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Abstract. Our objective in this survey is to present some results concerning

to transference of multipliers, maximal multipliers and transplantation operators
between Fourier-Bessel series and Hankel integrals. Also we list some related

problems that can be interesting and that have not been studied yet.

From August 31st to September 3rd, 2004, was held in Merlo (San Luis, Argentine)
the congress ”VII Encuentro de Analistas Alberto Calderón y I Encuentro Conjunto
Hispano-Argentino de Análisis”. This meeting was dedicated to Professor Roberto
Maćıas in his 60th birthday. In these notes we include the main results that were
commented in the talk presented by the author there. That talk was devoted to
Professor Roberto Maćıas who has been an example for many Spanish and Argentine
mathematicians and so is this note.

Our purpose is to present some results about transference of boundedness of mul-
tipliers, maximal operators associated to multipliers and transplantation operators
relating mainly Hankel transforms and Fourier-Bessel expansions settings. The au-
thor knew these topics when he wrote the papers [10] and [11] jointly with Professor
Krzysztof Stempak who introduced him in the questions of transference. The author
would like to thank to Professor Stempak all the very fruitfull and nice discussions
about these and other mathematical topics.

1. Transference of boundedness for multipliers.

Although all the following definitions and results related to Fourier integrals and
series can be given in dimension n ≥ 1, to simplify we will write them for n = 1. As
it is wellknown the Fourier transform on R is defined by

F(f)(y) =
1√
2π

∫ ∞

−∞
f(x)e−iyxdx, y ∈ R,

provided that f ∈ L1(R). Moreover Hausdorff-Young Theorem says that the Fourier
transform can be extended to Lp(R) as a bounded operator from Lp(R) into Lp

′
(R),

for every 1 ≤ p ≤ 2, where p′ denotes the exponent conjugated to p, that is, p′ = p
p−1 .
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F is a surjective map (from Lp(R) onto Lp
′
(R)) only when p = 2. An interesting

characterization of the range of F on Lp-spaces can be encountered in [38].
Assume that 1 ≤ p < ∞. A bounded measurable function m defined on R is a

Fourier p-multiplier when, for every f ∈ Lp(R), there exists g ∈ Lp(R) such that
F(g) = mF(f). In this case we represent by Tm the mapping defined by Tm(f) =
g = (F−1(mF(f))), f ∈ Lp(R). A simple argument using the closed graph theorem
shows in this case that Tm is a bounded operator on Lp(R). We denote by Mp(R)
the space of Fourier p-multipliers and by ‖m‖Mp(R) the multiplier norm of m, that
is, the norm of Tm as a bounded operator from Lp(R) into itself. It is clear that
Tm is bounded from L2(R) into itself. Many results have been proved establishing
conditions of the function m in order that m ∈Mp(R) (Mihlin-Hormander theorem,
Marcinkiewicz theorem, ...).

Analogous definitions can be made when Fourier series instead of Fourier integrals
are considered. If {mn}n∈Z is a bounded sequence then it is a Fourier p-multiplier
when, for every f ∈ Lp(0, 2π), there exists g ∈ Lp(0, 2π), such that ĝ(n) = mnf̂(n),
n ∈ Z. Here f̂(n) denotes the n-th Fourier coefficient of f , for every n ∈ Z. These
multipliers can be seen as Fourier p-multipliers on the discrete subgroup Z of R. By
Mp(Z) we represent the space of Fourier p-multipliers and by ‖m‖Mp(Z) the mutiplier
norm of m, that is, the norm of Tm as a bounded operator from Lp(0, 2π) into itself.

Above definitions can be given also in a weak Lp-setting.
There are a number of theorems relating Lp multipliers on R and on Z. One well-

known of them due to de Leeuw ([31]) is the following. We call a bounded measurable
function m defined on R regulated when

lim
ε→0

1
2ε

∫ ε

−ε
m(x+ t)dt = f(x),

for every x ∈ R.

Theorem 1.1. ([31, Proposition 3.3]). Let m be a bounded measurable function on
R. Suppose that m is regulated and in Mp(R). Then the restriction of m to Z is in
Mp(Z).

A converse to the theorem of de Leeuw is the following result proved by Igari.

Theorem 1.2. ([23]). Let 1 < p < ∞ and assume that m is a bounded measurable
function on R, continuous except on a set of Lebesgue measure zero. If {m(εn)}n∈Z ∈
Mp(Z) for all sufficiently small ε > 0 and lim infε→0+ ‖{m(εn)}n∈Z‖Mp(Z) <∞, then
m ∈Mp(R) and

‖m‖Mp(R) ≤ lim inf
ε→0+

‖{m(εn)}‖Mp(Z).

In [36, Problem 5] asked if a bounded measurable function m on R that is con-
tinuous at lattice points and determines a weak type (1, 1) multiplier operator, then
the restriction of m of these points determine a weak type (1, 1) multiplier opeartor
on Z. That is, can [31, Proposition 3.3] be extended to the weak (1, 1) case?. The
positive answer to this question was given by Asmar, Berkson and Bourgain in [1].
Wozniakowski ([57]) got another proof of the conjecture of Pelczynski.
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Saeki ([39]) extended the theorems of de Leeuw in the context of the general locally
compact abelian groups. Also the results about transference of multipliers established
in [1], [2], [3], [4] and [57] work in this abstract setting.

Notions of p-multipliers also can be defined in a similar way for other orthonormal
systems or integral transforms. Motivated by the studies of de Leeuw, Igari ([24])
got a transference results for p-multipliers of Fourier series associated with Jacobi
polynomials and p-multipliers for Hankel transforms.

Let α, β > −1. For every n ∈ N the Jacobi polynomial of degree n is

P (α,β)
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β

dn

dxn

(
(1− x)n+α(1 + x)n+β

)
, x ∈ (−1, 1).

The system {P (α,β)
n }n∈N is orthogonal on (0, 2π) respect to the measure

dµα,β(θ) = (sin(θ/2))2α+1(cos(θ/2))2β+1dθ.

If f ∈ L1((0, 2π), dµα,β) and n ∈ N, the n-th (α, β)-Fourier coefficient is

f̂(n) =
∫ 2π

0

f(θ)Pα,βn (cosθ)dµα,β(θ),

and the normalizing number hα,βn is defined by

hα,βn =
( ∫ 2π

0

(Pα,βn (cosθ))2dµα,β(θ)
)−1

.

We say that a sequence {mn}n∈N of complex numbers is an (α, β)-Jacobi p-multiplier
when the operator T{mn} defined through

T{mn}(f)(θ) =
∞∑
n=0

mnf̂(n)hα,βn P (α,β)
n (cosθ)

is bounded form Lp((0, 2π), dµα,β) into itself.
The Hankel integral transform hµ(f) of f ∈ L1((0,∞), x2µ+1) is given by

hµ(f)(y) =
∫ ∞

0

(xy)−µJµ(xy)f(x)x2µ+1dx, y ∈ (0,∞).

Here Jµ denotes the Bessel function of the first kind and order µ > −1. The Fourier
transform of a radial function in Rn reduces to a Hankel transform of order µ =
(n− 2)/2.

A bounded measurable function m on (0,∞) is a µ-Hankel p-multiplier when the
operator

Tm(f)(x) =
∫ ∞

0

m(y)hµ(f)(y)(xy)−µJµ(xy)y2µ+1dy

is bounded from Lp((0,∞), x2µ+1dx) into itself.
The result of Igari relating (α, β)-Jacobi p-multiplier with α-Hankel p-multiplier

can be written as follows.

Theorem 1.3. ([24, Theorem]) Let 1 ≤ p < ∞ and α, β > −1. Suppose that m is
a bounded measurable function on (0,∞) that is continuous except at most on a set
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of Lebesgue measure zero. If for every ε > 0 (small) the sequence {m(εn)}n∈N is an
(α, β)-Jacobi p-multiplier, and

lim infε→0‖{m(εn)}n∈N‖(α,β)−Mp((0,2φ),dµα,β) <∞,

then m is an α-Hankel p-multiplier and

‖m‖α−Mp((0,∞),x2α+1dx) ≤ lim infε→0‖{m(εn)}n∈N‖(α,β)−Mp((0,2φ),dµα,β).

The relation between the Jacobi and Hankel contexts comes given by the asymp-
totic behaviour of Jacobi polynomials

(1− x)α(1 + x)βP (α,β)
n (cosθ) = m

Γ(n+ α+ 1)
nα

(
θ

sinθ

)1/2

Jα(mθ) + g(θ, n),

where

g(θ, n) =
{
O(θ1/2n−3/2), cuando C/n ≤ θ ≤ π − ε
O(θα+2nα), cuando 0 < θ ≤ C/n

m = n+ α+β+1
2 , n ∈ N and ε, C > 0 are fixed.

Later Connet and Schwartz ([14]) obtained the corresponding weak type results
relating (α, β)-Jacobi p-multiplier with α-Hankel p-multiplier. It is quotable also the
paper of Gasper and Trebels ([16]) about Jacobi and Hankel multipliers.

Stempak ([41]) established relations between multipliers for Laguerre expansions
and Hankel multipliers. Let Lαn denote the Laguerre polynomial of degree n ∈ N and
order α. We define, for every n ∈ N, the Laguerre function

φαn(x) =
(

2n!
Γ(n+ α+ 1)

)1/2

e−x
2/2Lαn(x2), x ∈ (0,∞).

The system {φαn}n∈N is an orthonormal basis in L2((0,∞), x2α+1). As above, if
1 ≤ p < ∞, a sequence {mn}n∈N of complex numbers is be said an α-Laguerre
p-multiplier when the operator T{mn} defined through

T{mn}(f)(x) =
∞∑
n=0

mnf̂(n)φαn(x)

is bounded from Lp((0,∞), x2α+1dx) into itself. Here f̂(n) represents the n-th coef-
ficient of f respect to the Laguerre system {φαn}n∈N. A relation between Laguerre
functions and Hankel transforms can be encountered in the context of the algebra
L1
rad(C

n) (see [41, p. 287-288]). Moreover, Hilb’s asymptotic formula for Laguerre
functions ([48, Theorem 8.22.4]) establishes a relation between Laguerre and Bessel
functions that is fundamental to prove the following transference result.

Theorem 1.4. ([41, Theorem 1.1]) Let 1 ≤ p < ∞ and α > −1. Suppose that m is
a bounded measurable function on (0,∞) that is continuous except at most on a set
of Lebesgue measure zero. If for every ε > 0 (small) the sequence {m(ε

√
n)}n∈N is

an α-Laguerre p-multiplier, and

lim infε→0‖{m(ε
√
n)}n∈N‖α(Laguerre)−Mp((0,∞),x2α+1dx) <∞,

then m is an α-Hankel p-multiplier and
‖m‖α(Hankel)−Mp((0,∞),x2α+1dx) ≤ lim infε→0‖{m(εn)}n∈N‖α(Laguerre)−Mp((0,∞),x2α+1dx).
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TRANSFERENCE RESULTS FOR MULTIPLIERS 93

An interesting question is whether converses of Theorems 1.3 and 1.4 similar to de
Leeuw’s result are true.

In [10] Betancor and Stempak proved transference boundedness results relating
multipliers for Hankel transforms and Fourier-Bessel series in a weighted Lp-setting.
There they considered for the Hankel transform a different definition. Following for
instance Zemanian [58] (see also [50]), in [10] the Hankel transform Hµf of f ∈
L1(0,∞) is defined by

Hµ(f)(y) =
∫ ∞

0

√
xyJµ(xy)f(x)dx, y ∈ (0,∞).

This transform Hµ can be extended to L2(0,∞) as an isometry of L2(0,∞) for every
µ > −1. In [10, Lemma 2.7] a proof of this property is presented using the correspond-
ing one for Fourier-Bessel series. Thus [10, Lemma 2.7] can be seen a transference
result. If 1 ≤ p < ∞ and a ∈ R, we denote by ‖.‖p,a the norm in the weighted
Lebesgue space Lp((0,∞), xadx). A bounded measurable function m on (0,∞) is
called a µ-Hankel (p, a)-multiplier provided that

‖Hµ(m · Hµf)‖p,a ≤ C‖f‖p,a.

To simplify the multiplier norm of m and is denoted by ‖m‖(p,a).
Given µ > −1, let λn = λn,µ, n = 1, 2, . . . , denote the sequence of succesive

positive zeros of Jµ(x). Then the functions

ψµn(x) = dn,µ(λnx)1/2Jµ(λnx), dn,µ =
√

2|λ1/2
n Jµ+1(λn)|−1,

n = 1, 2, . . . , form a complete orthonormal system in L2((0, 1), dx) (for completeness,
see [22]).

To every f ∈ L1(0, 1) we associate its Fourier-Bessel series

f(x) ∼
∞∑
n=1

f̂(n)ψµn(x), f̂(n) =
∫ 1

0

f(x)ψµn(x)dx.

A comprehensive study of Fourier–Bessel expansions is contained in Chapter XVII of
Watson’s monograph [54]. Also, in a serie of papers Benedek and Panzone ([7], [8]
and [9]) investigated the convergence of series of Bessel functions.

Slightly abusing the notation we will use the symbol ‖ · ‖p,a in the same sense as
before but now restricted to functions defined on (0, 1). A bounded sequence {mn}∞n=1

of complex numbers is called a µ-Fourier-Bessel (p, a)-multiplier provided

‖
∞∑
n=1

mnf̂(n)ψµn(x)‖p,a ≤ C‖f‖p,a

The multiplier norm of {mn}∞n=1 is denoted by ‖{mn}n∈N‖(p,a).
In this context the following result is the corresponding version of the Igari’s the-

orem.

Theorem 1.5. ([10, theorem 2.1]) Let 1 < p <∞, a ∈ R and m be a bounded func-
tion on (0,∞) continuous except on a set of Lebesgue measure zero. If {m(ελn)}n∈N

is a µ-Fourier-Bessel (p, a)-multiplier for all sufficiently small ε > 0 and we have
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lim infε→0+ ‖{m(ελn)}n∈N‖(p,a) is finite then m is a µ-Hankel transform (p, a)-multi-
plier and

‖m‖(p,a) ≤ lim inf
ε→0+

‖{m(ελn)}n∈N‖(p,a).

For p = 1 and a = 0 [10, Theorem 2.2] is a weak substitute of Theorem 1.5.
We now comment some applications and extensions of Theorem 1.5.
Wing [55] proved that the partial sum operators

SψNf(x) =
N∑
n=1

f̂(n)ψµn(x)

for the {ψµn}-expansions, µ ≥ −1/2, are uniformly bounded in any Lp((0, 1), dx),
1 < p < ∞. Benedek and Panzone [8] then extended this result to −1 < µ < −1/2
and the p-range 2/(2µ + 3) < p < −2/(2µ + 1). Theorem 1.5 thus gives (with
m = χ(0,1) and a = 0).

Corollary 1.6. ([10, Corollary 4.4]) Let either µ ≥ −1/2 and 1 < p < ∞ or −1 <
µ < −1/2 and 2/(2µ+3) < p < −2/(2µ+1). Then the Hankel transform partial sum
operators

SHR f(x) = Hµ(χ(0,R) · Hµf)(x), R > 0,
are uniformly bounded in Lp((0,∞), dx).

Observe that uniform boundedness of SHR f in the case µ ≥ −1/2 is known as
Wing’s theorem [56]. For the result when −1 < µ < −1/2 can see also [53].

In [11] Betancor and Stempak established a vector valued analogue of Theorem
1.5.

Now µ denotes an arbitrary fixed sequence of indices, µ = (µ0, µ1, . . . ), each µk is
bigger than −1, k ∈ N. By Lp,a(`q), 1 ≤ p < ∞, 1 ≤ q < ∞, a ∈ R, we denote the
vector valued (weighted) Lebesgue space of those sequences of functions {gk}∞k=0 for
which the quantity

‖{gk}‖p,a;q =
( ∫

I

( ∑
|gk(x)|q

)p/q
xadx

)1/p

is finite where, depending on the context, either I = (0,∞) or I = (0, 1).
A sequence m = (m0,m1, . . . ) of jointly bounded, supk≥0 ‖mk‖∞ <∞, measurable

functions mk on (0,∞) is called an Lp,a(`q) µ-Hankel multiplier provided

‖{Hµk
(mk · Hµk

gk)}‖p,a;q ≤ C‖{gk}‖p,a;q
with a constant C independent of {gk}, gk ∈ C∞c (0,∞). The least constant for which
the above inequality holds is called the multiplier norm of the multiplier operator
generated by m and is denoted by ‖m‖(p,a;q).

A sequencem = (m0,m1, . . . ) of jointly bounded sequencesmk = (mk(1),mk(2), . . . ),
k = 0, 1, . . . , is called an Lp,a(`q) µ-Fourier-Bessel multiplier provided

‖{
∞∑
n=1

mk(n)cµk
n (gk)ψµk

n (x)}∞k=0‖p,a;q ≤ C‖{gk}‖p,a;q

with a constant C independent of {gk}, gk ∈ C∞c (0, 1). The multiplier norm of the
multiplier operator generated by m is denoted by ‖m‖(p,a;q) .
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A vector valued version of Theorem 1.5 is the following.

Theorem 1.7. Assume µ, 1 < p < ∞, 1 < q < ∞, a ∈ R are given. Let m =
(m0,m1, . . . ) be a sequence of bounded functions on (0,∞) such that supk≥0 ‖mk‖∞ <
∞ and each mk is continuous except on a set of Lebesgue measure zero. If, for all
sufficiently small ε > 0, the sequence mε = (mε

0,m
ε
1, . . . ) of sequences

mε
k = (mk(ελ1,µk

),mk(ελ2,µk
), . . . ), k = 0, 1, . . . ,

is an Lp,a(`q) µ-Fourier–Bessel multiplier and, moreover,

lim inf
ε→0+

‖mε‖(p,a;q) <∞

then m is also an Lp,a(`q) µ-Hankel multiplier and

‖m‖(p,a;q) ≤ lim inf
ε→0+

‖mε‖(p,a;q).

Córdoba [15, Theorem] (see also [33]), proving that the Fourier disc multiplier is
bounded in the mixed norm space Lprad(L

2
ang)(Rd) for 2d/(d + 1) < p < 2d/(d − 1),

d ≥ 2, reduced the problem to showing the following vector valued inequality ([15, p.
23, (A)])

„ Z ∞

0

„ ∞X
0

|Hµ(k,α)(χ(0,1) ·Hµ(k,α)gk)(x)|2
«p/2

xadx

«1/p

≤ C

„ Z ∞

0

„ ∞X
0

|gk(x)|2
«p/2

xadx

«1/p

where α = (d−2)/2, µ(k, α) = k+α, k = 0, 1, . . . , and a = (2α+1)(1−p/2). In our
terminology this means that the constant sequence {χ(0,1)}∞k=0 is an Lp,a(`2) µ-Hankel
multiplier for the index sequence µ = {µ(k, α)}∞k=0 and the value of a specified above.

In [6] Balodis and Córdoba considered the convergence of multidimensional Fourier-
Bessel series in the mixed norm space Lprad(L

2
ang)(Bd), Bd denotes the unit ball in

Rd. More precisely, they proved that the partial sums operators SNM are uniformly
bounded on Lprad(L

2
ang)(Bd) provided 2d/(d + 1) < p < 2d/(d − 1). This was done

under the additional conditionN ≥ AM+1 where A = A(d) was an absolute constant.
By the partial sum operator SN,M the following is meant: take a suitable function f
on Bd and consider the expansion

f(x) = f(rx′) ∼
∞∑
m=0

d(m)∑
s=1

fms(r)Yms(x′);

{Yms}d(m)
s=1 is an orthonormal basis of spherical harmonics of degree m, r = ‖x‖,

‖x′‖ = 1. Then expand each fms with respect to the complete orthonormal system
{φdm,n}∞n=1 on L2((0, 1), rd−1dr), φdm,n(r) = ψ

m+(d−2)/2
n (r)r−(d−1)/2:

fms(r) ∼
∞∑
n=1

〈fms, φdm,n〉φdm,n(r),

and by SN,Mf we mean

SN,Mf(x) =
M∑
m=0

d(m)∑
s=1

N∑
n=1

〈fms, φdm,n〉φdm,n(r)Yms(x′).
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As application of Theorem 1.7 in [11] it is shown that the result established in [15,
Theorem] is implied by the one proved in [6, Theorem 3]. Moreover, by arguing as in
in the proof of [6, Theorem 3] we can extend this result by replacing the exponent 2
in the angular part by other exponent 4

3 < q < 4. Then, again by using Theorem 1.7,
we deduce [37, Theorem 1].

In this moment it is not known if a converse of Theorem 1.5 is true. If we have
proved this converse result then, we can deduce, for instance, the result proved in [6]
about n-dimensional Fourier series from the one concerning to Hankel integrals estab-
lished in [15]. In a similar line of this question is the following: to transfer Hausdorff-
Young inequalities from Hankel integrals to Fourier-Bessel series when vector valued
functions are considered. The usual arguments in the Fourier setting developed for
instance in [29] and [30] do not work in this case, because there not exists a group
structure in the Hankel setting (see [21] about convolutions and translations for Han-
kel transforms). I think that is an interesting question to obtain characterizations for
Hilbert spaces via Hankel transforms and Fourier-Bessel series similar to the known
ones in terms of Fourier integrals and series.

Recently Stempak [45] has obtained an abstract version of Igari’s theorem that
applies to get transference results for Fourier multipliers in Lorentz spaces.

2. Transference of boundedness for maximal operators associated
with multipliers.

If m is a bounded measurable function on R, we define the maximal operator T ∗m
associated to the multiplier m respect to the Fourier integral on R as follows

T ∗m(f) = sup
ε>0

|F−1(m(εy)F(f)(y))|.

We say m is p-maximal on R (or weak-p maximal) when T ∗m is bounded from Lp(R)
into itself (or from Lp(R) into Lp,∞(R)). The corresponding maximal multiplier
operator associated with the Fourier series is defined in a similar way. That is,

T̃ ∗m(f)(x) = sup
ε>0

|
∑
n∈Z

m(εn)f̂(n)einx|.

We refer to the boundedness of the maximal operator T̃ ∗m saying that m is p-maximal
or weak p-maximal on (0, 2π).

Kenig and Tomas ([28]) established the following important result that shows that
the boundedness of the operator T ∗m is equivalent to the boundedness of the operator
T̃ ∗m.

Theorem 2.1. ([28, Theorem 1]) Let 1 < p < ∞ and let m be a regulated bounded
measurable function on R. Then, m is p-maximal (or weak p-maximal) on (0, 2π) if
and only if m is p-maximal (or weak p-maximal on R).

As it is wellknown by taking m = 1 that T̃ ∗m is weak p-maximal, 1 ≤ p ≤ 2, is
equivalent that the almost everywhere convergence of Fourier series of functions in
Lp(0, 2π). In this context, transference theorems as the one due to Kenig and Tomas
plays a relevant role (see for instance [28, Section 3]).

Extensions of Theorem 2.1 to abstract settings including the end case p = 1 can
be found in [1], [2], [3] and [4], amogst others.
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Analogous definitions can be given for maximal multipliers operators when Fourier
integral and Fourier series are replaced by other integral transforms (say Hankel trans-
forms) or other orthogonal series expansions (say Jacobi, Laguerre or Bessel expan-
sions).

Kanjin [25] showed a relation similar to the one stated in Theorem 2.1 between
maximal operators defined by Jacobi series and maximal operators defined by Hankel
integral multipliers. That relation was used for proving almost everywhere conver-
gence of spherical means for radial functions on Rn by taking into account known Lp

estimates for certain maximal multipliers associated with Jacobi expansions.
By understanding the maximal multipliers operators T ∗m and T̃ ∗m in the Hankel

and Fourier-Bessel setting, respectively, Betancor and Stempak established in [10]
the following result involving weighted Lp-spaces.

Theorem 2.2. ([10, Theorem 2.3]) Let 1 < p < ∞, a ∈ R and m be a bounded
measurable function on (0,∞) continuous except at most in a set of Lebesgue measure
zero. If

‖T̃ ∗mf‖p,a ≤ C‖f‖p,a
with a constant C > 0 independent of f in C∞c (0, 1) then

‖T ∗mf‖p,a ≤ C‖f‖p,a
independently of f in C∞c (0,∞) (with the same constant C).

It is not known if the converse of Theorem 2.2 holds true.
Lp-estimates of maximal operators for the partial sums of Fourier-Bessel expansions

had be proved by Gilbert [17] (see also [19] for a weighted version). Theorem 2.2
allows us to obtain Lp-estimates for maximal operators associated with partial Hankel
integrals (that appear when we evaluate spherical partial Fourier integrals of radial
functions in Rn).

Stempak ([42]) established a result similar to Kanjin’s one relating maximal oper-
ators defined for multipliers for Laguerre expansions and Hankel transforms.

3. Transference of boundedness for transplantation operators.

Guy [20] showed that the size of the Hankel transform of any suitable function,
when measured in the (weighted) Lp-norm, remains the same whatever the order
of the Hankel transform is. More precisely, given ν, µ ≥ −1/2, 1 < p < ∞ and
−1 < a < p − 1 there is a constant C = C(ν, µ, p, a) such that for every appropriate
function f

C−1‖Hµf‖p,a ≤ ‖Hνf‖p,a ≤ C‖Hµf‖p,a.
In another way, this can be expressed as

‖(Hν ◦ Hµ)f‖p,a ≤ C‖f‖p,a.

Another proof of Guy’s transplantation theorem was given by Schindler [40] who
found a explicit expression for the transplantation kernel HµHν . Recently Nowak
and Stempak [35] have obtained a weighted version of the transplantation for Hankel
transforms. They have seen that the transplantation kernel is in a local part (”near”
the diagonal) a Calderón-Zygmund kernel, while in the global part he is something
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like Hardy kernels. They have introduced a class of weights wider than the usual
Muckenhoupt Ap weights on (0,∞) suitable for Hankel transplantation operators.

With Guy’s result a series of transplantion theorems involving continuous and
discrete orthonormal expansions was initiated. Kanjin [26] established transplantation
theorems for Laguerre expansions. A modified version of Kanjin’s result has been
given by Thangavelu [49]. This result can be seen a special case of a more general
transplantation result shown by Stempak and Trebels [47].

Stempak [43] exhibited a connection between Laguerre expansions and Hankel
transforms on the lebel of transplantation. He considered, for every n ∈ N, the
Laguerre function Lαn, α > −1, defined by

Lαn(x) =
(

2n!
Γ(n+ α+ 1)

)1/2

xα+1/2e−x
2/2Lαn(x2), x ∈ (0,∞),

and established the following transplantation result.

Theorem 3.1. ([43, Theorem 1.1]). Let 1 < p < ∞, a ∈ R and α, γ > −1. If the
Laguerre transplantation inequality∥∥∥∥ ∞∑

n=0

< f,Lγn > Lαn
∥∥∥∥
p,a

≤ C‖f‖p,a,

holds true, where, for every n ∈ N,

< f,Lγn >=
∫ ∞

0

f(x)Lγn(x)dx,

and ‖.‖p,a represents (as above) the norm in the space Lp((0,∞), xadx), the the Hankel
transplantation inequality

‖(Hν ◦ Hµ)f‖p,a ≤ C‖f‖p,a,

ia also satisfied (with the same constant C > 0).

A result like Theorem 3.1 where Laguerre functions were replaced by Jacobi func-
tions were established in [44, Theorem 2.1].

The corresponding property when Bessel functions are considered was proved in
[10].

Theorem 3.2. Let 1 < p < ∞, a ∈ R and ν, µ > −1. If the Fourier–Bessel
transplantation inequality

‖
∞∑
n=1

< f, ψµn > ψνn(x)‖p,a ≤ C‖f‖p,a,

holds true, where, for every n ∈ N,

< f, ψµn >=
∫ ∞

0

f(x)ψµn(x)dx,

then the Hankel transplantation inequality

‖(Hν ◦ Hµ)f‖p,a ≤ C‖f‖p,a,

is also satisfied (with the same constant C).
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Gilbert’s result [17, Theorem 1], and its weighted extension [19, Theorem 1] give a
weighted transplantation theorem for Fourier–Bessel expansions (the unweighted case
is stated as Theorem A and Theorem B in [17]). Consequently, Theorem 3.2 gives
the corresponding weighted transplantation inequality for the Hankel transform.

4. Some other questions.

In this section we present some questions related to the topics that we have dis-
cussed in the previous sections and that can be interesting for some readers.

a) Guadalupe and Kolyada [18] investigated transplantation theorems for ultra-
spherical expansions on Lorentz spaces. They completed, in some sense, previous
results of Askey and Wainger [5]. We think that is an interesting question to ob-
tain boundedness in Lorentz spaces for transplantation operators in the Bessel series
setting. Then a transference result could allow us to prove the boundedness for trans-
plantation Hankel operators.

b) In the celebrated paper [34], B. Muckenhoupt presented an exhaustive and
deeper study about transplantation theorems for Jacobi series. Recently, Ciaurri and
Stempak [12], inspired in the above quoted paper, have obtained transplantation re-
sults for Bessel series. An extension of Muckenhoupt’s properties to Hardy spaces
have been investigated by Miyachi [32]. In this moment Ciaurri and Stempak ([13])
are studying about Bessel series versions of Miyachi’s results. Also Kanjin [27] have
analized the transplantation problem in the Hankel setting on Hardy spaces. A trans-
ference theorem for the boundedness of the transplantion operators between Bessel
series and Hankel transforms on Hardy spaces have not proved yet.

c) An open question is to obtain transference results relating discrete Jacobi and
infinite Jacobi setting, that is, Jacobi expansions with Jacobi transforms. In this
context the procedures used in the Bessel setting in [10] do not work because the
homogeneity is missed (see [45]). A good understanding of the Jacobi case could
allow to analyze more general situations like Chebli-Trimeche transforms ([51] and
[52]).
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