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EXTREMAL SPACES RELATED TO SCHRÖDINGER OPERATORS
WITH POTENTIALS SATISFYING A REVERSE HÖLDER

INEQUALITY

TERESA MARTÍNEZ

Abstract. We describe some elements of the theory of semigroups generated
by second order differential operators needed to study the Hardy-type space H1

L
related to the time independent Schrödinger operator L = −∆ + V , with V ≥ 0

a potential satisfying a reverse Hölder inequality. Its dual space is a BMO-type
space BMOL, that turns out to be the suitable one for the versions of some

classical operators associated to L (Hardy-Littlewood, semigroup and Poisson

maximal functions, square function, fractional integral operator). We also recall
a characterization of BMOL in terms of Carlesson measures.

1. Introduction

These notes are intended to give an overview of the results that appeared in the
talk presented by the author in the congress “VII Encuentro de Analistas Alberto
Calderón y I Encuentro Conjunto Hispano-Argentino de Análisis”, that was held
in Merlo (San Luis), from August 31st to September 3rd, 2004. This meeting had
a double purpose. On one hand, we had the privilege of congratulating Professor
Roberto Maćıas in his 60th birthday. On the other hand, it was a great opportunity
to develop the connections between Argentine and Spanish analysts, following the
example of the admirable labour of Professor Roberto Maćıas.

The talk mentioned above was mainly based in a joint work with J. Dziubański,
G. Garrigós, J.L. Torrea and J. Zienkiewicz, [4]. The present paper does not contain
any new result in the subject, and its purpose is to serve as a concise and expository
summary of the topic, including some proofs not appearing in [4] that may contribute
to clarify the reading of the original work. We will also refer to other works of J. Dzi-
ubański and J. Zienkiewicz, for the study of the Hp spaces associated to Schrödinger
operators, and other authors that studied the properties of the associated semigroups.

Let us start by recalling some very well known facts. Typically, when one tries to
study the boundedness of an operator (Calderón-Zygmund operators, for instance) in
the spaces, Lp with 1 ≤ p ≤ ∞, one obtains the boundedness from Lp into Lp in the
case 1 < p < ∞. In the extremes p = 1 and p = ∞, appropriate substituting spaces
may be used. Some of those substituting spaces are H1(Rd) and BMO(Rd), for the
cases p = 1 and p = ∞, respectively. It is well known that the classical H1(Rd) can be
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44 TERESA MARTINEZ

defined as the space of the functions in L1(Rd) such that the heat semigroup maximal
function is also in L1(Rd). In this sense, both H1(Rd) and its dual BMO(Rd) are
spaces associated to the Laplacian operator, ∆ =

∑d
k=1 ∂

2
xk

. It is also known that this
point of view allows to give a suitable definition of the analogous spaces associated to
other differential operators. Concretely, we will be interested in the spaces H1 and
BMO associated to time independent Schrödinger operators with potential V :

L = −∆ + V. (1.1)

Here, V is a fixed non-negative function on Rd, d ≥ 3, satisfying a reverse Hölder
inequality V ∈ RHs(Rd) for some s > d

2 . That is, there exists C = C(s, V ) > 0 such
that (

1
|B|

∫
B

V (x)s dx

) 1
s

≤ C

|B|

∫
B

V (x) dx, (1.2)

for every ball B ⊂ Rd. It is classical that under certain conditions on the potencial,
the operator L generates a heat semigroup (see section 2):

Ttf(x) = e−tLf(x) =
∫

Rd

kt(x, y)f(y)dy, f ∈ L2(Rd), t > 0. (1.3)

In section 3 we see that a Hardy-type space related to L is naturally defined by:

H1
L =

{
f ∈ L1(Rd) : T ∗f(x) = sup

t>0
|Ttf(x)| ∈ L1(Rd)

}
,

where T ∗f(x) = supt>0 |Ttf(x)| and

‖f‖H1
L

:= ‖T ∗f‖L1(Rd). (1.4)

For the above class of potentials, it was shown in [5] that H1
L admits a special atomic

characterization, where cancellation conditions are only required for atoms with small
supports. The following step is studying the properties of the dual space of H1

L, which
we shall identify with a subclass of BMO functions, namely:

BMOL =
{
f ∈ BMO :

1
|B|

∫
B

|f | ≤ C, for all B = BR(x) : R > ρ(x)
}
. (1.5)

The precise definition of the norm in this space is given in section 4. The critical radii
above are determined by the function ρ(x;V ) = ρ(x) which determines the behavior of
both spaces H1

L and BMOL (see section 2 for a precise description of the function ρ).
This BMOL space turns out to be the suitable extreme point for p = ∞ concerning
the boundedness of the classical operators associated to the operator L. We shall use
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the following notations:

Mf(x) = sup
B3x

1
|B|

∫
B

|f(y)| dy, (1.6)

T ∗f(x) = sup
t>0

|Ttf(x)f(x)|, Ttf(x) = e−tLf(x) (1.7)

P∗f(x) = sup
t>0

∣∣∣Ptf(x)
∣∣∣, where Pt = e−t

√
L =

∫ ∞

0

e−u

√
u
Tt2/4u du, (1.8)

sQf(x) =
( ∫ ∞

0

|Qtf(x)|2 dt
t

) 1
2
, Qtf(x) = t2

(
dTsf

ds

∣∣∣∣
s=t2

f

)
(x) (1.9)

Iαf(x) = L−α/2f(x) =
∫ ∞

0

e−tLf(x) tα/2−1 dt for 0 < α < d. (1.10)

These notations correspond, respectively, to the Hardy-Littlewood maximal func-
tion, the semigroup and Poisson-semigroup maximal functions, the L-square function
and the L-fractional integral operator. We observe that in the classical case (i.e.
V ≡ 0) these operators fail to be bounded in BMO, in fact they may be identically
infinity for functions with certain growth (see section 5). However in our case it turns
out that they behave correctly in BMOL, as it is shown in section 5. Finally, we
also show a characterization of BMOL in terms of Carleson measures, parallel to the
classical one (see section 4).

In order to introduce the concepts in a natural order, the paper is organized as
follows. In section 2 we discuss the fundamental properties of the semigroup generated
by L. In section 3 we consider the Hardy space H1

L, and in section 4, its dual space
BMOL is studied. Finally, section 5 is devoted to the study of the boundedness of
the operators mentioned above, defined in the context of Schrödinger operators, in
the space BMOL.

2. The heat semigroup associated to L

Let us start by recalling some basic facts about semigroups (see [2], [11], [20] and
[26] for a general account on semigroup theory). A C0-semigroup is a collection of
linear operators {Tt}t≥0 defined on a Banach space X (the example to have in mind
is X = Lp(Ω, dµ) for some p ∈ [1,∞] and measure space Ω), satisfying the following
properties

T0 = Id, TtTs = Tt+s, t→ Ttf is continuous in X for every f ∈ X. (2.1)

The infinitesimal generator of any semigroup Tt acting on some space of functions X ,
is the operator A, defined as

lim
t→0

Ttf − f

t
= Af

for f in a suitable dense class of functions in X called the domain of A (we could
think, for example, in the infinitely differentiable functions with compact support).
If the operator A is bounded in X , the associated semigroup is given by the formal
series Tt = etA =

∑∞
n=0

tnAn

n! , which in fact converges in norm. Nevertheless, in most
cases we are interested in unbounded operators A (such as differential operators). The
general theory on semigroups states that under certain conditions, for example if A is
closed, densely defined and ‖(λ − A)−1‖ ≤ 1/λ for every λ > 0 (Yosida’s generating
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theorem), we still have that A is the infinitesimal generator of a semigroup. Formally,
we will denote this semigroup also as Tt = etA. Also formally, from this formula it
holds that ∂tTtf = ATtf , T0f = f . It turns out that this calculation can be made
rigorous for f satisfying certain conditions. For this reason, {Tt} is called the heat
semigroup of A.

Let us recall some typical examples of heat semigroups:

Example 2.1. The most classical example of a C0-semigroup is the one generated by
the Laplacian in Rd, d ≥ 1, with the Lebesgue’s measure. It is well known that the
corresponding heat semigroup is given by the heat kernel,

Ttf(x) = et∆f(x) =
∫

Rn

ht(x− y)f(y) dy, ht(x) =
1

(4πt)n/2
e
|x|2
4t . (2.2)

Observe that the kernel of Tt is a Gaussian density. It is very well known the con-
nection between semigroups and Markov processes, and in fact what the expression
of Tt says is that, under certain conditions on f , the solution u(t, x) to the equation
∂tu(t, x) = ∆u(t, x), u(0, x) = f is u(t, x) = Ttf(x) = Ex(f(B2t)), where {Bt} is
a Brownian motion and the expectation Ex is taken with respect to the law of the
Brownian motion started at x. We will not comment further on this very interesting
connection between Probability and PDE’s and we suggest [8] for a detailed treatment
of this topic.

Example 2.2. Another operator generating a C0-semigroup (see [20]) is the Ornstein-
Uhlenbeck operator, A = 1

2∆−x·∇, in (Rd, dγ(x)), d ≥ 1, where dγ(x) = π−d/2e−|x|
2
dx

is the Gaussian measure. The action of this semigroup is most commonly expressed
as

etAf(x) = Mrf(x) =
1

πd/2

∫
Rn

Kr(x, y)f(y) dy,

where r = e−t and

Kr(x, y) =
1

(1− r2)n/2
exp

(
− |y − rx|2

1− r2

)
, 0 < r < 1

is called the Mehler kernel. The semigroups in this example and example 2.1 show
specially good semigroups, called symmetric diffusion semigroups (see [20] for the
details).

Example 2.3. An example of an operator that generates a semigroup, but not
a symmetric diffusion one (because it is not Markovian, that is, it does not map
constants into constants) is the harmonic oscillator (also called Hermite operator),
A = 1

2∆− 1
2 |x|

2, in (Rd, dx).

From the heat semigroup associated to an operator A, we can define a number
of semigroups as subordinated semigroups. There exist several ways of creating sub-
ordinated semigroups. We will be interested in the Poisson subordinated semigroup,
which is defined, by using spectral techniques, as

Ptf =
1√
π

∫ ∞

0

e−u

√
u
Tt2/4uf du =

t

2
√
π

∫ ∞

0

e−t2/4u

u3/2
Tuf du. (2.3)
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EXTREMAL SPACES RELATED TO SCHRÖDINGER OPERATORS 47

It is easy to see that if {Tt} is a C0-semigroup, so is {Pt}, and with some more
effort (see, for example [2]), it can be seen that if Tt = etA, then Pt = e−t

√
−A. At

least formally, this last formula can be understood by using a well known formula for
the Gamma function (see the book by Folland, Introduction to Partial Differential
Equations for a proof of it)

Pt =
1√
π

∫ ∞

0

e−u

√
u
e

t2
4u A du =

1√
π

∫ ∞

0

e−u

√
u
e−β2/4u du = e−β , (2.4)

with β2 = t2(−A), which is “positive”. Also formally, we can differentiate twice in the
formula for Pt (this calculation can be also made rigourously for f satisfying certain
properties), and see that it satisfies ∂2

tPtf +APtf = 0, P0f = f , that is, the Laplace
equation for A.

Example 2.4. In particular, in the situation of Example 2.1, when A is the Laplace
operator on Rd with Lebesgue’s measure, Ptf(x) should be the harmonic extension
to (0,∞) × Rd of f . In fact, if we substitute in (2.4) Tt by its expression in terms
of the integral against the gaussian kernel, and change the order of integration, we
obtain that

Ptf(x) = e−t
√
−∆f(x) = Cd

∫
Rd

t

(t2 + |x− y|2)(d+1)/2
f(y) dy = Pt ∗ f(x)

where the kernel

Pt(x) =
Cd t

(t2 + |x|2)(d+1)/2
=

1
td
P

(
x

t

)
, P (x) = P1(x) =

Cd

(1 + |x|2)(d+1)/2

is the Poisson kernel for the upper half space. As in the semigroup of Example 2.1,
this kernel is a density, and the process associated to these densities is the Cauchy
process, which is called the subordinated process to Brownian motion.

We are interested in the heat semigroup associated to a Schrödinger operator of the
form given in (1.1). Example 2.3 shows a particular case of these class of operators,
that have a deep physical significance. Consider a non relativistic, spinless quantum
mechanical particle of mass m that moves in Rd under the influence of a potencial
V : Rd → R. Then the wave function of the particle is given by the solution u(t, x)
of the equation { 1

i

∂u

∂t
=

1
2m

∆u− V (x)u

u(0, x) = f(x), x ∈ Rd.

Under the additional condition
∫

Rd |f(x)|2 dx = 1, the function |u(t, x)|2 can be un-
derstood (among other interpretations) as the position density of the particle in time
t. That is, for any measurable set A ∈ Rd, the probability that at time t the particle
is in the set A is given by

∫
A
|u(t, x)|2 dx. In this sense, the most significant dimension

is d = 3. On the other hand, the equation
∂u

∂t
= ∆u− V (x)u

describes a heat flow with cooling, and the temperature u(t, x) represents the tem-
perature in x at time t when there does not exist a perfect conduction of heat, but
the heat dissipates at rate V . Also, the Schrödinger operator is useful in the study of
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certain sub-elliptic operators. For instance, if in the operator −∆x − V (x)∂2
t we take

Fourier transform in the t variable, we obtain the operator −∆x + V (x)ξ2.
We will consider Schrödinger operators with potentials that satisfy a reverse Hölder

inequality (1.2), V ∈ RHs(Rd), for some s > d/2 and d ≥ 3. The reverse Hölder
classes RHs are defined for any s > 1 and they satisfy the following properties (see
[16] and [5], and the references therein):

• they are decreasing: RHs ⊂ RHt for s ≥ t.
• If V ∈ RHs then there exists ε > 0 such that V ∈ RHs+ε (thus, it is equivalent

to consider s > d/2 or s ≥ d/2 in our hypothesis).
• If V ∈ RHs for any s > 1, then dµ(x) = V (x) dx is a doubling measure and V

is a Muckenhoupt A∞ weight.
• If V is a polynomial, then V ∈ RHs for any s > 1.

We impose the hypothesis s ≥ d/2 in order to guarantee that the critical radius ρ
defined in (2.9) is well defined (see [16]).

Let us point out that the operator L is defined in all dimensions, but we will
consider only dimension three or higher. The results that we show in this paper rely
on previous estimates of the densities of the operators of the heat semigroup generated
by −L and also in properties of the critical radius ρ. These estimates are strongly
connected with the expression of the fundamental solution for L, and its relationship
with the fundamental solution for −∆, that for d ≥ 3 has the common expression
Γ(x, y) = Cd/|x− y|d−2.

Under the conditions we have imposed on the potential V , it is well known that
−L generates a C0-semigroup Tt = e−tL (see [17] and the references therein for an
account on these semigroups). The Feynman-Kac formula states that

Ttf(x) = e−tLf(x) = Ex

(
exp

(
−

∫ t

0

V (B(s)) ds
)
f(B(t))

)
, (2.5)

where Ex denotes the expectation of a Brownian motion {B(t)}t≥0 started at x ∈ Rd.
This process is an Rd-valued Gaussian process (its finite dimensional distributions are
gaussian random vectors) with

Ex(Bj(t)) = xj , Ex

(
(Bj(t)− xj)(Bk(s)− xk)

)
= δj,k min{s, t}.

It is also well known that et 1
2∆f(x) = Ex(f(B(t))) (and the reason of the 1/2 in this

definition, different from the one in example 2.1, comes from the usual normalization
of the density function of B(t)). The operators Tt are given by symmetric (in x and
y), jointly continuous (in t, x and y), uniformly bounded integral kernels,

Ttf(x) =
∫

Rd

kt(x, y)f(y) dy

whose concrete expression is not known. Nevertheless, from the Feynman-Kac formula
and (2.2), it follows that

0 ≤ kt(x, y) ≤ ht(x− y) = (4πt)−
d
2 exp(− |x−y|2

4t ). (2.6)

It is possible to prove better estimates, as the next result shows.
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Proposition 2.7. (see [6], [12]) For every N , there is a constant CN such that

0 ≤ kt(x, y) ≤ CN t−
d
2 exp(− |x−y|2

5t )
(
1 +

√
t

ρ(x) +
√

t
ρ(y)

)−N

. (2.8)

Here, ρ(x) := ρ(x, V ) is the critical radius associated to the potencial V . It is
defined in the following way:

ρ(x, V ) := sup

{
r > 0 :

1
rd−2

∫
B(x,r)

V (y) dy ≤ 1

}
. (2.9)

The condition V ∈ RHs, s > d/2 guarantees (together of course with V ≡/ 0, see [16])
that 0 < ρ(x) <∞ for any x ∈ Rd, since in that case

lim
r→0

1
rd−2

∫
B(x,r)

V (y) dy = 0, lim
r→∞

1
rd−2

∫
B(x,r)

V (y) dy = ∞.

The functionm(x, V ) := 1/ρ(x) was introduced in [15] to study the Neumann problem
above a Lipschit graph, with data in Lp for the Schrödinger operators −∆ + V for
general V ∈ RH∞. Similar conditions as the one used to define RHs were used in
[9] to study the eigenvalues of Schrödinger operators as (1.1): it holds that, roughly
speaking, in dimension d ≥ 3, (1.1) has a number of negative eigenvalues equivalent
to N if there exists a collection of N pairwise disjoint cubes where 1/|Qj |

∫
Qj
|V | ≥

C(diamQj)−2 (see Theorem 6 in [9]).
In [18] operators L were considered in the case that V =

∑
β≤α aβx

β , α, β ∈
Nd multi-index, is a positive polynomial. In this work it is proved that if K(x) is
the only tempered distribution such that LK(x) = δx, and a(ξ) = K̂(ξ), then the
derivatives of the smooth function a are controlled by a constant times a certain power

of |ξ| + MN (0), where MN (x) =
( ∑

β≤α

∣∣DβV (x)
∣∣N/(|β|+2)

)1/N

∼ M1(x). In the

case that V is a positive polynomial, it can be seen (see [15], [27])

m(x, V ) ∼M1(x) =
∑
β≤α

∣∣DβV (x)
∣∣1/(|β|+2)

.

This function is a fundamental tool in order to obtain suitable estimates for the kernel
of the operators Tt, as it is shown in [5], [6], [7], [4], [12], [15], [16].

Let us think in the case V (x) = |x|2. Clearly we have α = (2, . . . , 2) and since the
crossed derivatives are null, we get that m(x, V ) ∼ C + |x| + C

∑d
j=1 |x|1/3. Thus

m(x, V ) behaves as a constant for small x, and as |x| for big x. That is,

for V (x) = |x|2, ρ(x) ∼ 1
1 + |x|

.

This critical radius appears in the study of the operators related to the Ornstein-
Uhlenbeck semigroup (see, for example, [10] and the references therein). This is not
a casual fact and it is due to the connection existing between the Hermite operator
H = 1

2∆− 1
2 |x|

2 and the Ornstein-Uhlenbeck operator O = 1
2∆− x · ∇ (see examples

2.2 and 2.3). For both operators there exist orthogonal complete bases of eigenvectors,
in the corresponding L2(Rd, dµ) for the suitable measure dµ, that are connected by a
change of scale. This connection is summarized in the following table
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Operator
Measure space

for L2

Orthogonal basis
of eigenvectors

Hermite
H = 1

2∆− 1
2 |x|

2 (Rd, dx) Hermite polynomials
{Hn}n≥0

Ornstein-Uhlenbeck
O = 1

2∆− x · ∇ (Rd, e−|x|
2
dx) Hermite functions

Hn(x) = e|x|
2/2Hn(x)

Concretely, for f ∈ C2 one has

H(f e−|x|
2/2)(x)e|x|

2/2 = Of(x)− d

2
f(x).

An important feature of the critical radius ρ is that for similar points, the correspond-
ing critical radii are similar.

Proposition 2.10. [15] There exist c > 0 and k0 ≥ 1 so that, for all x, y ∈ Rd

c−1 ρ(x)
(
1 + |x−y|

ρ(x)

)−k0

≤ ρ(y) ≤ c ρ(x)
(
1 + |x−y|

ρ(x)

) k0
k0+1

. (2.11)

In particular, ρ(x) ∼ ρ(y) when y ∈ Br(x) and r ≤ Cρ(x).

3. The Hardy space H1
L(Rd)

Let us recall that in the classical clase, the space H1(Rd) admits several equivalent
definitions (see, for instance [22] and the references therein). Our interest will be
focused in two of these definitions, namely the atomic and the maximal definitions.

A function a is an atom if its support is contained in a ball B, such that |a(x)| ≤
|B|−1 almost everywhere and it has null mean, that is

∫
B
a(x) dx = 0. Thus, f ∈

H1(Rd) if and only if f admits an atomic decomposition, f =
∑∞

j=1 λjaj(x) where aj

are atoms and
∑∞

j=1 |λj | < ∞. The norm in the space H1(Rd) is given as ‖f‖H1 =
inf

∑∞
j=1 |λj | where the infimum runs over all such possible atomic decompositions.

In particular, this implies that
∫

Rd f(x) dx = 0.
Given Φ ∈ S, being S the Schwartz class in Rd, we define the maximal function

associated to Φ as

MΦf(x) = sup
t>0

|f ∗ Φt(x)|, Φt(x) =
1
tn

Φ
(
x

t

)
and for Pt as in example 2.4, the Poisson kernel in the upper half space, the non
tangential maximal function is

u∗(x) = sup
|x−y|<t

|u(y, t)|, where u(x, t) = f ∗ Pt(x).

Observe that, with the notation of example 2.4, this non tangential maximal function
can be expressed in terms of the Poisson semigroup of the Laplacian, namely u∗(x) =
P ∗ntf(x) = sup|x−y|<t |Ptf(y)|. Then, the following sentences are equivalent

• f belongs to H1(Rd).
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• There exists Φ ∈ S with
∫

Φ 6= 0 such that MΦf ∈ L1(Rd).
• The distribution f is bounded and u∗ ∈ L1(Rd).

The most typical example of function in S having non compact support and non
zero mean is the gaussian function, Φ(x) = (4π)−d/2e−|x|

2/4. Observe that f ∗
Φ√t(x) = Ttf(x) (see example 2.1). By the former result, if T ∗f(x) = supt≥0 |Ttf(x)| =
MΦf(x) belongs to L1(Rd), then f is in H1(Rd). The converse is also true (since
T ∗f(x) is the norm in `∞ of a vector-valued Calderón-Zygmund operator, see [14]
for the details). In this sense, the space H1(Rd) appears naturally associated to the
Laplacian in Rd. Thus, it is a natural extension of this notion to define

H1
L =

{
f ∈ L1(Rd) : T ∗f(x) = sup

t>0
|Ttf(x)| ∈ L1(Rd)

}
, (3.1)

where ‖f‖H1
L

:= ‖T ∗f‖L1(Rd) to be the Hardy space with p = 1 associated to the
Schrödinger operator (1.1). This space shares with the classical H1(Rd) several fea-
tures. One of the most important ones is that its elements admit atomic decomposi-
tions.

The atomic decomposition of the space H1
L(Rd) was proved in [5]. Define the sets

Bn =
{
x : 2−(n+1)/2 < ρ(x) ≤ 2−n/2

}
.

A function a is an atom in H1
L associated to a ball B = B(x0, r) if

i) the support of a is contained in B and |a(x)| ≤ |B|−1 almost everywhere,
ii) if x0 ∈ Bn, then r ≤ 2 2−n/2,
iii) if x0 ∈ Bn and r ≤ 1

22−n/2, then
∫

B
a(x) dx = 0.

Let us call A to the family of these atoms. Observe that the support and size con-
ditions are the same than for the classical atoms in H1(Rd). The difference comes
because we only consider atoms with small support (those such that the radius of the
ball B is smaller than twice the critical radius of the center), and that we only require
the cancellation condition for atoms supported in a ball of radius smaller than half
the critical radius. Clearly we have H1(Rd) ⊂ H1

L(Rd). The concrete result is the
following

Theorem 3.2. [5, Theorem 1.5] Let V ≡/ 0 be a non-negative potencial such that
V ∈ RHd/2. Then, there exists a constant C > 0 such that

C−1 ‖f‖H1
L
≤ ‖f‖H1

at,L
≤ C ‖f‖H1

L

where ‖f‖H1
at,L

= inf
∑∞

j=1 |λj |. Here, the infimum runs over all possible atomic
decompositions f =

∑∞
j=1 λjaj(x) where aj are H1

L-atoms and
∑∞

j=1 |λj | <∞.

As in the classical case, this atomic characterization of the space H1
L(Rd) provides a

useful tool to study its dual space. Similar atomic characterizations (with appropriate
cancellation conditions for atoms in iii)) hold also for the spaces Hp

L with 0 < p < 1 for
V a polynomial (see [3]), and for p in a certain range when V is a general non-negative
potencial in a reverse Hölder class (see [6] and [7]). Let us mention that in [5] it is
proved a characterization of H1

L(Rd) in terms of the Riesz transforms associated to L,
parallel to the well known one for the classical H1(Rd). Indeed, define for j = 1, . . . , d
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the j-th Riesz transform as

Rjf(x) =
∂

∂xj
L−1/2f(x).

Theorem 3.3. [5, Theorem 1.5] Let V ≡/ 0 be a non-negative potencial such that
V ∈ RHd/2. Then, there exists a constant C > 0 such that

C−1 ‖f‖H1
L
≤ ‖f‖L1 +

d∑
j=1

‖Rjf‖L1 ≤ C ‖f‖H1
L
.

An important tool in the proofs of the results showed above are the following lemma
and the corollaries bellow.

Lemma 3.4. [5, Lemma 2.3] There exists a collection of balls Bn,k = B(xn,k, 2−n/2)
for n ∈ Z, k ∈ N, such that xn,k ∈ Bn,k, Bn ⊂ ∪kBn,k and the balls have the finite
intersection property, which means that there exists a constant κ > 0 such that

]
{
n′, k′ : RBn′,k′ ∪RBn,k 6= ∅

}
≤ Rκ

for every R ≥ 2, where RBn,k = B(xn,k, R2−n/2)

From now on, B∗ will be the ball with the same center than B and twice the radius.

Corollary 3.5. For every α > 0, there exists a constant C = C(α, ρ) such that for
B = B(x0, R) with R > αρ(x0), we have

|B| ≤
∑
n,k:

B∗
n,k∩B 6=∅

|Bn,k| ≤ C |B|.

Proof. Since the balls Bn,k cover Rd, the first inequality is trivial. For the second
one, let us observe that∑

n,k:
B∗

n,k∩B 6=∅

|Bn,k| =
∫

Rd

∑
n,k:

B∗
n,k∩B 6=∅

χ|Bn,k|(y) dy.

From (2.11), we have that with any z ∈ B∗n,k ∩B

ρ(xn,k) ≤ C ρ(z)
(

1 +
|z − xn,k|
ρ(xn,k)

)k0/(k0+1)

≤ C ρ(z)

≤ C ρ(x0)
(

1 +
|z − x0|
ρ(x0)

)k0/(k0+1)

= C ρ(x0)
(

1 +
|z − x0|
ρ(x0)

)(
1 +

|z − x0|
ρ(x0)

)−1/(k0+1)

≤ C (ρ(x0) + |z − x0|) ≤ C R

Therefore, for y ∈ Bn,k such that B∗n,k ∩B 6= ∅,

|y − x0| ≤ |y − z|+ |z − x0| ≤ 4 2n/2 +R ≤ Cρ(xn,k) +R ≤ C1R.
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With this, by the finite intersection property, we get∑
n,k:

B∗
n,k∩B 6=∅

|Bn,k| =
∫

C1B

∑
n,k:

B∗
n,k∩B 6=∅

χ|Bn,k|(y) dy ≤ 2κ|C1B| = C |B|.

�
A proof of the following corollary of Lemma 3.4 can be found in [26].

Corollary 3.6. There exist functions ψn,k such that 0 ≤ ψn,k ≤ 1, ψn,k ∈ C∞0 (Bn,k)
and

∑
n,k ψn,k(x) ≡ 1

Remark 3.7. It is equivalent to consider atoms in A than atoms in the more general
class Ã formed by atoms satisfying the same conditions that the atoms in A, but
erasing the condition ii). That is, in Ã there are atoms with supports of any size,
and we only require cancellation conditions in the smallest ones. We will use this
definition of the atoms in H1

L in the sequel.
The proof of the equivalence of A and Ã for the atomic decomposition of H1

L is
as follows: clearly, A ⊂ Ã. For the converse it is enough to see that there exists a
constant C such that for any ã ∈ Ã with support in a ball B = B(x0, R) with x0 ∈ Bn

and R > 2 2−n/2, we have

ã(x) =
∑

j

cjaj , aj ∈ A,
∑

j

|cj | ≤ C.

Consider the functions an,k = |B| |Bn,k|−1ã(x)ψn,k(x) and the coefficients cn,k =
|B|−1|Bn,k| for indexes n, k such that B∗n,k ∩ B 6= ∅, and zero otherwise. Thus, an,k

by Corollary 3.6, we get that

ã(x) =
∑
n,k:

B∗
n,k∩B 6=∅

cn,kan,k(x), supp an,k ⊂ Bn,k, ‖an,k‖∞ ≤ |Bn,k|−1.

The functions an,k are atoms of A, since Bn,k are balls with radius 2−n/2 ≥ 1
22−n/2

and we do not require cancellation conditions form them. On the other hand, by
Corollary 3.5, we get ve that∑

n,k:
B∗

n,k∩B 6=∅

cn,k = |B|−1
∑
n,k:

B∗
n,k∩B 6=∅

|Bn,k| ≤ C.

4. The space BMOL(Rd)

Since the atomic definition of H1
L is the same than for the classical one, except

that we only require cancellation conditions for atoms with “small” support, and
atoms with bigger support are allowed without any further requirement, the functions
in the space BMOL should satisfy the same conditions than the classical ones for
“small” balls, and something stronger for bigger balls. Here and subsequently, fB =
|B|−1

∫
B
f(x) dx.
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Definition 4.1. We shall say that a locally integrable function f belongs to BMOL
whenever there is a constant C ≥ 0 so that

1
|Bs|

∫
Bs

|f − fBs | ≤ C and
1
|Br|

∫
Br

|f | ≤ C, (4.1)

for all balls Bs = Bs(x), Br = Br(x) such that if x ∈ Bn s ≤ 1
22−n/2 ≤ r. We let

‖f‖BMOL denote the smallest C in (4.1).

We observe that ‖f‖BMOL is actually a norm (and not only a seminorm) making
BMOL a Banach space. Moreover, ‖f‖BMO ≤ 2‖f‖BMOL , L∞ ⊂ BMOL ⊂ BMO,
f ∈ BMOL implies |f | ∈ BMOL and it can be proved a John-Nirenberg’s inequality:
for any p ∈ [1,∞) there exists c = c(p, ρ) > 0 such that for every f ∈ BMOL(

1
|B|

∫
B

|f − fB |p
) 1

p ≤ c ‖f‖BMOL , for every B,

(
1
|B|

∫
B

|f |p
) 1

p ≤ c ‖f‖BMOL , for B = Br(x) with x ∈ Bn, r ≥ 2−1−n/2.

By using the atomic decomposition of H1
L and Remark 3.7, the proof of the duality

of these spaces is similar to the one in the classical case, see section 3 in [4]. It turns
out that to see that a function belongs to BMOL it is enough to consider the critical
balls Bn,k.

Lemma 4.2. If there exists a constant C > 0 such that for every fixed Bn,k (see
Lemma 3.4), we have

i)
1

|Bn,k|

∫
Bn,k

|f(x)| dx ≤ K1.

ii) For α > 1, ‖f‖BMO(αBn,k) ≤ K2(α),

then f ∈ BMOL and ‖f‖BMOL ≤ C K, where K depends on K1 and K2.

Proof. From ii), in order to prove that for Bs = B(x0, s) with x0 ∈ Bn0 , s ≤ 1
22−n0/2,

|Bs|−1
∫

Bs
|f−fBs

| ≤ C, it is enough to see that there exists n, k such that Bs ⊂ αBn,k

for certain (fixed) α. Let n, k be such that x0 ∈ Bn,k. Thus, for any y ∈ Bs, by
Proposition 2.10

|y − xn,k| ≤ |y − x0|+ |x0 − xn,k| ≤
1
2
2−n0/2 + 2−n/2 ≤ 1√

2
ρ(x0) +

√
2ρ(xn,k)

≤ 1√
2
C

(
1 +

|x0 − xn,k|
ρ(xn,k)

)k0/(k0+1)

ρ(xn,k) +
√

2ρ(xn,k)

≤ αρ(xn,k) ≤ α2−n/2

where α is an absolute constant.
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Now take Br = B(x0, r) with x0 ∈ Bn0 , r ≥ 1
22−n0/2 ≥ 1

2ρ(x0). By Corollaries 3.5
and 3.6 and the hypothesis i), we have

1
|Br|

∫
Br

|g(x)| dx =
1
|Br|

∑
n,k:

Bn,k∩Br 6=∅

∫
Br

|g(x)|ψn,k(x) dx

≤ 1
|Br|

∑
n,k:

B∗
n,k∩Br 6=∅

|Bn,k|
|Bn,k|

∫
Bn,k

|g(x)|ψn,k(x) dx

≤ 1
|Br|

∑
n,k:

B∗
n,k∩Br 6=∅

|Bn,k|K ≤ C K.

�
It is also possible to prove a characterization of BMOL in terms of Carlesson

measures, parallel to the one existing in the classical case (see [22]). The concrete
result is as follows

Theorem 4.3. [4, Theorem 2] Let V 6≡ 0 be a non-negative potential in RHs(Rd) for
some s > d

2 , ρ(x) be the critical radius (2.9) and Qt be as in (1.9).

1. If f ∈ BMOL, then dµf (x, t) := |Qtf(x)|2 dx dt/t is a Carleson measure, and

‖µf‖C := sup
x∈Rd, r>0

µf (Br(x)× (0, r))
|Br(x)|

< C ‖f‖2BMOL
.

2. Conversely, if f ∈ L1((1 + |x|)−(d+1)dx) and dµf (x, t) is a Carleson measure,
then f ∈ BMOL.

Moreover, in either case, there exists C > 0 such that
1
C
‖f‖2BMOL

≤ ‖dµf‖C ≤ C ‖f‖2BMOL
.

5. Boundedness of classical operators in the space BMOL(Rd)

Once we have identified the dual space of H1
L, the next question we are interested

in is investigating the boundedness of some classical operators in the space BMOL.
Classical operators are often not well behaved in the space BMO. For instance, Ben-
net, DeVore, Sharpley [1] proved that for a function f ∈ BMO, its Hardy-Littlewood
maximal function Mf (see (1.6)) is either identically infinite or Mf ∈ BMO with
‖Mf‖BMO ≤ C ‖f‖BMO. Other operators share this kind of behavior. The maximal
operator of the heat and Poisson semigroups associated to the Laplacian present this
dichotomy. By the subordination formula (2.3), one has

P ∗f(x) ≤ C T ∗f(x) ≤ CM(|f |)(x) : L∞ −→ L∞,

but easy counterexamples, as f(x) = | log |x|| ∈ BMO, show that P ∗f(x) may be
infinity almost everywhere for functions in BMO. Fractional integrals

Iαf(x) =
1
γα

∫
Rn

f(y)
|x− y|n−α

dy, γα =
πn/22αΓ(α/2)
Γ((n− α)/2)

, 0 < α < n
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are other example of the dichotomy. For f ∈ Ln/α(Rd), Iαf(x) is either identically
infinite or Iαf ∈ BMO(Rd) with ‖Iαf‖BMO ≤ C ‖f‖Ld/α(Rd). For example, with
f(x) = (|x|α log |x|)−1, Iαf = ∞ almost everywhere.

Remark 5.1. It is an easy exercise to show that the kernel of Iα appears after a
change of variables in the formula that defines the negative powers of the Laplacian

Iαf(x) = (−∆)−α/2f(x) =
1

Γ(α/2)

∫ ∞

0

et∆f(x) tα/2−1 dt,

by using the calculus formula that gives for positive s and a

s−a =
1

Γ(a)

∫ ∞

0

e−tsta
dt

t
.

Square functions as

sf(x) =
( ∫ ∞

0

∣∣t∇t,xPt ∗ f(x)
∣∣2 dt

t

)1/2

also present the mentioned dichotomy. S. Wang [25] showed that for f ∈ BMO,
either sf = ∞ almost everywhere or sf ∈ BMO, with ‖sf‖BMO ≤ C ‖f‖BMO.
Later, Kurtz [13] extended this result to the case of the Lusin area function S and to
g∗λ, where

Sf(x) =
( ∫ ∫

Γ(x)

t1−n
∣∣∇t,zPt ∗ f(z)

∣∣2 dt dz)1/2

,

g∗λf(x) =
( ∫ ∫

Rn+1
+

(
t

t+ |x− z|

)λn

t1−n
∣∣∇t,zPt ∗ f(z)

∣∣2 dt dz)1/2

.

We can even find more pathological behavior. In a discrete setting, Torrea and de la
Torre [24] showed that the one-sided discrete square function

Sf(x) =
( ∞∑

n=−∞
|Anf(x)−An−1f(x)|2

)1/2

, Anf(x) =
1
2n

∫ x+2n

x

f(y) dy,

fails to be bounded in L∞. For f ∈ L∞, either Sf = ∞ a.e., for instance for
f(x) =

∑∞
i=0 χ[22i,22i+1], or Sf ∈ BMO, with ‖Sf‖BMO ≤ C ‖f‖L∞ .

In [4] it is shown that BMOL is a better space for the operators associated to the
operator L, defined in (1.6)–(1.9), than the classical BMO is for the classical versions
(associated to the Laplacian) of those operators. The gain is in the sense that the
dichotomy of the classical case does not appear any more.

Theorem 5.2. Let V 6≡ 0 be a non-negative potential in RHs(Rd) for some s > d
2 .

The operators M , T ∗, P∗ and sQ are well-defined and bounded in BMOL. For all
0 < α < d, the operator Iα is bounded from Ld/α(Rd) into BMOL.

The complete proof of this result can be found in [4]. Let us just give a sketch
of it here. We start with the Hardy-Littlewood maximal operator. The first step is
showing that for f ∈ BMOL, Mf < ∞ almost everywhere. For that, it is enough
to see that for any x0 ∈ Bn0 and C0 ≥ 1, Mf(x) < ∞ for almost every x ∈ B0 =
B(x0, C0/2 2−n0/2). Split f as f = f1 + f2, f1(x) = f(x)χB∗

0
. Thus, Mf1(x) < ∞

since any function in BMOL is locally integrable. Since supp f2 ⊂ (B∗0)c, we only
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use balls B 3 x with B ∩ (B∗0)c 6= ∅ to calculate Mf2(x) for x ∈ B0. In this case,
2r ≥ C0/2 2−n0/2 and B ⊂ B4r(x0) = B̃. But then r(B̃) = 4r > C02−n0/2, and

1
|B|

∫
B

|f2(y)| dy ≤
4d

|B4r(x0)|

∫
B4r(x0)

|f(y)| dy ≤ c ‖f‖BMOL .

Next, we see that Mf is bounded BMOL. By the results in [1], and the definition of
BMOL, it is enough to see that for B = B(x0, r) with x0 ∈ Bn0 and r ≥ 1

22−n0/2

1
|B|

∫
B

|Mf(y)| dy ≤ C‖f‖BMOL .

Split now f as f = f1 + f2, f1(x) = f(x)χB∗ . By the previous argument, Mf2(x) ≤
c‖f‖BMOL for every x ∈ B. For the other term, we use the boundedness of M in L2:

1
|B|

∫
B

|Mf1(y)| dy ≤
( 1
|B|

∫
B

|Mf1(y)|2 dy
)1/2

≤ C
( 1
|B|

∫
B∗
|f(y)|2 dy

)1/2

. ‖f‖BMOL .

Observe that in this proof we have not used any property of the potential, except the
ones that give rise to the definition of BMOL. The proof for the operators (1.7)–(1.9)
needs indeed deeper properties of the potential and the kernels of the semigroups. Let
us sketch the proof for the boundedness of T ∗. A first step is reducing matters to
critical balls: by Lemma 4.2, it is enough to see that for any n, k

1
|Bn,k|

∫
Bn,k

|T ∗f(x)| dx ≤ C ‖f‖BMOL , ‖T ∗f‖BMO(αBn,k) ≤ C ‖f‖BMOL . (5.3)

Clearly, the first inequality shows that for f ∈ BMOL, T ∗f is finite almost every-
where. This is a byproduct of the proof already seen for Mf , since from (2.6), we
have T ∗f(x) ≤ supt>0 |f | ∗ ht(x) ≤ CM |f |(x), and therefore

1
|Bn,k|

∫
Bn,k

|T ∗f(x)| dx ≤ C

|Bn,k|

∫
Bn,k

M |f |(x) dx ≤ C ‖f‖BMOL .

For the second inequality in (5.3), we may use the fact that if f satisfies

h− g1 ≤ f ≤ h+ g2 a.e.

given h ∈ BMO(αBn,k), g1 and g2 functions in L∞, then f ∈ BMO(αBn,k) and
‖f‖BMO(αBn,k) ≤ ‖h‖BMO(αBn,k) + max{‖g1‖L∞ , ‖g2‖L∞}. For K to be fixed later,
one trivially has

sup
t≤Kρ(xk)2

|Ttf(x)| − sup
t≤Kρ(xk)2

|(Tt − Tt)f(x)| ≤ T ∗f(x)

≤ sup
t≤Kρ(xk)2

|Ttf(x)|+ sup
t≤Kρ(xk)2

|(Tt − Tt)f(x)|+ sup
t≥Kρ(xk)2

|Ttf(x)|
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it will suffice to see that

∥∥∥ sup
t≥Kρ(xk)2

|Ttf(x)|
∥∥∥

L∞(αBn,k)
≤ C ‖f‖BMOL , (5.4)∥∥∥ sup

t≤Kρ(xk)2
|(Tt − Tt)f(x)|

∥∥∥
L∞(αBn,k)

≤ C ‖f‖BMOL , (5.5)∥∥∥ sup
t≤Kρ(xk)2

|Ttf(x)|
∥∥∥

BMO(αBn,k)
≤ C ‖f‖BMOL . (5.6)

This seems to be the usual behavior of the operators (1.7)–(1.9): the critical radius
“splits” the operators in a correct way (see [4] for the details). The first inequality∥∥∥supt≥ρ(xk)2 |Ttf(x)|

∥∥∥
L∞(αBn,k)

≤ C ‖f‖BMOL follows from the kernel decay (2.6):

|Ttf(x)| ≤ C

∫
Rd

|f(y)| t−d/2(1 + |x− y|/
√
t)−N dy

≤ C
1
td/2

∫
|x−y|≤

√
t

|f(y)| dy +
∞∑

j=1

1
2jN

1
td/2

∫
|x−y|∼2j

√
t

|f(y)| dy.

Let us observe that for x ∈ αBn,k, there exist constants C1(α) and C2(α) such that
C1(α)ρ(x) ≤ ρ(xn,k) ≤ C2(α)ρ(x). Choose K such that C1(α)K/

√
2 ≥ 1/2. Thus,

for j ≥ 0, one has 2j
√
t ≥ Kρ(xk) ≥ 1

2 2−n0/2 when x ∈ αBn,k, thus

1
td/2

∫
|x−y|∼2j

√
t

|f(y)| dy .
2jd

|B2j
√

t(x)|

∫
B2j

√
t(x)

|f(y)| dy ≤ 2jd ‖f‖BMOL ,

which gives the result. For the second inequality (5.5), we use the following result
that compares the kernels of the heat operators for the Laplacian and L.

Lemma 5.7. [6, Proposition 2.16] There exists a nonnegative Schwartz class function
w in Rd so that

|ht(x− y)− kt(x, y)| ≤



( √
t

ρ(x)

)δ

wt(x− y), for
√
t ≤ ρ(x)( √

t
ρ(y)

)δ

wt(x− y), for
√
t ≤ ρ(y)

wt(x− y), elsewhere,

(5.8)

where wt(x− y) = t−d/2w((x− y)/
√
t).
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Also, if x ∈ αBn,k, ρ(x) ∼ ρ(xn,k) and
√
t ≤ Kρ(xn,k), hence

|(Tt−Tt)f(x)| ≤
∫

Rd

( √
t

ρ(x)

)δ

wt(x− y)|f(y)| dy

≤ C

( √
t

ρ(xn,k)

)δ ∞∑
j=0

2−j(N−d) 1
|B2j

√
t(x)|

∫
B2j

√
t(x)

|f(y)| dy

= C

( √
t

ρ(xn,k)

)δ( ∑
1≤2j≤ 2−n0/2

2
√

t

2−j(N−d) 1
|B2j

√
t(x)|

∫
B2j

√
t(x)

|f(y)| dy

+
∑

2j> 2−n0/2

2
√

t

2−j(N−d)‖f‖BMOL

)
.

To bound the first term, let us observe that for balls of radius smaller than a constant
times the critical radius of its center, it is not difficult to see that there exists C =
C(β) > 0 so that, for all f ∈ BMOL and B = Br(x) with r < βρ(x), then

|fB | ≤ C (1 + log ρ(x)
r ) ‖f‖BMOL .

Thus, for j such that 1 ≤ 2j ≤ 2−n0/2

2
√

t
,

1
|B2j

√
t(x)|

∫
B2j

√
t(x)

|f(y)| dy ≤ C
(
1 + log ρ(x)

2j
√

t

)
≤ C

(
1 + log ρ(xn,k)√

t

)
,

and therefore

|(Tt − Tt)f(x)| ≤ C

( √
t

ρ(xn,k)

)δ (
1 + log ρ(xn,k)√

t

)
‖f‖BMOL

∞∑
j=0

2−j(N−d)

≤ C ‖f‖BMOL .

Finally, the inequality (5.6) is a result coming from the vector-valued singular integrals
theory (see [4] for the details).

Let us observe that the same arguments as the ones showed above give the bound-
edness of the non-tangential maximal function

T ∗∗f(x) = sup
|x−y|<t

|Ttf(y)|, x ∈ Rd.

Also, the proofs of the boundedness in BMOL for PL,∗ and Iα is similar, while for
the square function sQ an extra ingredient, a “perturbation formula”is needed.
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[4] Dziubański, J., Garrigs, G., Martnez, T., Torrea, J.L., Zienkiewicz, J., BMO spaces related

to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z.

249 (2005), 329–356.
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potential satisfying reverse Hölder inequality, Rev. Mat. Iberoam. 15 (2), 1999, 279–296.
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