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REMARKS ON OPERATOR BMO SPACES

OSCAR BLASCO

ABSTRACT. Several spaces defined according to different formulations for
operator-valued functions in BMO are defined and studied.

1. INTRODUCTION AND NOTATION
Recall that a function f is said to belong to BMO(T) if

1
swp (e [ 170 = mu s < o, 1)
ICT interval |I| I
where T is an interval in T and my(f) stands for the averarage myf = ﬁ [; f(t)dt.
It is well known that there are many other equivalent characterizations of BMO
functions:

First we can replace averaging over intervals by averaging respect to the Poisson
kernel (see [Gal) , that is f € BMO(T) if and only if

sup (/ (1) = P(f)(2)PP:(t)dt)'/? < oo (2)
|z|]<1 JT
where P,(t) = 117_‘;‘, t € T and P(f) stands for the Poisson integral of f.
Actually this is also equivalent to
|SI|1plP(\f|2)(Z) —[P(f)(2)* < o0 3)
z|<

Recall also that, due to John-Nirenberg’s lemma, one can replace in (1) and (2)
the L2-norm by the LP-norm for 0 < p < co.

Another possibility is to describe functions in BM O by the Carleson condition: f €
BMO(T) if and only if |[V(f)(2)[?(1 — |2|?) is a Carleson measure on D, equivalently

sup [ (1= ) Vf(w) PP (w)dA(w) < oc (@)
|z]<1JD

where V(f) stands for the gradient of f and dA for the Lebesgue measure in the disc
D (see [Ga, ?]).

Of course, one of the first and main descriptions of BMO is as the dual space
of ReH'(T), where ReH!(T) stands for the space of functions f in L'(T) such that
the Hilbert transform H f belong to L(T), endowed with the norm || f| g1 = | f|l1 +
2
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64 OSCAR BLASCO

There are other descriptions of functions in ReH!(T) either in terms of max-
imal functions, as those functions f € L(T) such that P*f € L(T), where
P*f(t) = supgep<1 Pr * f(t) is the radial Poisson maximal function, or in terms
of atomic decompositions, as those functions f in L!(T) that can be decomposed as
=2 ken Mar, Ax € C, where ay, are atoms, and ), [Ax| < oo

Different proofs of the duality result (see [FS]) BMO(T) = (ReH'(T))*, can be
done using those formulations of BMO and ReH'. The reader is referred to [GR] for
the general theory on Hardy spaces using real-variable techniques.

There is a counterpart of Hardy spaces defined in terms of martingales (see [G])
and a particular and simpler case concerning dyadic martingales (see [Per]) which we
will discuss here.

Let D denote the collection of dyadic subintervals of the unit circle T, and let
(h1)rep, where hy = m%/z(xH — X1~ ), be the Haar basis of L?(T). If f € LY(T)
and I € D then f; denote the formal Haar coefficients [, f(t)h;dt, and, as above,
mrf = ﬁ J; f(t)dt denotes the average of f over I.

We say that f € BMOY(T), if
1
1 llsnos = sup(— / () — mr f2de)? < oo. (5)
rep | Jr

Denote Pr(f) = >_;c;hsfs and, using that (f —msf)x; = Pr(f) one has f €
BMOY(T) if and only if there exists a constant C' > 0 such that, for all I € D,

1Pr()ll2 < ClIIM2. (6)

On the other hand, since ||Pr(f)llr2 = (3 jep yc; 1f717)/? for f € L*(T). Hence
f € BMOY(T) if and only if

§161pi > P <o (7)

o || JeD,JCI

We shall use later on the following characterization of BMOY in terms the bound-
edness of the paraproducts. It is well known that f € BMOY(T) if and only if

g (H)ll2 < Clifll2 (®)
and 7|l = [lgllzmog

a (1), where my(f) = > ;cp gr(mif)hy (see [Per] for a survey
on dyadic Harmonic Analysis and paraproducts).

Throughout the paper we shall review some of the results on the vector-valued
versions of the previously defined characterizations of BMO and prove some new
ones on operator dyadic BMO.

The paper is divided into three sections. The first one contains a survey of some
results proved by the author about several vector valued versions of BMO.

The second section is devoted to operator-valued dyadic BM O spaces. We concen-
trate on the connections with operator-valued Carleson measures and paraproducts.
Several spaces associated to different formulations of the previous notions are intro-
duced and studied. Inclusions between them are analyzed.

The third section contains new material. Some natural generalizations for functions
taking values in £(H) where one replaces the action (T, h) — Thin L(H) x H — H
for a more general one £L(H) x A — A where A is a subspace of linear operators in
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REMARKS ON OPERATOR-VALUED BMO SPACES 65

L(H) are introduced. This leads to definitons of new spaces whose properties and
relations are studied.

2. VECTOR-VALUED BMO

Let X be a Banach space and let f : T — X be a Bochner integrable function. We
say that f belongs to BMO(T, X) (respect. BMOyear(T, X)) if

/ 1£(t) — my fIPde) 2 < oo, (9)
ICT mterval |I|
(respect.
1
swp (o / (F(t) = ma o) 2dD) 7 < o0,) (10)
lel=1,0cT | Jr

where z* € X* and my(f) stands for the averarage m;f = ﬁ J; f@)dt.
Same proof as in the scalar-valued case allows to get f € BMO(T, X) if and only

if
sup ([ 1£0) = PGP0 < o0 ()
lz]<1

where P, (t) = = Lt‘, t € T and P(f) stands for the Poisson integral of f. Making use

of the John-Nirenberg’s lemma, which holds true in the vector-valued case, one can
also replace the L?-norm by the LP-norm in (9), (10) and (11).
We say that f € BMOp(T, X) (see [BPa]) if

sup P(If)(2) = [P(f)(2)]|* < oo.

|z|<1

We say that f € BMO¢(T, X) (see [B4]) if

sup [ (1= )7 £(w)|P2(w)dA(w) < o0
|z]<1JD

where V(f) stands for the gradient of f and dA for the Lebesgue measure in the disc
D.

It is known that embeddings between the just defined spaces depend upon some
geometrical properties of the underlying Banach space. For instance, BMO(T, X) C
BMO¢(T, X) implies X has cotype 2 and BMO¢(T, X) € BMO(T, X) implies X
has type 2 (see [B5], Theorem 1.2 ).

On the other hand, if X is a 2-uniformly PL-convex space then BMOAp(T, X) C
BMOA¢(T,X), where BMOAp(T, X) and BMOA¢(T, X) stand for the analytic
version of the spaces (see [BPal, Theorem 3.2 ).

The reader is referred to [W] for the notions on Geometry of Banach spaces and
related questions to be used throughout the paper.

The duality in the vector-valued setting is also very well understood. One can
define certain vector-valued Hardy spaces (see [B1, B2] and [Bou]) which will give the
preduals of different versions of vector-valued BM O spaces.

Given a Banach space X we write HL (T, X) for the space of functions F €
LY(T,X) such that F = >, .y Akar, A\ € C, where Y, . |X\| < oo and ay, are
X-valued atoms, that is to say ay € L*°(T, X), supp(ay) C Ij for some interval Iy,
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66 OSCAR BLASCO

lak||oo < ﬁ and flk ar(t)dt = 0. We endow the space with the norm given by the
infimum of ), _ |Ax| over all possible decompositions.

We write H}, (T, X) for the space of functions f € L'(T, X) such that Hf €
LY(T, X), with the norm given by || f||con = Hf||L1(T7X) + ||Hf||L1(’]I‘,X)~
Proposition 2.1. (see [B3]) If X is a real Banach space then BMO,yeqr (T, X) iso-
metrically embedds into L(ReH'(T), X).

Remark 2.2. The reader is also referred to [B3] for the definition of the
space of wvector-valued measures of bounded mean oscillation which characterizes
L(ReH(T), X).

Proposition 2.3. (see [RRT] or [Bl]|, Th.3.1 and Prop. 3.3) If X is a real Banach
space then BMOporm (T, X*) isometrically embedds into (HL (T, X))*.
Moreover BMOyporm (T, X*) = (HL (T, X))* if and only if X* has the RNP.

Remark 2.4. The reader is referred to [Bl, B4] for the definition of the space of
vector-valued measures of bounded mean oscillation which leads to the duality result
without conditions on the Banach space X.

Let ¥ = {—1,1}P, equipped with the natural product measure which assigns mea-
sure 27" to cylinder sets of length n. For each o € {—1,1}P, define the dyadic
martingale transform 7T, : L?(T, X) — L?(T, X), given by

F=Y hifr—=Y hioifr.
IeD Iem
In the case that X is a Hilbert space, |75 F||z2(1,x) = || F||z2(T,x) for any (o7) € ¥

and then HFHLOC(E,LZ(T,X)) = ||F||~L2(T,X)'
Given F € L'(T, X) we write F' the function defined in ¥ x T,

F(O’,t) = TUF(t) = ZO’]F[/?,[.
I

Recall that X is said to be UMD space if there exists C' > 0 such that
sup || T, F'l|2 < C||F||2
oED

for all F € L*(T, X).

In particular, for UMD spaces we have that ||T,F|z2(r,x) =~ |F|lz2(r,x) and
[Flz2(s2r,x)) < 1 F 22 x)-

It is known that LP(u) spaces for 1 < p < oo are UMD. Also the Schatten classes
S, are UMD spaces for 1 < p < oo (see [BGM]) while £L(H) or S; are never UMD
spaces (unless H is finite dimesional). The reader is referred to [Bur| for a general
survey on the UMD property.

We simply mention here that the UMD property is equivalent to the boundedness
of the Hilbert transform on L?(T, X) and the following connection with vector-valued
BMO and duality.

Proposition 2.5. (see [B1]) BMOyorm (T, X*) = (Heon (T, X))* if and only if X is a
UMD space.
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REMARKS ON OPERATOR-VALUED BMO SPACES 67

In the case X = L(H) where H is a separable Hilbert space we shall use the
notation BMOy,orm (T, £(H)) for BMO(T, L(H)), that is B € BMOyorm (T, L(H)) if

1
sup (m/IHB(t) —mB|%dt)'/? < co. (12)

ICT interval
In this situation we can still consider two related notions. One by considering
the weak*-topology, using L(H) = (H®H)*. Let B : T — L(H) be such that
(B(t)e,h) € L*(T) for all e, h € H. We say that B € WBMO(T, L(H)) if and only if

1
sup (= / |(B(t)e — miBe, h)|?dt)'/? < cc. (13)
lell=[lhll=1,ICT interval || J1

Of course BMO.year(T, L(H)) € WBMO(T, L(H)).

Note that B belongs to BMOporm (T, L(H)) or WBMO(T, L(H)) if and only B*
does.

Another possiblity is the following (see [NTV]): Let B : T — L(H) be a function
such that B(t)e, B*(t)e € L*(T,H) for all e € H. We say that B € BMO, (T, L(H))
if

1
sup (7/ |(B(t) — mi Beldt) /2 < oo (14)
ICT,I interval ,e€H,|e||=1 |I‘ I
and .
sup (— / |(B*(t) — m;B*)e||dt)'/? < . (15)
ICT,I interval ,e€H,|e||=1 ‘I‘ I
It is not difficult to show the following chain of strict inclusions.

BMO,orm (T, £(H)) & BMOL(T, £(H)) C WBMO(T, L(H)).

Since the trace class operators can be described as S = lo®0s, where X ®Y stands
for the completion of the projective tensor product of the spaces X and Y then

(51)" = L(H).
Hence it follows from Propositions 2.1 and 2.3 that
BMOweak(Tvﬁ(H)) g E(H;t(’]r)v‘sl) (16)
and
BMOuorm(T, L(H)) € (Hyy(T, 81))" (17)

Proposition 2.6. BMO(T, L(H)) C (H@(Hgon('H) @1 Hclon(H)))*

Proof. Using that (X®Y)* = L(X,Y*) and Proposition 2.5, it suffices to see
that BMOgo(T, L(H)) € L(H,BMO(H) ®oo BMO(H)). Observe now that B €
BMOy(T, L(H)) implies that e — (B(t)e, B*(t)e) defines a bounded linear operator
from H into BMO(H) ®- BMO(H). O

3. DYADIC VERSIONS OF OPERATOR-VALUED BMO.

Let H be a separable finite or infinite-dimensional Hilbert space, and let B : T —
L(H) such that (B(-)e,h) € L}(T) for any e, h € H. From the closed graph theorem
H x H — L'(T) given by (e,h) — (B(-)e, h) defines a bounded bilinear map. Hence,
for I € D, we can define the Haar coefficients By = [; B(t)h;(t)dt € L(H), and
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the average of B over I, miB = \1\ f[ t)dt 6 E(H) as the operators given by
(Bre, f) = [,(B fYhr(t)dt and (m;pBe, f = \II J;(B(t)e, f)dt.

We can now glve similar notions to those mtroduced in Section 2, but only for
dyadic intervals. Thus, we write B € BMOY_ (T, L(H)) if

IBlosiog,.., = sup(rr: [ 1) = miB|d) < o (15)

rep U] Jr

B € WBMOY(T, £(H)) if

1
| Bllwenos = sup (g / [((B(t) = miB)e, f)Pdt)'/* < oo.  (19)

1€D,e.jerllel=lfl=1 |

B € BMOY (T, L(H)) if

+(B) = / |(B(t) — miB)e|[2dt < oo,
IED H = H
V(B) = /|| — g BY)A|dt < oo.
IGD \|h|| L |10
We write
IBllemoa, = (B)'/? +~(B*)!/? (20)

As in the introduction we have Pr(B) = >_;c;hyB; = (B —m;B)x;. Hence

B € BMOY, . (T, £(H)) if and only if there exists a constant C' > 0 such that
1Pr(B)| 22200y < CII|? (21)
for all I € D.
B € WBMOY(T, £L(H)) if and only if there exists a constant C' > 0 such that
[(Pr(B)e, k)2 < CI|M? el (22)

forall I € D and e, h € H.
B € BMOY, (T, £L(H)) if and only if there exists a constant C' > 0 such that

mx  (IPBE o). [P ()2} < O (23)

for all I € D and e € H.

As before one can replace in (18), (19), (20), (21), (22) and (23) the L?-norm by
any other LP-norm for 0 < p < oo.

As in the scalar valued case we have

I1Pr(f)llzz = ( Z 1fs112)2

JED,JCI

for f € L*(T, X) if X is a Hilbert space, but not in the case X = £(H). This leads
us to consider the following space in terms of Carleson measures.
B € BMO¢, (T, L(H)) if

sup T Z |Bs|* < oo. (24)
1eD 151 jep,icr
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REMARKS ON OPERATOR-VALUED BMO SPACES 69

In the papers [GPTV, NTV, NPiTV] the study of the boundedness of the follow-
ing version of the operator-valued paraproducts was iniciated and developped: The
densely defined linear maps

np: LA, H) — LA(T.H), f=_ fihi— Y Br(mif)hi,

I1eD 1€D

which is called the vector paraproduct with symbol B, and

Ap =mp+h  LA(T,H) — LAT,H), [ > Bilmif)hr+ > BI(fI)|XTI|.
IeD IeD
Recall that a sequence ®; € L?(T,L(H)) for all I € D is said to be an operator-
valued Haar multiplier (see [Per, BPo3]) if there exists C' > 0 such that

1> @r(fD)hallL2ra < CO NP2
1€D IeD
for any finite family of elements (f;) C H.
In the papers [NTV, BPo3] the spaces BMOpara(T, L(H)) and BMO (T, L(H))
were introduced.
A function B is said to belong to BMOypawa(T, £L(H)) if g defines bounded linear
operators on L*(T,H).
A function B is said to belong to BMOy,,it (T, £(H)) if the sequence (Pr(B))rep
defines a Haar multiplier.
Due to the equality
Ap(f) =Y Pi(B)(f)hr. (25)
IeD
one has that B € BMO (T, £(H)) if and only if Ap is bounded on L*(T,H) .
It was shown that (see [NTV, BPo3])

BMOY (T, £(H)) € BMO (T, £(H)) € BMOg(T, £(H)) € WBMO(T, L(H))

norm

and
BMOC,1(T, £(H)) & BMOpara(T, L(H)) & BMOS,(T, L(H)).

The space BMOY (T, £(H)) can be understood as the space of functions satisfying a

natural operator Carleson condition, namely

1 1
max{sup || — B%Byll,sup ||— ByBj||} < 0 26
T I DI (26)

The result in [NTV] therefore represents a breakdown of the Carleson embedding
theorem in the operator case.
It was shown in [BPo3] that the stronger condition

1 XJ
sup | — BBy =r,cony < 00 (27)
rep |I|JZg P e
implies that B € BMOypara(T, L(H)).
The results on [BPo3] heavily depends upon the use of the notion of sweep of
a function defined by Sp = }_,cp BjBs%. In particular it was discovered that

B € BMOpara(T, £L(H)) if and only if Sp € BMO,y,u4(T, L(H))
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70 OSCAR BLASCO

Another important difference for operator-valued functions is the no validity of
John-Nirenberg theorems, meaning that ||Sy||[pmo < C||bl|Eymo, in the operator-valued
case. Several replacements of the previous inequality were obtained in [BPo3].

Let us mention to finish this section two new lines of research related to operator-
valued paraproducts which are now in progress. One is about connections between
Hankel operators and Schatten classes that have been recently considered in [PSm]
and another one about paraproducts and Haar multipliers on the bidisc. This last
one is connected with operator-valued theory by taking H = L?*(T). In this case
B € L*(T, L*(T)) can be understood as a function in two variables, say b(t, s), (B;); =
b]XJ where b]XJ = fTQ b(t, S)h[(t)hJ(S)dtdS and mJ(mIB) = m]XJb where mIXJb =
ﬁ J7.;b(t, s)(s)dtds. The reader is referred to [BPol, BPo2] for results about
paraproducts and Haar multipliers on the bidisc.

4. Dyapic A-VALUED BMO SPACES

Throughout this section A denotes an operator ideal, that is A a Banach space such
that there exist two continuous embeddings maps By : A — L(H) and By : A — L(H)
in such a way that the composition maps £(H)x B1(A) — B1(A) and Ba(A)xL(H) —
By (A) are bounded, i.e. u € A,v € L(H) = vBi(u) € B1(A), Ba(u)v € By(A) and
max{||[vBy(u)| 4, || B2(u)v||a} < C|lv||||w]l4, where we write |lu;||4 also the norm of
the corresponding u € A where u; = B;(u) € B;(A) for i = 1,2. We shall use simply
vu and uv for vB;(u) and Ba(u)v in the sequel.

We use the notation e®h for the operator e®h(z) = (h,x)e for x,y,e € H. Clearly
one has

Texh)=Te®h, (e@h)T=exT"h (28)
(e@h)(e @h)=(he)ex ) (29)
(e®@h)*=h®e (30)

Proposition 4.1. Let ey € H with ||eg]| = 1. Then H is an operator ideal by selecting
Bi:H — L(H) given by h > h®eg and By : H — L(H) given by h — ey @ h.

Proof. Observe that ||B;(h)|| = ||h]| for ¢ = 1,2 and T(h ® eg) = (Th) ® ep and
(eg ® h)T = eg ® T*(h). This corresponds to the actions L(H) x H — H given by
(T,h) — Th and H x L(H) — H given by (h,T) — T*h. The properties are now
straighforward. O

Remark 4.2. A= L(H) and the Schatten classes A=S, , 1 <p < oo are operator
ideals for By = Bs the inclusion maps.

Recall that S = H®H, (S,)* = Sy, 1/p+1/p’ =1 and that (S1)* = L(H), with
the duality given by
(u,e ® h) = (u(h),e),
where u € L(H), and e, h € H.
As in the previous sections we write B € BMOY___ (T, A) if

norm

1
| Bllatog, ., (r.a) = Sup(- / |B(t) — mi B|dt)? < oc. (31)
rep | Jr
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and B € BMOY, (T, A) if

Ssu
Ten 1]

S B < . (32)
JeD,JCI

It was shown in [BPo3] that L°°(T,L(H)) was not contained into
BMOY, (T, £(H)). Let us see that if we replace £(H) by A the situation becomes
different.

As usual 7 denote the Rademacher functions. Recall that a Banach space X is
said to have type p, for some 1 < p < 2, if there exists a constant C' > 0 such that

N N
IS arullze i < O ™) 7
k=1 k=1

for all xy,...,z, € X. Similarly, a Banach space X is said to have cotype ¢, for some
2 < ¢ < o0, if there exists a constant C' > 0 such that

N N
S llanl?)? < OIS il iacr.x)

k=1 k=1
for all z4,...,x, € X.

Proposition 4.3. (i) If BMOY, (T, A) C BMOY,,,. (T, A) then A has type 2.

In particular, BMOE, (T, S,) € BMOZ,...(T,S,) for p > 2.

norm

(ii) If A has cotype 2 then BMOZ (T, A) C BMOZ,_ (T, A).

norm

In particular, BMOY (T, S,) € BMOY, (T, S,) for 1 <p<2.

norm

Proof. It was shown (see [B4],Theorem 1.1) that for any Banach space X

N N
1Y arrkllaroex) =~ 1Y @kl e x) (33)
k=1 k=1

for any xj be a sequence of elements in X.
Take By = By|I|~'/2 for |I| =27%. Then ", p, Brh; = > 1oy Birs.
Note that

1 EiNRS
SUD T Yo Bl =swp > Bl > m) =D IB:ll%
1€P 12 jep ucr P ok JCI,|J|=2* k=1

Applying (33) one gets

N oo
| kz Bl 22 (r.ay < Cl ;)Blhlﬂfmogm = Ckz | BelI%
=1 c =1

Now the assumption in (i) gives type 2. Similarly the part (ii). O
We can use martingale transforms (see Section 2 for the notation) to analyze the va-

lidity of John-Nirenberg’s lemma in our situation, that is to say to study whether B €
BMO4 implies Sg € BMO4 Let us rewrite the sweep Sp = 3 ;cp B;BJ‘XTJ‘

norm norm-*

by the formula
Sp = / T,B*T,Bdo, (34)
b
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Theorem 4.4. Let B € L*(T,A). Then
(i) 158 ssi0s,., ) < fi 1o Blsos o
(”) ”SB”BMOd (Sp/2) < O||B||2BMOgorrn(Sp) for2 <p < 0.

norm

Proof. Tt is not difficult to show that P;(Sg) = P;Sp,5 (see [BPo3]). Hence, using
(34), one gets Pr(Sp) = [y, T, P1B*T,P;Bdo.
Therefore

IPr(Se)llLrra < ||/(ToPIB*)(TaPIB)dUHLl(T,A)
>

IN

/ |(PrTo BY)(PrTy B) | 1 roaydo
)

IN

/HPITaB||L2(T,c(H))HPITaB||L2(T,A)dU
>

< /E | PrToBl|72p,aydo

norm

< / 1T Bl2sos do)l].

Use now John-Nirenberg’s lemma to obtain

158 lBMmog

norm

1
(4) < Csup —||Pr(Se)llLi(r,4) < C(/ ITs Bllgaos  do).
T 1] g -

(ii) Use the argument above, together with the estimate [[uv|s,,, < [|lulls,[[v]s,,
to get that

PS8z rs, 0 < / | PY T, Bl ., o

< (L 17 Bliwo s, )T
< Hlsup |75 Bl3mos. (s,)
oeEX
< CUIBlgwog, . (s,):
where the last inequality follows from the fact that S, is a UMD space. Now finish
the proof applying John-Nirenberg’s lemma again. O

Definition 4.5. Let A be an operator ideal and let B : T — L(H) such that
B(t)u,vB(t) € L*(T, A) for any u,v € A. We say that B € BMOSO7A(T,E(H)) ,
if

1
Yr.A(B) = sup (7 / [(B(t) = myB)ul%dt)!/? < oo (35)
I€DueA,||lul|a=1 | J;
and
1
Y.4(B) = sup (— / [o(B(t) — myB)|4dt)"/? < oc. (36)
repwed,|lvlla=1 I Jr

The norm || B|lgmod

norm

(T,4) = VrA(B) +71,4(B).
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Definition 4.6. Let A be an operator ideal and let B : T — L(H) such that vB(t)u €
L%(T, A) for any u,v € A. We say that B € WBMO 4(T, L(H)) , if

ya(B) = sup /|| — myB)u|4dt)Y? < 0. (37)
reDuveAol—lullamt |I|
Of course for A = H (see Proposition 4.1), one has
BMOg, 2(T, L(H)) = BMO4 (T, L(H)),

WBMO4(T, £L(H) = WBMOY(T, L(H).
It is also elementary to show
BMOZ, .. (T, A) € BMOg, 4(T, L(H)) € WBMO! 4(T, L(H)).

Although for A = H it was shown (see [BPo3|) that the inclusions are strict,
however for A = L(H) one obviously has

BMOZ,,1n (T, L(H)) = BMOso £(2) (T, L(H)) = WBMO £ (3 (T, L(H)).

Let us study the situation for A = ;.
Proposition 4.7.

(i) BMOg, g, (T, L(H)) = BMOg (T, L(H)).

(ii)) WBMOYg, (T, L(H)) = WBMOY(T, L(H)).
Proof. (i) Let B € BMOg, s, (T, L(H)). Take u = e ® h with |le]| = ||h|| = 1 and
observe that (B(t) —mB)u = (B(t) —m;B)e® h and u(B(t) —m;B) = e® (B*(t) —
mB*)h. Hence ||(B(t) —m;B)ulls, = [[(B(t) —m;B)e| and |[u(B(t) —m;B)l|s, =
||(B*(t) — m;B*)h|. This implies that BMOg, g, (T, £(H)) € BMOg (T, L(H)).

Conversely, let B € BMOy(T,L(H) and let v = > 77, Apex ® hy where
S5 el < 00 and [lex]l = [l = 1. Now

I(B(t) =miB)ulls, = I M(B(t) = miB)ex ® hulls,

< Y NIBE - miBe
k=1

Then, for I € D and u € Sy, one gets

IN

1 o0 .
m/j\l(B(t)—mIB)ullsldt ;'A”m/I”(B(t)_me)eklldt

IN

oo
> ullIBllsno..
k=1

Hence using John-Nirenberg’s lemma one gets v, 4(B) < |lu|ls, || Bllsmo,, . Simi-
larly one obtains i, 4(B) < [lulls, | Bllsvo,..

(ii) Note that for [le| = 1] = /Il = 7]l = 1, (e ® h)(B(t) — myB)(¢’ @ ) =
(h,(B(t) —mrB)e'Ye @ h’ . Hence ||(e ® h)(B(t) — mB)(e/ ® h')||s, = [{h, (B(t) —
myB)e’). Now similar arguments to the ones used in (i) allow to get the result. O
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Let Foo(A) denote the subspace of A-valued functions on T with finite formal Haar
expansion (we keep the notation Fyo in the case A = L£(H)) and write L3(T,.A) the
closure of Foo(A) in L*(T, A).

Definition 4.8. Let (®;);ep C L?(T, L(H)) be a sequence of operators. It is said to
be an A-Haar multiplier if there exists C > 0 such that

1Y ®rFrhrllrar,a < CIY - Frhllzaer,a
I1eD IeD

for any F € Foo(A).
We write ||(®r)rep||lmuit,.a for the norm of the extension of the operator to
L3(T, A).

Definition 4.9. Let B € L*(T,L(H)). We say that B € BMOyua(T, A) if
(PrB)iep defines a A-Haar multiplier and we write

| BllBMO e, A = (P B)repllmuit,A-

It was shown in [BPo3] that BMOY (T, £(H)) € BMO (T, £(H)). Now one
has the following

Proposition 4.10. BMOuyui £(3) € BMOG,,. (T, L(H)).

norm

Proof. Let B € BMOmult,L(H) . Take F' = Thy for fixed J € D. Observe that

1> Pr(B)Fihsllzcny = I1Pr(B)Rsllr2ceimy
IeD
1
= W”PJ(B)HL?(L(H))
< [IBlBMOmute £ (rey -
O
Definition 4.11. Let B € L*(T,L(H)). We define the A-paraproduct with symbol B
by
w5 : Foo(A) = Foo(A)

given by

F =Y Fthy— > BrmFhy,
IeD IeD
where BympF stands for the composition of operators.

Definition 4.12. Let B € L*(T,L(H)). We say that B € BMOpara, 4 (T, L(H)) if
74 extends to a bounded operator from LE(T, A) to L3(T, A).
We write

| BllBMOparara = H7T§||L§(T,A)—>L3(T,A)v

Theorem 4.13. BMOyara,z(3) € BMOS . (T, L(H)). Moreover

norm

V2
B < —|B
I Bllemos, . cr)) < 1 1 BIlBMO para£(7)

norm
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Proof. Applying the assumption on functions F' = (e ® h)¢ for fixed |le]| = ||| =1

and @2ty = 1, one easily obtains that ||B|wpmos < H7r§(H)||.

1Bl < [|75"0)|17)2/2 for all J € D.
Consider F(t) = Iy s(t) for some J € D where 7 stands for the identity operator.

In particular

Now B
ZBlhI-i-MZ |I| P;(B) + Z ?;hl-
ICJ Jci I=2kJ k>1
Clearly
|| Bl
> o h1||L2(£(H)) < ) gt S
I=2k Jk>1 I= 2k1k>1
L(H _
< IR )ag ) Y22 < f s
k>1
Therefore
L(H 1 V2 L(H
1PsB)llczico0) < I ™l + = 1 Blwsnonl JI'* < —== s ™11/
Thus the proof is complete. O

Definition 4.14. Let B € L?(T,L(H)). We can define
A% Foo(A) — L(T, A)

F = ZthIHZBIF]|I|

IeD IeD
Let us denote A = 4 + Af.
We also define

given by

I'% : Foo(A) — Foo(A)
given by

F=) Fhi— Y ml/QFIhI.
1€D I1€eD

Remark 4.15. Clearly if T4 is bounded on L*(T,A) then supjy =1/ Brull
C|1|'2.
For A ="M one has T'4 is bounded if and only if | Br| < C|I|*/2.
Proposition 4.16. B € BMOyu1t.4(T, L(H)) if and only if Ag‘ extends to a bounded
operator on L3(T, A). Moreover
||B||BMOmu1t,A = HAé”LS(T,A)—w?(T,A)'

Proof. Tt follows from the formula

AfGF = BF =Y (m;B)Fth; = » (PiB)Fihy. (38)

IeD I€D
O

We observe that the boundedness of A4 on L2(T,A) can be pushed to
BMOY, (T, A).
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Proposition 4.17.
1A% |BMmos, ., (7, 4)—BMOg,..,, (1.4) < 2N AF ] L2(0,4)—12(T,)- (39)

Proof. Assume A is bounded on L3(T, A). Let F' € BMOY_ (T, A) of norm 1, that
is PrF € L*(T,£(H)) with norm bounded by |I|'/2.

It is not difficult to see that [|PrAR(F)|r2(r.4) = |PIAA(PIF) || p2(r,.4)-

Since P;G = (G — m;G)xs then we have

IPAR(PrF) | L2r,a) < 2 AB(PLF)||L2(r.a) < 2088 L2 ¢ra)— £z r,0) 1.
Hence one gets the desired estimate. O

Definition 4.18. We write A : Fyg ¥ }"00 — LZ(T L(H )) for the map

A(B,F) = =) BiF ML 7
i T
And we denote I : Fog X Foo — Foo given by

-y gty
|I|1/2
IeD

Of course T'(B, F) = Fg(ﬁ) (F).
In particular, the “dyadic sweep 7 of B € Fyo is given by
Sp=Y pBrp = AL (B) = A(B, B). (40)
fep "

Let us finish by giving the formulation of the main connection between BMOypas
and BMOy,1¢ (see [BPo3]) in the new situation.

Next result is the extension of the similar one shown in [BPo3], and the proof
presented here is different from the one given there for A = H.

Theorem 4.19. Let B, F € Fyg. Then
AF7TB = Aﬁ(F*,B) - F?(F,B)'
Proof.

ARTR(G) = AR(Y Brmi(G)hr)
1€D

= FrBrmi(G
2 i

= ZFIB[ZGJth

IeD 1CJ

= > ( ZFIBIU' )G rh

JED ICJ

— S EBANGH - X Gty

JeD ICJT JED
= AA(F*,B)(G) - FF(F*,B)(G)-
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Corollary 4.20. Let B € Foy. Then

C(H) L(H A L(H L(H
AB(* )NB( )_ S; ) 1_‘Bg )
where B' =T'(B, B) = ZjeD |11771/5h1'

The author thanks T. Hytonen for pointing out that Proposition 4.17 holds for any
ideal of operators.
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