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BOUNDARY NONLINEARITIES FOR A ONE-DIMENSIONAL
p-LAPLACIAN LIKE EQUATION

P. AMSTER, M.C. MARIANI AND P. DE NÁPOLI

Abstract. We study a nonlinear ordinary second order vector equation of p-

Laplacian type under nonlinear boundary conditions. Applying Leray-Schauder
arguments we obtain solutions under appropriate conditions. Moreover, for the

scalar case we prove the existence of at least one periodic solution of the problem

applying the method of upper and lower solutions.

INTRODUCTION

We consider a nonlinear one-dimensional problem for a vector function u : [0, T ] →
IRN satisfying

(1) (φ(u′))′ = f(t, u, u′) in (0, T )

where φ : IRN → IRN is a homeomorphism.
We study problem (1) under the following nonlinear boundary conditions:

(NBC) u(0) = h1(u(T ), u′(T )), u′(0) = h2(u(T ), u′(T ))

with hi : IR2N −→ IRN continuous.
Nonlinear boundary conditions for systems of semilinear ODE’s have been consid-

ered by different authors (see e.g. [BL], [E], [KL], [S], [AMP] and [BL2] for more
references). Using coincidence degree, Gaines and Mawhin [GM] proved a continua-
tion theorem for a general nonlinear condition which in the scalar second order case
reads

γ(u) = 0

where γ : C1([0, T ], IR) → IR2 is continuous and takes bounded sets into bounded
sets. The particular case

γ(u) = h(u(0), u(T ), u′(0), u′(T )),
corresponds to the general nonlinear two-point condition. Explicit results are known
for the special case

h(u) =
(
h1(u(0), u′(0)), h2(u(T ), u′(T ))

)
1
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which appears in different physical models, as a second order analogue for the axial
deformation of a nonlinear elastic beam [RS]. On the other hand, problems involving
a p-Laplacian have been widely studied for example in [DJM], [MM], [M].

SOME REMARKS ON THE GENERAL CASE

For M = (M1,M2) define:

h1,M = sup
|u|≤M1,|eu|≤M2

|h1(u, ũ)|,

h2,M = sup
|u|≤M1,|eu|≤M2

|φ(h2(u, ũ))|,

mφ(M2) = inf
|eu|=M2

|φ(ũ)|

and

RM = {X ∈ C([0, T ], IR2N ) : ‖x1‖∞ ≤M1, ‖x2‖∞ ≤ mφ(M2)}.

We shall assume that f is a Caratheodory function i.e. f(·, u, ũ) is measurable for
any fixed (u, ũ), and for any M there exists ρM ∈ L1(0, T ) such that

|f(t, u, ũ)| ≤ ρM a.e. for any |u| ≤M1, |ũ| ≤M2.

Theorem 1. Let M1,M2 > 0 and assume that

h1,M + TM2 ≤M1, h2,M + ‖ρM‖L1 ≤ mφ(M2)

Then (1)-(NBC) admits at least one solution u with (u, φ(u′)) ∈ RM .

Proof. Let us consider the equivalent system for X = (u, φ(u′)):{
X ′ = F (t,X) in (0, T )
X(0) = H(X(T ))

where
F (t, x1, x2) =

(
φ−1(x2), f(t, x1, φ

−1(x2))
)

and
H(x1, x2) =

(
h1(x1, φ

−1(x2)), φ[h2(x1, φ
−1(x2))]

)
.

Next, define the operator N : C([0, T ], IR2N ) → C([0, T ], IR2N ) given by

NX(t) = H(X(T )) +
∫ t

0

F (s,X).

By Arzelá-Ascoli Theorem, N is compact. Moreover, for X ∈ RM we have:

‖(NX)1‖∞ ≤ |h1

(
x1(T ), φ−1(x2(T ))

)
|+ T sup

t∈[0,T ]

|φ−1(x2(t))|
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‖(NX)2‖∞ ≤ |φ
(
h2

(
x1(T ), φ−1(x2(T ))

) )
|+

∫ T

0

|f(·, x1, φ
−1(x2))|.

As ‖x2‖∞ ≤ mφ(M2), it is clear that |φ−1(x2)| ≤M2, and then

‖(NX)1‖∞ ≤ h1,M + TM2, ‖(NX)2‖∞ ≤ h2,M + ‖ρM‖L1 .

Hence, N (RM ) ⊂ RM and by Schauder’s Theorem N has a fixed point X. Then
u = x1 is a solution of (1)-(NBC).

Theorem 2. Under the hypothesis of the previous theorem, assume also the Lipschitz-
type conditions for (u, ũ), (v, ṽ) ∈ RM :

(H1) |h1(u, φ−1(ũ))− h1(v, φ−1(ṽ))| ≤ k1|(u− v, ũ− ṽ)|

(H2) |φ(h2(u, φ−1(ũ)))− φ(h2(v, φ−1(ṽ)))| ≤ k2|(u− v, ũ− ṽ)|

(F) |f(t, u, φ−1(ũ))− f(t, v, φ−1(ṽ))| ≤ kf |(u− v, ũ− ṽ)|

(Φ) |φ−1(ũ)− φ−1(ṽ)| ≤ kφ|(ũ− ṽ)|

with
k1 + Tkφ < 1, k2 + Tkf < 1.

Then (1)-(NBC) admits a unique solution in RM .

Proof. In the situation of Theorem 1, using conditions (H1)-(H2)-(F)-(Φ) it is im-
mediate to prove that N is a contraction.

As a simple corollary, we deduce the existence of solutions under appropriate
growth conditions on f and hi:

Corollary 3. Let us assume that

|h1(u, ũ)| ≤ ψ1,1(|u|) + ψ1,2(|ũ|),

|φ(h2(u, ũ))| ≤ ψ2,1(|u|) + ψ2,2(|ũ|)
and

‖ρM‖L1 ≤ ψf,1(M1) + ψf,2(M2)

for any t ∈ [0, T ], with ψi,j positive and nondecreasing. Further, assume that the
following conditions hold:

lim sup
r→∞

ψ1,1(r)
r

= A < 1
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and

[ψ2,1 + ψf,1]
(
ψ1,2(r) + rT

1−A

)
+ [ψ2,2 + ψf,2](r) < mφ(r)

for r large. Then (1)-(NBC) admits at least one solution.

Proof. With the previous notations, set M1 = ψ1,2(M2)+TM2
1−A + ε and then, for M2

large and ε > 0 sufficiently small conditions of Theorem 1 are fulfilled.

A PARTICULAR CASE

In this section we study the following particular case of (1)-(NBC):

(2)
{

(φ(u′))′ + a(t)φ(u′) + g(t, u) = f(t) in (0, T )
u(0) = h1(u(T )), u′(0) = h2(u′(T ))

with g bounded and a ∈ C([0, T ], IRn×n). For example, when n = 1 we may consider
the forced pendulum equation with friction for a p-Laplacian:{

(|u′|p−2u′)′ + |u′|p−2u′ + b(t)sinp(u) = f(t) in (0, T )
u(0) = h1(u(T )), u′(0) = h2(u′(T ))

We recall that sinp is defined as the solution of the initial value problem(
|u′|p−2u′

)′
+ (p− 1)|u|p−2u = 0, u(0) = 0, u′(0) = 1,

or implicitly by the formula

t =
∫ sinpt

0

ds

(1− sp)1/p

for t ∈ [0, πp

2 ] and extended to a 2πp-periodic function, where πp is the constant given
by

πp = 2
∫ 1

0

ds

(1− sp)1/p
.

For simplicity we introduce the following notation: for any σ ∈ [0, 1] let Uσ be the
unique solution of the matricial equation

U ′ = −σaU, U(0) = Id ∈ IRn×n.
Moreover, we define

L(σ) = lim sup
|x|→∞

σĥ2(Uσ(T )x)x
|x|2

where ĥ2 = φ−1h2φ. Then we have:
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Theorem 4. Assume that

lim sup
|x|→∞

h1(x)x
|x|2

< 1

and that
sup

0≤σ≤1
L(σ) < 1.

Then (2) admits at least one solution for any bounded g.

Proof. As before, let us consider X = (u, φ(u′)) and the compact operator NX(t) =
H(X(T )) +

∫ t
0
F (s,X). Then, if X = σNX for 0 < σ ≤ 1, we obtain:

x′1 = σφ−1(x2), x1(0) = σh1(x(T ))

x′2 = σ(f − ax2 − g(·, x1)), x2(0) = σĥ2(x(T ))
Hence,

x2(t) = Uσ(t)c(t),
with

c(t) = c0 + σ

∫ t

0

U−1
σ (s)[f(s)− g(s, x1)]ds

Then

c0 = x2(0) = σĥ2(Uσ(T )[c0 +Rσ])

where Rσ = σ
∫ T
0
U−1
σ (s)[f(s)− g(s, x1)]ds is bounded. It follows that

|c0|2 + c0Rσ = σĥ2(Uσ(T )[c0 +Rσ])(c0 +Rσ) ≤ (1− δ)(c0 +Rσ)2

for some δ > 0 if |c0| is large enough. Thus c0 (and hence x2) is bounded. On the
other hand, from the equality

x1(t) = c1 + σ

∫ t

0

φ−1(x2), x1(0) = σh1(x1(T ))

we obtain that c1 = σh1(c1 + Sσ) where Sσ = σ
∫ T
0
φ−1(x2) is bounded. As before,

|c1|2 + c1Sσ ≤ (1− δ)(c1 + Sσ)2

and we conclude that c1 (and hence x1) is bounded. Thus, the result follows from
Leray-Schauder Theorem.

Remark . In particular, for the scalar case it suffices to assume that

lim sup
|x|→∞

h1(x)
x

< 1

and
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lim sup
|x|→∞

ĥ2(x)
x

= L <

 e
∫ T
0
a if

∫ T
0
a ≤ 1

e
R T
0 a otherwise.

Indeed, it suffices to observe that in this case Uσ(t) = e−σ
R t
0 a, and letting y =

e−σ
R T
0 ax we obtain:

σĥ2

(
e−σ

R T
0 ax

)
x

= σe−σ
R T
0 a ĥ2(y)

y
A simple computation shows that

max
0≤σ≤1

σe−σ
R T
0 a =

{
1

e
R T
0 a

if
∫ T
0
a ≤ 1

e−
R T
0 a otherwise

and the proof follows.

SCALAR CASE: UPPER AND LOWER SOLUTIONS FOR THE PE-
RIODIC PROBLEM

In this section we apply the method of upper and lower solutions in order to obtain
solutions for the scalar case of (2) when a = 0, h1 = h2 = id, and g is not necessarily
bounded. We shall need the following auxiliary lemmas:

Lemma 5. Assume that φ is nondecreasing and let λ > 0. Then for any θ ∈ C([0, T ])
the equation

(φ(u′))′ − λu = θ(t)
admits a unique T -periodic solution. Furthermore, the mapping T : C([0, T ]) →
C([0, T ]) given by T (θ) = u is compact.

Proof. Let us first note that for any ξ ∈ C([0, T ]) there exists a unique c = c(ξ) ∈ IR
such that ∫ T

0

φ−1
(
c+ ξ(t))dt = 0

Furthermore, the mapping ξ → c(ξ) is compact. Indeed, existence and uniqueness
follow immediately from the fact that φ is strictly monotone and that φ(x) → ±∞ as
x→ ±∞. On the other hand, if M > ‖ξ‖∞ then∫ T

0

φ−1
(
φ(0) +M + ξ

)
> 0 >

∫ T

0

φ−1
(
φ(0)−M + ξ

)
and hence c(ξ) ∈ [φ(0)− ‖ξ‖∞, φ(0) + ‖ξ‖∞]. Finally, note that if ξn → ξ uniformly,
taking a subsequence we may assume that c(ξn) → c for some c. Thus,

0 =
∫ T

0

φ−1
(
c(ξn) + ξn(t))dt→

∫ T

0

φ−1
(
c+ ξ(t))dt,
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and by uniqueness it follows that c(ξ) = c.
For u ∈ C([0, T ]) let ξu(t) =

∫ t
0
(λu+ θ) and define, for fixed s ∈ IR,

T u(t) = s+
∫ t

0

φ−1(c(ξu) + ξu(τ))dτ.

By Arzelá-Ascoli Theorem, it is easy to see that T is compact. Moreover, if u = σT u
for some σ ∈ (0, 1] we obtain for v = u

σ :

(φ(v′))′ − σλv = θ, v(0) = v(T ) = s

Let ϕ be defined by

ϕ(t) = s+
∫ t

0

φ−1
(
c(ξ0) + ξ0

)
then a simple computation shows that

‖v − ϕ‖L2 ≤ ‖ϕ‖L2

and hence ‖(φ(v′))′‖L2 ≤ C for some constant C. Take t0 such that v′(t0) = 0, then

|φ(v′(t))| ≤ |φ(0)|+
∫ t

t0

|(φ(v′))′| ≤ |φ(0)|+ T 1/2C

and hence ‖v‖∞ ≤ C̃ for some constant C̃. By Leray-Schauder Theorem, there exists
us such that

(φ(u′s))
′ − λus = θ, us(0) = us(T ) = s.

By monotonicity of φ it is immediate to prove that us is unique. Moreover, a simple
computation proves that the mapping s → us is continuous for the C([0, T ])-norm.
For s > 0 large enough, note that if us(t0) > s is maximum, we have that u′s is strictly
nondecreasing in a neighborhood of t0, a contradiction. Thus, us(T )− us(0) ≥ 0. In
the same way it follows that us(T ) − us(0) ≤ 0 for s << 0, and the existence of a
T -periodic solution follows. Uniqueness follows immediately from the monotonicity
of φ. Furthermore, if u1 and u2 are T -periodic with

(φ(u′i))
′ − λui = θi(t),

then

−
∫ T

0

(θ1 − θ2)(u1 − u2) =
∫ T

0

[φ(u′1)− φ(u′2)](u
′
1 − u′2) + λ

∫ T

0

(u1 − u2)2.

It follows that

‖u1 − u2‖L2 ≤ 1
λ
‖θ1 − θ2‖L2

and hence

‖(φ(u′1))
′ − (φ(u′2))

′‖L2 ≤ 2‖θ1 − θ2‖L2 .
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Thus,

‖φ(u′1)− φ(u′2)‖∞ ≤ c‖θ1 − θ2‖L2

for some constant c and the compactness of the mapping θ → u follows.

Lemma 6. Assume that φ is nondecreasing and let λ > 0. Let u, v be T -periodic
functions such that (φ(u′))′ − λu ≥ (φ(v′))′ − λv. Then u ≤ v.

Proof. Let t0 be the absolute maximum of u − v, and suppose that u(t0) > v(t0).
Then u′(t0) = v′(t0), and ϕ(t) = φ(u′(t)) − φ(v′(t)) is strictly nondecreasing in a
neighborhood U of t0 in [0, T ]. As φ(u′(t0))− φ(v′(t0)) = 0, we obtain that

φ(u′(t)) < φ(v′(t)) for t ∈ U , t < t0

and

φ(u′(t)) > φ(v′(t)) for t ∈ U , t > t0.

This implies that u− v has a local minimum in t0, a contradiction.

Theorem 7. Let φ be nondecreasing and assume there exist T -periodic functions
α ≤ β such that

(φ(α′))′ + g(t, α) ≥ f(t) ≥ (φ(β′))′ + g(t, β).
Further, assume there exists a constant R > 0 such that

g(t, u)− g(t, v)
u− v

≥ −R

for any u, v such that inft α(t) ≤ v < u ≤ supt β. Then the problem

(Per)
{

(φ(u′))′ + g(t, u) = f(t) in (0, T )
u(0) = u(T ), u′(0) = u′(T )

admits at least one solution u such that α ≤ u ≤ β.

Proof. Let E = {u ∈ C([0, T ]) : α ≤ u ≤ β} and fix a constant λ > R. For fixed
u ∈ E define T u = u the unique periodic solution of the equation

(φ(u′))′ − λu = f − g(·, u)− λu.

By Lemma 5, T : E → C([0, T ]) is well defined and compact. Moreover, as u ≤ β we
have that

(φ(u′))′ − λu = f − (g(·, u) + λu) ≥ f − (g(·, β) + λβ).
Hence, (φ(u′))′ − (φ(β′))′ − λ(u− β) ≥ 0, and by Lemma 6 it follows that u ≤ β. In
the same way we conclude that u ≥ α and the result follows by Schauder Theorem.

Example: the forced pendulum equation for a p-Laplacian
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(|u′|p−2u′)′ + sinp(u) = f(t)
admits a T -periodic solution for any forcing term f such that −1 ≤ f ≤ 1. Indeed, it
suffices to take α = πp

2 and β = 3
2πp.

As a simple corollary we have:

Corollary 8. Under the conditions of the previous theorem, let λ > R and define the
sequences {u±n } given by

u−0 = α, u+
0 = β

and u±n+1 the unique T -periodic function such that

(φ(u± ′
n+1))

′ − λu±n+1 = f − g(·, u±n )− λu±n .

Then {u−n } (resp. {u+
n }) is a nondecreasing (nonincreasing) sequence of subsolutions

(supersolutions) that converges pointwise to a solution of (Per). Moreover, u−n ≤ u+
n

for every n.

Proof. From the proof of the previous theorem we have that α ≤ u+
1 ≤ β. Assume

as inductive hypothesis that α ≤ u+
n ≤ u+

n−1, then u+
n+1 ≥ α. Moreover,

(φ(u+ ′
n+1))

′ − λu+
n+1 = f − (g(·, u+

n ) + λu+
n ) ≥ f − (g(·, u+

n−1) + λu+
n−1) =

= (φ(u+ ′
n ))′ − λu+

n

and it follows that u+
n+1 ≤ u+

n .
As u+

n is nonincreasing and bounded, it converges pointwise to a function u+.
Furthermore, from the proof of Lemma 5 {u+

n } is bounded for the H1-norm, and
from the compactness of the imbedding H1(0, T ) ↪→ C([0, T ]) it is easy to see that
u+
n → u+ in C([0, T ]). Using the definition of {u+

n } it is immediate that u+ is a
solution of the problem. The proof is analogous for {u−n }. Furthermore,

(φ(u± ′
n+1))

′ + g(·, u±n+1) = f + g(·, u±n+1)− g(·, u±n ) + λ(u±n+1 − u±n ).
Thus, it is easy to prove by induction that u+

n is a supersolution and u−n is a subso-
lution, with u−n ≤ u+

n .
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