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SMOOTHNESS PROPERTIES OF VARIETIES OF BORELS

DAVID JOYNER AND PABLO LEJARRAGA

Abstract. Let G be a connected reductive group defined over an algebraically

closed field k, T a fixed maximal torus in G, and B a fixed Borel subgroup
containing T , W the Weyl group of G relative to T , and S the set of simple

reflections in W defined by (T, B). We denote by X the projective variety of

Borel subgroups of G. Let O(w), w ∈ W , be the orbit of (B, wB) ∈ X × X

under the left action of G. Now we define O(s1, . . . , sn), si ∈ S, to be the closed
subvariety of Xn+1 whose points are the sequences (B0, B1, . . . , Bn), Bi ∈ X,

where (Bi−1, Bi) ∈ O(si) for i = 1, . . . , n. In this paper, we prove that the

canonical projections

π : O(s1, . . . , si)→ O(s1, . . . , si−1)

are P1-bundles, which implies that the variety O(s1, . . . , sn) is smooth over k.

All varieties or schemes and all morphisms are defined over a fixed algebraically
closed field k. For the main part, the only points of a variety under consideration are
the points rational over k. The context makes it clear when this is not the case. Let
G be a connected reductive algebraic group over k, T a fixed maximal torus, and B
a fixed Borel subgroup containing T , W = NG(T )/T the Weyl group of G relative to
T , and S the set of simple reflections in W defined by (T,B). We denote by X the
projective variety of Borel subgroups of G. Its structure of algebraic variety is defined
by the canonical G-equivariant bijection gB = gBg−1 7→ gB of X onto G/B. Note
that if w ∈ W , we can also define wB = wBw−1 and wB in the usual way, and they do
not depend on the representative ẇ of w chosen to define them. Let O(w), w ∈ W , be
the orbit of (B, wB) ∈ X ×X under the left action of G. The set O(w), being locally
closed ([Bor], 1.8, Proposition, p.53), defines a subvariety of X ×X. Now we define
O(s1, . . . , sn), si ∈ S, to be the closed subvariety (resp. O(s1, . . . , sn), si ∈ S, to be
the subvariety) of Xn+1 whose points are the sequences (B0, B1, . . . , Bn), Bi ∈ X,
where (Bi−1, Bi) ∈ O(si) for i = 1, . . . , n (resp. (Bi−1, Bi) ∈ O(si) for i = 1, . . . , n).
In particular, for n = 0, O() = O() = X. Moreover, if G is defined over a finite field
Fq and F is the Frobenius morphism of G, we define the subvariety X(s1, . . . , sn) of
O(s1, . . . , sn) (resp. the subvariety X(s1, . . . , sn) of O(s1, . . . , sn)) by the additional
condition that F (B0) = Bn. We call these subvarieties, which are defined over Fq,
Deligne-Lusztig varieties.

The varieties considered above were first introduced by Deligne and Lusztig as
a technical tool in representation theory (See [D-L], 9.1, p.147). Lately they have
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appeared in other contexts (e.g. S. H. Hansen [Han1], [Han2]). In particular, the
applications of Deligne-Lusztig varieties to the theory of error-correcting codes depend
on two properties: smoothness and the existence of “many” rational points. The
existence of “many” rational points is known only in very special cases (see J. P.
Hansen [H], F. Rodier [R]). Nevertheless, it seems reasonable to conjecture such
results in general. With respect to smoothness, the proofs are part of the folklore
known to the experts, but complete proofs have never appeared. As preparation for
further research, in this paper we prove a fundamental theorem that implies the main
smoothness results.

More precisely, we prove that the canonical projections

π : O(s1, . . . , si) → O(s1, . . . , si−1) (1)

are P1-bundles, which implies that the variety O(s1, . . . , sn) is smooth over k and
that the variety X(s1, . . . , sn) is smooth over Fq. In a special case, this result seems
to be implicit in [D-L], 9.2, p.148. As a corollary , we obtain desingularizations of
O(w) and of the Schubert varieties considered by Demazure ([Dem]). Finally, with
the hope of mitigating the stylistic dryness of this paper, we apply our results to
construct a new class of error-correcting codes.

We call a Pn-bundle a morphism of schemes f : E → Y such that for an open
covering Uα of Y , E|Uα = f−1(Uα) is Uα-isomorphic to Uα × Pn, i.e. there is an
isomorphism of E|Uα onto Uα × Pn compatible with the projections of these two
schemes onto Uα. As indicated at the beginning, all schemes and morphisms are
defined over k. This notion coincides with that of a locally trivial fiber space with
fiber Pn and structure group PGLn+1, the full group of automorphisms of Pn ([Gro],
ch.IV, 4.7).

Before proceeding, note that the projections π in (1) are G-equivariant with respect
to the left action of G.

Lemma 1. The morphism π : O(s) → X, s ∈ S, is a P1-bundle.

To avoid introducing additional notation, in the course of this proof we will view X
as G/B with the pertinent changes for O(s) and π. Since π is G-equivariant, it will be
enough to find a nonempty open subset V of G/B such that O(s)|V is V -isomorphic
to V ×P1. The family {gV | g ∈ G} gives the required covering of G/B because each
g ∈ G induces isomorphisms V −→ gV , O(s)|V −→ gO(s)|gV , and V ×P1 −→ gV ×P1

that allow us to transport the given V -isomorphism O(s)|V −→ V × P1 to a gV -
isomorphism gO(s)|gV −→ gV ×P1. Let U be the unipotent part of B, B′ the Borel
subgroup opposite to B, and U ′ its unipotent part. We have U ∩B′ = U ′ ∩B = {e}.

1. The set U ′B, the big cell, is open in G ([Hum], 28.5, Proposition, p.174); since
it is also saturated with respect to the equivalence relation defined by B (i.e. it
is a union of B-equivalence classes), the quotient U ′B/B is open in G/B. We set
V = U ′B/B and observe that the canonical bijective quotient morphism

τ : U ′ → V = U ′B/B

is an isomorphism ([Bor], 6.1, Corollary, p.95).
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2. Let Ps = BsB∪B be the minimal parabolic generated by B and s ([Hum], 29.3,
Lemma B, p.178). Since dim(Ps/B) = 1, it follows ([Hum], 25.3, Theorem p.154, or
[Bor], 13.13, Proposition, p.171) that Ps/B ∼= P1.

3. We need to show that

π−1(V ) = {(uB, upB) | u ∈ U ′, p ∈ Ps}.

The inclusion of the second set into the first is clear. To prove that the first set is
included in the second, pick an element (gB, gsB), gB = uB, g ∈ G and u ∈ U ′.
Then g = ub, and, setting p = bṡ with ṡ a representative of s, bsB = ubsB = upB.

4. Finally, the map
π−1(V ) → V × (Ps/B)

(uB, upB) 7→ (uB, pB)

is well-defined as a set-theoretic map given that the u ∈ U ′ is uniquely determined
by uB, and pB is obtained by multiplying upB by u−1 on the right. To prove that
this map is a morphism, we first notice that

π−1(V ) ⊂ V × (G/B).

Call pr1 and pr2 the projections of V × G/B onto V and G/B, inv : U ′ → U ′ the
inverse, i.e. inv(u) = u−1, and recall that τ : U ′ → V was the canonical isomorphism.
With these notations, our map becomes

(pr1, (inv ◦ τ−1 ◦ pr1) · pr2)

with the domain restricted to π−1(V ) and the codomain restricted to V × (G/B)
if necessary. This proves that our map is a morphism. We leave to the reader to
define the inverse in the obvious way and to show that it is a morphism. Clearly both
morphisms are V -morphisms.

Remark 2. We mention that O(s) is also a P1-bundle with respect to the second
projection. This can be seen easily by starting with the new pair of maximal torus
s−1

T = T and Borel s−1
B instead of T and B.

In the future we want to identify

O(s1, . . . , si) = O(s1, . . . , si−1)×X O(si)

as schemes, where the morphisms into X defining the right hand side are respec-
tively the last and the first projections. The reader can verify that the canoni-
cal map (B0, . . . , Bi) 7→ ((B0, . . . , Bi−1), (Bi−1, Bi)) is an isomorphism on the level
of varieties (=reduced schemes), and the only technical point left to check is that
O(s1, . . . , si−1)×X O(si) is reduced. This is true because this fiber product is a P1-
bundle over O(s1, . . . , si−1), being obtained from the P1-bundle O(si) = O(si) by
extending the base from X to O(s1, . . . , si−1). By induction, we can also get the
identification

O(s1, . . . , si) = O(s1)×X · · · ×X O(si)

with the appropriate projections. Now, combining these identifications with 1, we get
the following theorem.
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Theorem 3. The morphism

π : O(s1, . . . , sn) → O(s1, . . . , sn−1),

si ∈ S, is a P1-bundle.

We call the sequence

O(s1, . . . , sn) → O(s1, . . . , sn−1) → · · · → O(s1) → O() = X

the iterated P1-bundle over X corresponding to (s1, . . . , sn).

Corollary 4. The variety O(s1, . . . , sn), si ∈ S, is irreducible and smooth of dimen-
sion dim(X) + n over k, and O(s1, . . . , sn) is dense open in O(s1, . . . , sn).

We recall that, if E −→ Y is a P1-bundle, and Y is smooth over k (resp. irreducible
over k), then E is smooth over k (resp. irreducible over k). For the irreducibility,
see, for instance, [EGA], IV, 2.3.5 (iii). By considering the iterated P1-bundle over
X corresponding to (s1, . . . , sn), the theorem reduces to the fact that X itself is
irreducible and smooth over k, which follows from the connectedness of G and the
transitivity of the action of G on X. The assertion about the dimension is clear. The
fact that O(s1, . . . , sn) is open in O(s1, . . . , sn) follows easily from the definitions.
Since O(s1, . . . , sn) is irreducible and O(s1, . . . , sn) is nonempty and open, it is also
dense.

Now let w = s1 . . . sn, si ∈ S, i = 1, . . . , n, be a reduced decomposition of w ∈ W .
We have a commutative diagram

O(s1, . . . , sn) O(w)-φ

X

$
@

@
@
@R

π
�

�
�

�	
(2)

where φ is the morphism defined by φ(B0, . . . , Bn) = (B0, Bn) (See [D-L], 9.1, p.148
and [D-L], 1.2(a), p.106), and $ and π are the first projections. In the following corol-
lary, by desingularization, we mean with Grothendieck ([EGA], IV, 7.9.1) a proper
birational morphism (consequently surjective) of a nonsingular variety into another,
possibly singular, variety.

Corollary 5. With the notations above, always assuming that w = s1 . . . sn is a
reduced decomposition, we have:

(i) The morphism φ : O(s1, . . . , sn) −→ O(w) is a desingularization.
(ii) For any x ∈ X, the restriction φx : $−1(x) −→ π−1(x) of φ to the fibers of $

and π over x is a desingularization.

(i) This result is known and appears in a more precise form in [D-L], 9.1, p.148.
We sketch an argument in the present context. It is clear that the morphism φ is
proper, being a morphism of projective varieties. Moreover φ induces an isomorphism
φ0 : O(s1, . . . , sn) ∼−→ O(w) since w = s1 . . . sn is a reduced decomposition ([D-L],
p.106). The rest follows from Corollary 4.
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(ii) As in (i), the morphism φx is proper, being a morphism of projective varieties.
The commutative diagram (2) restricts to

O(s1, . . . , sn) O(w)-
φ0

∼

X

$0
@

@
@
@R

π0
�

�
�

�	

In this situation, the restriction φ0
x : ($0)−1 −→ (π0)−1 of φ0 to the fibers over x is

also an isomorphism. On the other hand

($0)−1(x) = $−1(x) ∩O(s0, . . . , sn)

is nonempty and open, and consequently dense in $−1(x). Similarly

(π0)−1(x) = π−1(x) ∩O(w)

is nonempty and open, and consequently dense in π−1(x).

Remark 6. For w ∈ W , let S(w) be the image of the Bruhat cell C(w) = BwB

under the morphism G −→ G/B −→ X, g 7→ gB 7→ gBg−1. The closure S(w) is
called the Schubert variety corresponding to w. Then S(w) = {bwB | b ∈ B} and, if
xB = B ∈ X,

(π0)−1(xB) = {(gB, gwB) | gB = B} = {B} × S(w).

Thus we can identify S(w) = π−1(xB) and we can regard the morphism φxB
as a

desingularization of the Schubert variety S(w).

Now, let G be defined over the finite field Fq, and let si ∈ S.

Corollary 7. The Deligne-Lusztig variety X(s1, . . . , sn) is smooth over Fq.

Taking into account Corollary 4, the proof in [D-L], Lemma 9.11, p.151, extends
to this case.

Finally, as promised at the beginning, we show how to construct a new class of
error-correcting codes. Let D be a divisor on Y = X(s1, ..., sn), which is smooth over
Fq by Corollary 7. We denote by

L(D) = {f ∈ Fq(Y )∗ | div(f) + D ≥ 0} ∪ {0}

the Riemann-Roch space associated to Y . Let E = {P1, ...., Pn} be a subset of Y (Fq)
disjoint from supp(D). The set

C = {(f(P1), ..., f(Pn)) | f ∈ L(D)}.

is the algebraic-geometric code associated to Y /Fq, D, and E. If (s1, . . . , sn) ∈ W
is not a reduced decomposition of s1 . . . sn, this code is not, as far as we are able
to determine, included in the family of error-correcting codes constructed in [Han3]
arising from Deligne-Lustig varieties of higher rank.
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