

2−ε), compared to N− 1
4 obtained in §5 for linear approximation. Also, in this

particular example, and more generally for all functions with bounded variation1 f ∈
BV (R2), it can be proved that σ(f,ΣN )L2(R) . N− 1

2 |f |BV (R2) (see [15, p.402] and
[6]).

8. Further results

In the previous sections we have measured the error of approximation in the norm
of Lp(Rd) for p ∈ (1,∞). Nevertheless, sometimes it is interesting to use other norms
which keep more features of a given image. One case which has been proposed by
other authors is the use of Sobolev or Besov norms (see [5, Ch. 4] or [12]).

In our paper [9] we do something more general by studying the approximation
problems associated with the family of Triebel-Lizorkin spaces F s

p,q(Rd). These can
be defined in terms of Littlewood-Paley theory as follows. Let ϕ ∈ S(Rd) be such
that ϕ(x) = 1 when |x| ≤ 1 and ϕ(x) = 0 when |x| ≥ 3/2. For k ∈ Z, define
ϕk(x) = ϕ(2−kx)− ϕ(2−(k−1)x), so that

∑∞
k=−∞ ϕk(x) = 1 for all x ∈ Rd \ {0}.

DEFINITION 8.1. For s > 0, 0 < p < ∞ and 0 < r ≤ ∞ the Triebel-Lizorkin
space F s

p,r(Rd) is defined as the set of all f ∈ Lp(Rd) such that

|f |F s
p,r

=
∥∥∥( ∞∑

j=−∞
|2js|(ϕj f̂ )∨|r

)1/r
∥∥∥

Lp

<∞ . (8.2)

1This space satisfies B1
1,1(R2) ⊂ H1

1 (R2) ⊂ BV (R2) ⊂ B1−ε
1,1 (R2), ∀ ε > 0.
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There is a characterization of the Triebel-Lizorkin spaces using wavelets. Under
suitable decay and smoothness conditions on a wavelet family Ψ = {ψ1, . . . , ψL} (see
[14]), a function f ∈ Lp(Rd) belongs to F s

p,r if and only if∥∥∥[ L∑
`=1

∑
I∈D

(
|I|− s

d−
1
2 |〈 f , ψ`

I 〉|χI(·)
)r

]1/r∥∥∥
Lp

<∞ , (8.3)

and |f |F s
p,r

is equivalent to the expression in (8.3). We remark that when 1 < p <∞,
F 0

p,2 = Lp and F s
p,2 = Hs

p , while for any p we have F s
p,p = Bs

p,p.

As in the case of Besov spaces, (8.3) will allow us to work with sequence spaces
when studying problems of approximation. For s ∈ R, 0 < p <∞ and 0 < r ≤ ∞, we
define the sequence space fsp,r ≡ fsp,r(D) as the set of complex sequences c = {cI}I∈D
such that

‖s‖fs
p,r

=
∥∥∥[ ∑

I∈D

(
|I|− s

d−
1
2 |cI |χI(·)

)r
]1/r∥∥∥

Lp

<∞ , (8.4)

so that

|f |F s
p,r

≈
L∑

`=1

‖(〈 f , ψ`
I 〉)‖fs

p,r
. (8.5)

We present now some of the results about N -term approximation for the spaces
fsp,r which appear in [9].

THEOREM 8.6. Jackson’s inequality
Let s, α ∈ R, 0 < p, τ, q <∞ and 0 < r ≤ ∞ be so that

max{τ, q} < p and
α

d
− 1
τ

=
s

d
− 1
p
. (8.7)

Then, for all s ∈ bα
τ,q we have,

σ(s,ΣN )fs
p,r

≤ CN−( 1
τ∨q−

1
p )‖s‖bα

τ,q
, N = 1, 2, 3, . . . (8.8)

For the proof of this result see Theorem 4.3 in [9]. We remark that if an inequality
of the type

σ(s,ΣN )fs
p,r

≤ CN−ε‖s‖bα
τ,q
, N = 1, 2, 3, . . . (8.9)

holds, then the restrictions on the indices in (8.7) must necessarily hold and moreover
ε ≤ 1

τ∨q −
1
p . In this sense, we say that Theorem 8.6 is sharp (see Propositions 4.1

and 4.2 in [9]).

THEOREM 8.10. Bernstein’s inequality
Let s, α ∈ R, 0 < p, τ, q <∞ and 0 < r ≤ ∞ be so that

min{τ, q} < p and
α

d
− 1
τ

=
s

d
− 1
p
. (8.11)

Then, there exists C, 0 < C <∞ so that

‖s‖bα
τ,q
≤ CN ( 1

τ∧q−
1
p )‖s‖fs

p,r
(8.12)

for all s ∈ ΣN and all N = 1, 2, 3, . . .
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We refer to section 5 in [9] for a proof of this theorem and similar examples illus-
trating the sharpness of the exponents.

Using these Jackson and Bernstein type inequalities for the spaces fsp,r it is possible
to obtain an analogous result to the one stated in Proposition 7.13, replacing h0

p by
fsp,r. We omit the statement since actually a sharper version appears in [9, §6].

Let us finally mention that the decay of σ(s,ΣN )fs
p,r

can be precisely quantified
when one uses `q norms. Namely, given a metric space F we can define the approxi-
mation spaces of order γ > 0 and 0 < q ≤ ∞, Aγ

q (F), by

Aγ
q (F) =

{
s ∈ F : |s|Aγ

q (F) :=
( ∞∑
N=1

[Nγσ(s,ΣN )F ]q
1
N

) 1
q <∞

}
Then, there is a well known procedure to derive identities for Aγ

q (F) from inequalities
of Jackson and Bernstein type as in Theorems 8.6 and 8.10 (for τ = q) [8]. We refer to
the recent paper [13] for a simple restatement of this general procedure which does not
make use of real interpolation. As a consequence of these considerations one obtains

COROLLARY 8.13.

Aγ
q (fsp,r) = bs+γ

q,q , when
γ

d
=

1
τ
− 1
p
> 0 .

We refer to section 6 in [9] for more details in these types of identities.

Remark 1. Since bs
p,p = fsp,p, the results stated in this section for Triebel-Lizorkin

sequence spaces give results for non-linear approximation in the Besov space Bs
p,p.

Remark 2. The main ingredient in the proof of Theorems 8.6 and 8.10 is the fact
that for the sequence space fsp,r it holds a similar estimate to (7.5). More precisely, a
sequence space f with a quasi-norm ‖ ‖f is called a p-space if there exits c > 0 such
that

c−1 (CardΓ)
1
p ≤

∥∥∥∑
I∈Γ

eI

‖eI‖f

∥∥∥
f
≤ c (CardΓ)

1
p .

for all finite sets Γ ⊂ D. For a proof of the fact that fsp,r are p-spaces see Proposition
3.2 in [9]. Jackson’s and Bernstein’s inequalities can be obtained similarly for p-spaces
(see [9] and [13] for details).
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