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SIMULTANEOUS APPROXIMATION WITH LINEAR
COMBINATION OF INTEGRAL BASKAKOV TYPE

OPERATORS

KAREEM J. THAMER, MAY A. AL-SHIBEEB AND A.I. IBRAHEM

Abstract. The aim of the present paper is to study some direct results in

simultaneous approximation for the linear combination of integral Baskakov

type operators.

1 INTRODUCTION
Agrawal and Thamer [1] introduced a new sequence of linear positive operators

Mncalled integral Baskakov – type operators to approximate unbounded continu-
ous functions on [0,∞) and it is defined as follow

Let α > 0, f ∈ Cα [0,∞) = {f ∈ C [0,∞) : |f (t)| ≤ M (1 + t)α
for some

M > 0}.
Then,

(1.1) Mn (f (t) ;x) = (n− 1)
∞∑

υ=1
pn,υ (x)

∞∫
0

pn,υ−1 (t) f (t) dt + (1 + x)−n
f (0),

where pn,υ (x) =
(

n + υ − 1
υ

)
xυ (1 + x)−(n+υ)

, x ∈ [0,∞) is the kernel

of Lupas operators Ln (f (t) ;x) =
∞∑

υ=0

(
n + υ − 1

υ

)
xυ (1 + x)−(n+υ)

f (υ/n).

We may also write (1.1) as :

Mn (f (t) ;x) =

∞∫
0

Wn (t, x) f (t) dt ,

where Wn (t, x) = (n− 1)
∞∑

υ=1
pn,υ (x) pn,υ−1 (t) + (1 + x)−n

δ (t) , δ (t) being

the Dirac delta function.
The space Cα [0,∞) is normed by ‖f‖Cα

= sup
0≤t≤∞

|f (t)| (1 + t)−α.

The operator (1.1) was used to study the degree of approximation in simulta-
neous approximation by Agrawal and Thamer [1]. It turned out that the order
of approximation by the operator (1.1) is, at best, O

(
n−1

)
, howsoever smooth

the function may be. Thus, if we want to have a better order of approximation,
we have to slacken the positivity condition. This is achieved by considering some
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carefully chosen linear combination introduced by May [6] and Rathore [7] of the
operator (1.1). The linear combination is defined as follows:

Let d0, d1, . . . , dk be (k + 1) arbitrary but fixed distinct positive integers.
Then, following Agrawal and Sinha [3] , the linear combination Mn (f, k, x) of
Mdjn (f ;x) , j = 0, 1, 2, . . . , k is given by

(1.2) Mn (f, k, x) =
1
∆

∣∣∣∣∣∣∣∣∣
Md0n (f ;x) d−1

0 d−2
0 . . . d−k

0

Md1n (f ;x) d−1
1 d−2

1 . . . d−k
1

...
...

... . . .
...

Mdkn (f ;x) d−1
k d−2

k . . . d−k
k

∣∣∣∣∣∣∣∣∣ ,

where ∆ is the Vandermonde determinant obtained by replacing the operator
column of the above determinant by the entries 1. We have

(1.3) Mn (f, k, x) =
k∑

j=0

C (j, k) Mdjn (f ;x) ,

where

(1.4) C (j, k) =
k∏

i = 0
i 6= j

dj

dj − di
, k 6= 0 and C (0, 0) = 1.

The object of the present paper is to investigate the degree of approximation
of the operator M

(r)
n (f, k, x). First we establish a Voranovskaja type asymp-

totic formula and then obtain an error estimate in terms of the local modulus of
continuity for the operator M

(r)
n (f, k, x).

2 AUXILIARY RESULTS

Throughout our work, N denotes the set of natural numbers, N0 integers, and
〈a, b〉 an open interval containing [a, b].

LEMMA 2.1 [4]. If for m ∈ N0 (the set of nonnegative integers), the mth

order moment of Lupas operators is defined by

µn,m (x) =
∞∑

υ=0

pn,υ (x)
(υ

n
− x

)m

.

Hence, µn,0 (x) = 1 , µn,1 (x) = 0, and there holds the recurrence relation

nµn,m+1 (x) = x (1 + x)
[
µ′n,m (x) + mµn,m−1 (x)

]
, m ∈ N.

Consequently
(i) µn,m (x) is a polynomial in x of degree at most m.
(ii) For every x ∈ [0,∞) , µn,m (x) = O

(
n−[(m+1)/2]

)
, where [β] denotes the

integral part of β.
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LEMMA 2.2 [1]. Let the function Tn,m (x) , m ∈ N0 be defined as

Tn,m (x) = (n− 1)
∞∑

υ=1

pn,υ (x)

∞∫
0

pn,υ−1 (t) (t− x)m
dt + (−x)m (1 + x)−n

.

Then,

Tn,0 (x) = 1 , Tn,1 (x) =
2x

n− 2
and

(n−m− 2) Tn,m+1 (x) = x (1 + x) T ′n,m (x) + [(2x + 1) m + 2x] Tn,m (x) +

+ 2mx (1 + x) Tn,m−1 (x) , m ∈ N.

Hence,
(i) Tn,m (x) is a polynomial in x of degree m.

(ii) For every x ∈ [0,∞) , Tn,m (x) = O
(
n−[(m+1)/2]

)
.

(iii) The coefficients of n−(υ+1) in Tn,2υ+2 (x) and Tn,2υ+1 (x) are given by
(2υ + 2)! {x (1 + x)}υ+1

(υ + 1)!
and

(2υ + 1)!
υ!

{(υ + 1) (1 + 2x)− 1} {x (1 + x)}υ.

LEMMA 2.3 [5]. There exist polynomials qi,j,r (t) independent of n and υ
such that

tr (1 + t)r dr

dtr
pn,υ (t) =

∑
2i + j ≤ r
i, j ≥ 0

ni (υ − nt)j
qi,j,r (t) pn,υ (t) .

LEMMA 2.4 [6].If C (j, k) , j = 0, 1, 2, . . . , k are defined as in (1.4), then
k∑

j=0

C (j, k) d−m
j =

{
1, m = 0
0, m = 1, . . . , k

.

LEMMA 2.5 [8].Let f be r times differentiable on [0,∞) such that f (r−1) (t) =
O (tα) for some α as t −→∞. Then for r = 1, 2, . . . and n > α + r, we have

M (r)
n (f (t) , x) =

(n + r − 1) ! (n− r − 1) !
(n− 1) ! (n− 2) !

×

×
∞∑

υ=1

pn+r,υ (x)

∞∫
0

pn−r,υ+r−1 (t) f (r) (t) dt.

LEMMA 2.6 [2]. For r ∈ N and n sufficiently large, there holds

Mn ((t− x)r
, k, x) = n−(k+1) {Q (r, k, x) + o (1)} ,

where Q (r, k, x) is a certain polynomial in x of degree r.
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3 MAIN RESULTS

In this section we shall state and prove the main results.
Theorem 3.1.Let f ∈ Cα [0,∞) and be bounded on every finite subinterval of

[0,∞) admitting a derivative of order 2k + r + 2 at a fixed point x ∈ (0,∞). Let
f (t) = O (tα) as t −→∞ for some α > 0, then we have

(3.1) Lim
n−→∞

nk+1
[
M (r)

n (f, k, x)− f (r) (x)
]

=
2k+r+2∑

i=r

f (i) (x) Q (i, k, r, x)

and

(3.2) Lim
n−→∞

nk+1
[
M (r)

n (f, k + 1, x)− f (r) (x)
]

= 0,

where Q (i, k, r, x) are certain polynomials in x.
Further, the Limits (3.1) and (3.2) hold uniformly in [a, b], if f (2k+r+2) exists

and is continuous on (a− η, b + η) ⊂ (0,∞) , η > 0.
Proof. By the Taylor expansion, we have

f (t) =
2k+r+2∑

i=0

f (i) (x)
i !

(t− x)i + ε (t, x) (t− x)2k+r+2
,

where ε (t, x) −→ 0 as t −→ x.
Thus, using Lemma 2.5, we have for sufficiently large n

nk+1
[
M (r)

n (f, k, x)− f (r) (x)
]

= nk+1

 k∑
j=0

C (j, k) M
(r)
djn (f ;x)− f (r) (x)


= I1 + I2,

where

I1 = nk+1

[
2k+r+2∑

i=0

f (i) (x)
i !

k∑
j=0

C (j, k)
(djn− r − 2) ! (djn + r − 1) !

(djn− 1) ! (djn− 2) !

×
∞∑

υ=1

pdjn+r,υ (x)

∞∫
0

pdjn−r,υ+r−1 (t)
dr

dtr
(t− x)i

dt− f (r) (x)

+ (−1)2k+r+2 (n + 2k + r + 1) !
(n− 1) !

(1 + x)−n−2k−r−2
f (0)

]
.

I2 = nk+1

 k∑
j=0

C (j, k) (djn− 1)
∞∑

υ=1

p
(r)
djn,υ (x)

×
∞∫
0

pdjn,υ−1 (t) ε (t, x) (t− x)2k+r+2
dt
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+ (−1)2k+r+2 (n + 2k + r + 1) !
(n− 1) !

(1 + x)−n−2k−r−2
f (0)

]
.

It’s clear that

(−1)2k+r+2 (n + 2k + r + 1) !
(n− 1) !

(1 + x)−n−2k−r−2
f (0) −→ 0 as n −→∞.

Let I1 = I3 + I4, where

I3 =

[
nk+1

2k+r+2∑
i=r+1

f (i) (x)
i !

k∑
j=0

C (j, k)
(djn− r − 2) ! (djn + r − 1) !

(djn− 1) ! (djn− 2) !

×
∞∑

υ=1

pdjn+r,υ (x)

∞∫
0

pdjn−r,υ+r−1 (t)
dr

dtr
(t− x)i

dt

 .

I4 = nk+1

f (r) (x)
k∑

j=0

C (j, k)
(djn− r − 2) ! (djn + r − 1) !

(djn− 1) ! (djn− 2) !
− f (r) (x)

 .

Thus, by (1.4),

I4 = nk+1f (r) (x)

 k∑
j=0

C (j, k)
(djn− r − 2) ! (djn + r − 1) !

(djn− 1) ! (djn− 2) !
− 1

 .

Now, in view of Lemma 2.4, we have

I4 = f (r) (x) K (r, k) + o (1) , n −→∞ ,

where K (r, k) is a constant depending only on r and k.
Next, by Lemma 2.4 and Lemma 2.6,we get

I3 =
2k+r+2∑
i=r+1

f (i) (x) Q (i, k, r, x) + o (1), n −→∞.

Thus

I1 −→ f (r) (x) K (r, k) +
2k+r+2∑
i=r+1

f (i) (x) Q (i, k, r, x)

=
2k+r+2∑

i=r

f (i) (x) Q (i, k, r, x) as n −→∞.

Now we must prove that I2 −→ 0 as n −→ ∞. For this, it is sufficient to prove
that

I ≡ xrnk+1M (r)
n

(
ε (t, x) (t− x)2k+r+2 ;x

)
−→ 0 as n −→∞.

Using Lemma 2.3, we get

|I| ≤ nk+1 (n− 1) M (x)
∑

2i + j ≤ r
i, j ≥ 0

ni
∞∑

υ=1

pn,υ (x) |υ − nx|j
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×
∞∫
0

pn,υ−1 (t) |ε (t, x)|
∣∣∣(t− x)2k+r+2

∣∣∣ dt,

where M (x) = sup |qi,j,r (x)|, and then applying the Schwarz inequality we get:

|I| ≤ nk+1 (n− 1) M (x)
∑

2i + j ≤ r
i, j ≥ 0

ni

{ ∞∑
υ=1

pn,υ (x) (υ − nx)2j

}1/2

×


∞∑

υ=1

pn,υ (x)

 ∞∫
0

pn,υ−1 (t) |ε (t, x)|
∣∣∣(t− x)2k+r+2

∣∣∣ dt

2


1/2

.

Since ε (t, x) −→ 0 as t −→ x, for a given ε > 0 there exists a δ > 0 such that
|ε (t, x)| < ε, whenever 0 < |t− x| < δ, and for |t− x| ≥ δ there exists a constant
C such that |ε (t, x)| ≤ C |t− x|β , where β is an integer ≥ max (α, 2k + r + 2) .

Hence, as
∞∫
0

pn,υ−1 (t) dt = 1
n−1 , we have

 ∞∫
0

pn,υ−1 (t) |ε (t, x)|
∣∣∣(t− x)2k+r+2

∣∣∣ dt

2

≤

≤

 ∞∫
0

pn,υ−1 (t) dt

  ∞∫
0

pn,υ−1 (t) (ε (t, x))2 (t− x)4k+2r+4
dt

 .

≤ 1
n− 1

 ∫
0<|t−x|<δ

pn,υ−1 (t) ε2 (t− x)4k+2r+4
dt

+
∫

|t−x|≥δ

pn,υ−1 (t) C2 (t− x)4k+2r+2β+4
dt

 .

Now, by Lemma 2.2, we get

∞∑
υ=1

pn,υ (x)

 ∞∫
0

pn,υ−1 (t) |ε (t, x)|
∣∣∣(t− x)2k+r+2

∣∣∣ dt

2

≤

≤ 1
n− 1

∞∑
υ=1

pn,υ (x)

∞∫
0

pn,υ−1 (t) ε2 (t− x)4k+2r+4
dt

+
C2

n− 1

∞∑
υ=1

pn,υ (x)

∞∫
0

pn,υ−1 (t) (t− x)4k+2r+2β+4
dt.
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≤ ε2 1
n− 1

[
Tn,4k+2r+4 (x)− (−x)4k+2r+4 (1 + x)−n

]
+

C2

n− 1

[
Tn,4k+2r+2β+4 (x)− (−x)4k+2r+2β+4 (1 + x)−n

]
.

= ε2 O
(
n−(2k+r+2)

)
+ O

(
n−(2k+r+β+2)

)
.

By Lemma 2.1, we have

|I| ≤ nk+1M (x)
∑

2i + j ≤ r
i, j ≥ 0

ni+jO
(
n−j/2

)
O

(
n−(2k+r+2)/2

)

×
{
ε2 + O

(
n−β

)}1/2
.

= O (1)
{
ε2 + O

(
n−β

)}1/2

≤ ε O (1) .

Since ε > 0 is arbitrary, it follows that I −→ 0 as n −→ ∞. The assertion (3.2)
follows along similar lines by using Lemma 2.4 for k + 1 in place of k.

The last assertion follows, due to the uniform continuity of f (2k+r+2) on [a, b] ⊂
R+ (enabling δ to became independent of x ∈ [a, b] ) and the uniform of o (1) term
in the estimate of I3 and I4 (because, in fact, it is a polynomial in x).

The next result provides an estimate of degree approximation in M
(r)
n (f ;x)

−→ f (r) (x) , r ∈ N0.

Theorem 3.2. Let 1 ≤ p ≤ 2k + 2 and f ∈ Cα [0,∞) be bounded on every
finite subinterval of [0,∞). Let f (t) = O (tα) as −→ ∞ for some α > 0.If f (p+r)

exists and is continuous on (a− η, b + η) ⊂ (0,∞) , η > 0, then for n sufficiently
large ∥∥∥M (r)

n (f, k, x)− f (r)
∥∥∥ ≤ max

(
C1n

−p/2ωf(p+r)

(
n−1/2

)
, C2n

−(k+1)
)

,

where ωf(p+r) (δ) denotes the modulus continuity of f (p+r) on (a− η, b + η), C1 =
C1 (k, p, r) , C2 = C2 (k, p, r, f) and ‖.‖ denotes the sup-norm on [a, b].

Proof: For x ∈ [a, b] and t ∈ [0,∞) , by the hypothesis we have

(3.3)f (t) =
p+r∑
i=0

f (i) (x)
i !

(t− x)i+

(
f (p+r) (ξ)− f (p+r) (x)

)
(p + r) !

(t− x)(p+r) (1− χ (t))

+h (t, x) χ (t) ,

where ξ lies between t and x , and χ (t) is the characteristic function of the set
[0,∞) \ (a− η, b + η) , η > 0.Operating on this equality by M

(r)
n (., k, x) and

breaking the right hand side into three parts I1 , I2 and I3 say, corresponding
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to the three terms on the right hand side of (3.3) as in the proof of Theorem 3.1,
we have

I1 =
p+r∑
i=0

f (i) (x)
i !

M (r)
n

(
(t− x)i

, k, x
)

= f (r) (x) + O
(
n−(k+1)

)
,uniformly for all x ∈ [a, b] .

To estimate I2, we have for every δ > 0∣∣∣f (p+r) (ξ)− f (p+r) (x)
∣∣∣ ≤ ωf(p+r) (|ξ − x|)

≤ ωf(p+r) (|t− x|)

(3.4) ≤
(

1 +
|t− x|

δ

)
ωf(p+r) (δ) .

Since

I2 =
k∑

j=0

C (j, k) (djn− 1)
∞∑

υ=0

p
(r)
djn,υ (x)

×
∞∫
0

pdjn,υ−1 (t)

(
f (p+r) (ξ)− f (p+r) (x)

)
(p + r) !

(t− x)(p+r) (1− χ (t)) dt.

Using (3.4) and Lemma 2.3, we have

|I2| ≤
1

(p + r) !

k∑
j=0

|C (j, k)|
∞∑

υ=0

∣∣∣p(r)
djn,υ (x)

∣∣∣
×

∞∫
0

pdjn,υ−1 (t)
(

1 +
|t− x|

δ

)
|t− x|(p+r)

ωf(p+r) (δ) dt

≤
ωf(p+r) (δ)
(p + r) !

k∑
j=0

|C (j, k)|
∑

2i + s ≤ r
i, s ≥ 0

(djn)i |qi,s,r (x)|
xr (1 + x)r

×
∞∑

υ=1

pdjn,υ (x) |(υ − djnx)|s
∞∫
0

pdjn,υ−1 (t)
(
|t− x|p+r +

1
δ
|t− x|p+r+1

)
dt.

Putting K = sup
x∈[a,b]

sup
2i + s ≤ r
i, s ≥ 0

|qi,s,r(x)|
xr(1+x)r , then applying Schwarz inequality for

summation and for integral and Lemmas 2.1 and 2.2 as in the proof of theorem
3.1, we get

|I2| ≤ K

[
O

(
n−p/2

)
+

1
δ

O
(
n−(p+1)/2

)]
ωf(p+r) (δ) .
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Choosing δ = n−1/2, it follows that

I2 = ωf(p+r)

(
n−1/2

)
O

(
n−p/2

)
,

where O−term holds uniformly in x ∈ [a, b].
For x ∈ [a, b] and t ∈ [0,∞) \ (a− η, b + η), we can choose a δ > 0 in such a

way that |t− x| ≥ δ. Hence

|I3| ≤
k∑

j=0

|C (j, k)| (djn− 1)
∑

2i + s ≤ r
i, s ≥ 0

(djn)i |qi,s,r (x)|
xr (1 + x)r

×
∞∑

υ=1

pdjn,υ (x) |(υ − djnx)|s
∫

|t−x|≥s

pdjn,υ−1 (t) |h (t, x)| dt.

Now, for |t− x| ≥ δ we can find a positive constant M such that |h (t, x)| ≤
M |t− x|γ , where γ is any integer≥ max (α, 2k + r + 2).

Hence, by Schwarz inequality, Lemmas 2.1 and 2.2 we have

|I3| ≤ M
k∑

j=0

|C (j, k)| (djn− 1)
∑

2i + s ≤ r
i, s ≥ 0

(djn)i |qi,s,r (x)|
xr (1 + x)r

×
∞∑

υ=1

pdjn,υ (x) |(υ − djnx)|s
∫

|t−x|≥s

pdjn,υ−1 (t) |t− x|γ dt.

= O
(
n(r−γ)/2

)
= O

(
n−(k+1)

)
uniformly in x ∈ [a, b] .

The required result follows on combining the estimates of I1 , I2 and I3.
Acknowledgement. The authors are thankful to the referee for making sub-

stantial improvements in the paper.
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