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ON THE RELATIONSHIP BETWEEN DISJUNCTIVE
RELAXATIONS AND MINORS IN PACKING AND COVERING

PROBLEMS

V. LEONI ∗ G. NASINI †

Abstract. In 2002, Aguilera et al. analyzed the performance of the dis-

junctive lift-and-project operator defined by Balas, Ceria and Cornuéjols on

covering and packing polyhedra, in the context of blocking and antiblocking
duality. Their results generalize Lovász’s Perfect Graph Theorem and a theo-

rem of Lehman on ideal clutters. This study motivated many authors to work

on the same ideas, providing alternative proofs and analyzing the behaviour
of other lift-and-project operators in the same context.

In this paper, we give a survey of the results in the subject and add

some new results, showing that the key of the behaviour of the disjunctive
operator on these particular classes of polyhedra is the strong relationship

between disjunctive relaxations and original relaxations associated to some
minors.

1. INTRODUCTION

Many problems in Combinatorial Optimization can be formulated as 0− 1 linear
programs, where the set S of feasible solutions may be seen as the set of integral
solutions in a polyhedron K, i.e. S = K ∩ Zn.
In spite of optimizing a linear function over S is equivalent to do it over

K∗ := conv(S) = conv(K ∩ Zn),

in the general case, the complete description of K∗ by linear inequalities is not
known. Moreover, in most of the cases, even though a partial description is found,
an exponential number of inequalities is involved.
A polyhedron K ⊂ Rn will be called a relaxation of S ⊂ Rn if S = K ∩ Zn.
Given two different relaxations K and K ′ of S such that S ⊂ K ′ ⊂ K, the bound
obtained by optimizing over K ′ is tighter than the one obtained by optimizing
over K and we say that the relaxation K is weaker than K ′.
This fact motivates the definition of operators such that, applied on a relaxation
K of S, in each step they obtain a new relaxation K ′ ⊂ K, arriving to conv(S) in
a finite number of iterations.
This is the case of the N and N+ lift-and-project operators defined by Lovász and
Schrijver [12] and the disjunctive operator (BCC) defined by Balas, Ceria and
Cornuéjols [4].
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12 V. LEONI G. NASINI

In [1] and [2] the authors analyze the performance of the BCC operator on cov-
ering and packing polyhedra in the context of blocking and antiblocking duality,
respectively. Their results generalize Lovász’s Perfect Graph Theorem and its
analogous on ideal clutters, due to Lehman. These results motivated Gerards et
al. [8] and more recently, Lipták and Tunçel [11], to give alternative proofs in the
case of the generalization of Lovász’s Perfect Graph Theorem. In the same way,
Leoni and Nasini [10] exposed alternative and simpler proofs for the case of the
generalization of Lehman’s theorem. Lipták and Tunçel [11] started the analysis
of the behaviour of the N and N+ operators in the same context and, recently,
Escalante et al. [6] completed this analysis, proving that similar generalizations
do not exist for these operators.

The aim of this paper is to show that the key of the behaviour of the disjunctive
operator observed in [1] and [2] is the strong relationship between disjunctive
relaxations and original relaxations associated to some particular minors. This
relationship becomes clear from the characterization of the extreme points of these
relaxations.
This idea was initiated by Nasini [13], working in the particular case of the clique
relaxation QSTAB(G) of the stable set polytope STAB(G) in a graph G. Inde-
pendently, Lipták and Tunçel [11] obtained the same result.
In Section 2, we provide the fundamental definitions that will be treated in the
rest of the paper.
In Section 3, we summarize the results on the extreme points of the disjunctive
relaxations for set covering and set packing polyhedra. Besides, we show that the
results on QSTAB(G) can be extended to more general relaxations of STAB(G).
In Section 4, we summarize the results on the extreme points of the blocker of the
disjunctive relaxations for set covering polyhedra. Looking for similar relation-
ships in the context of set packing polyhedra, we show that the antiblocker of the
disjunctive relaxations of STAB(G) obtained from QSTAB(G) is also strongly
related to the antiblocker of the clique relaxation associated to some particular
subgraphs of the graph G.
Finally, in Section 5 we summarize the results obtained in this work and present
the conclusions.

2. DEFINITIONS AND PRELIMINARIES

The disjunctive operator defined by Balas, Ceria and Cornuéjols [4] can be applied
on polyhedra K ⊂ [0, 1]n. After a lift-and-project iteration of the operator on
j ∈ {1, . . . , n}, they obtain

Pj(K) = conv
(
{x ∈ K : xj ∈ {0, 1}}

)
.

Applying iteratively the operator on a subset of indices J = {i1, .., ij} ⊂ {1, . . . , n},
they proved that

Pi1(Pi2(...(Pij (K)))) = conv
(
{x ∈ K : xj ∈ {0, 1} for all j ∈ J}

)
:= PJ(K).

For any subset J ⊂ {1, . . . , n}, PJ(K) will be called a disjunctive relaxation of
K∗ := conv

(
K ∩ Zn

)
.
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ON THE RELATIONSHIP BETWEEN DISJUNCTIVE RELAXATIONS 13

Clearly, P{1,...,n}(K) = K∗. This last property allows us to talk about the mini-
mum number of iterations needed to find K∗, which is called the disjunctive index
of K. It is also clear that K∗ = K if and only if the disjunctive index of K is
equal to zero.
Given a graph G with N = {1, . . . , n} as set of nodes, let us recall that Q ⊂ N
is a clique in G if in every pair in Q, its nodes are adjacent. Moreover, S ⊂ N is
a stable set in G if in no pair of S, its nodes are adjacent. Clearly, a clique in a
graph G is a stable set in its complementary graph Ḡ.
The stable set polytope STAB(G) of G is the convex hull of the incidence vector
of its stable sets. The clique relaxation QSTAB(G) of STAB(G) is defined as

QSTAB(G) = {x ∈ Rn
+ :

∑
i∈Q

xi ≤ 1 for all Q clique in G}.

In [1], the authors study the behaviour of the disjunctive operator on polyhedra
K = QSTAB(G).
Following Lovász’s Perfect Graph Theorem in [12], if a graph G is perfect then its
complementary graph G is also perfect. From the polyhedral characterization of
perfect graphs given by Chvátal [5], i.e G is perfect if and only if QSTAB(G) =
STAB(G), we have that the disjunctive index of QSTAB(G) is zero if and only
if the disjunctive index of QSTAB(G) is zero. Moreover, it is known that if G is
minimally non perfect (mnp), then G is also mnp and QSTAB(G) has only one
fractional extreme point. It holds that if a graph G is mnp, the disjunctive indices
of QSTAB(G) and QSTAB(G) are both equal to one.
These well-known results have been generalized in [1] proving that

Theorem 1.
For any graph G, the disjunctive indices of QSTAB(G) and QSTAB(G) coincide.

From this result, the disjunctive index of QSTAB(G) may be considered as a
measure of the “imperfection” of G. In this sense, Theorem 1 shows that any
graph is as “imperfect” as its complementary graph, generalizing Lovász’s Perfect
Graph Theorem. This result is proved in [1] as a consequence of the behaviour of
the disjunctive relaxation on the context of antiblocker duality.
If KC denotes the antiblocker of a polyhedron K defined by

KC = {π : πx ≤ 1 for all x ∈ K} ,

it is well known that
[QSTAB(G)]C = STAB(G).

The proof of Theorem 1 in [1] is a direct corollary of the following stronger result.

Theorem 2.
For any J ⊂ {1, . . . , n}, PJ

(
[PJ (QSTAB(G))]C

)
= [QSTAB(G)]C = STAB(G).

Similar results have been obtained in [2], working on set covering polyhedra.
A clutter C is a set of non-comparable subsets —called edges— of a set N =
{1, . . . , n}, called the vertex set.
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14 V. LEONI G. NASINI

Given a clutter C over N , the blocker of C, b(C), is the clutter of minimal vertex
covers of C, i.e. minimal subsets R of N satisfying

|R ∩ S| ≥ 1, for all edge S of C.

We will denote by M(C) the 0− 1 matrix (with entries 0 or 1) whose rows are the
characteristic vectors of the edges of C. Clearly, M(C) has no dominating rows.
Given a clutter C, x ∈ {0, 1}n is the incidence vector of a vertex cover of C if and
only if M(C)x ≥ 1. The set covering polyhedron associated to C is defined as

Q∗(C) = conv(Q(C) ∩ Zn),

where Q(C) = {x ∈ Rn
+ : M(C)x ≥ 1} is called the original relaxation of Q∗(C).

In this case, considering the blocker of a polyhedron Q defined as

QB = {π : πx ≥ 1 for all x ∈ Q} ,

and the blocker b(C) of a clutter C, it is well-known [7] that

Q∗(C) = [Q(b(C))]B .

In order to analyze the “disjunctive behaviour” over blocking polyhedra, the au-
thors in [2] had to define an extension P̄j of the disjunctive operator, as

P̄j(Q(C)) := Pj(Q0(C)) + Rn
+,

where Q0(C) := Q(C)∩ [0, 1]n. They showed that P̄j preserves the main properties
of Pj . In particular, for any J ⊂ {1, . . . , n},

P̄J(Q(C)) = PJ(Q0(C)) + Rn
+.

The disjunctive index is also well defined, since

P̄{1,...,n}(Q(C)) = P{1,...,n}(Q0(C)) + Rn
+ = Q∗

0(C) + Rn
+ = Q∗(C).

Ideal clutters, defined by Lehman, are those for which Q(C) is integral, or equiva-
lently, those for which the disjunctive index is zero.
Lehman’s theorem on ideal clutters [9] establishes that if a clutter is ideal then so
is its blocker. In other words, Lehman’s theorem says that the disjunctive index
of Q(C) is zero if and only if the disjunctive index of Q(b(C)) is zero. Moreover, it
is known that if C is minimally non ideal (mni), then b(C) is also mni and Q(C)
has only one fractional extreme point. It holds that if a clutter C is mni, the
disjunctive indices of Q(C) and Q(b(C)) are both equal to 1.
Lehman’s theorem is generalized in [2] in the following sense:

Theorem 3. For any clutter C, the disjunctive indices of Q(C) and Q(b(C)) co-
incide.

Once again, the disjunctive index of Q(C) may be considered as a measure of the
“non-idealness” of C, and Theorem 3 shows that any clutter is as “non-ideal” as
its blocker, generalizing Lehman’s theorem.

Rev. Un. Mat. Argentina, Vol 46-1



ON THE RELATIONSHIP BETWEEN DISJUNCTIVE RELAXATIONS 15

The proof of Theorem 3 in [2] is a direct corollary of the following stronger result
(the analogous of Theorem 2) in the context of blocker duality.

Theorem 4. For any J ⊂ {1, . . . , n}, P̄J(
[
P̄J(Q(C))

]B) = [Q(C)]B = Q∗(b(C)).

Proofs of Theorem 2 and Theorem 4 given respectively in [1] and [2] are based on
the characterization of valid inequalities of the disjunctive relaxations. In those
proofs and also in the alternative ones given in [8], the relationship between the
disjunctives relaxations and some particular minors is not noticed.

3. DISJUNCTIVE RELAXATIONS, EXTREME POINTS AND
MINORS

Let K ⊂ [0, 1]n be a polyhedron and consider for S ⊂ N ,

HS :=
{
x ∈ Rn

+ : xi = 0 for i ∈ S
}

and
GS :=

{
x ∈ Rn

+ : xi = 1 for i ∈ S
}

.

If J is a fixed subset of N , S ⊂ J and S = J\S, let us define

KS := K ∩ GS ∩HS .

It is not hard to see [1] that

PJ(K) = conv(
⋃

S⊂J

KS)

and, if V (K) is the set of extreme points of K,

V (PJ(K)) =
⋃

S⊂J

V (KS).

Given a graph G = (N,E) with N = {1, . . . , n} and considering K = QSTAB(G),
it is clear that KS is not empty if and only if S is a stable set in G. Moreover,
denoting by Γ(S) = {i ∈ N : i is adjacent to some j ∈ S}, if x ∈ KS , xi = 0 for
all i ∈ Γ(S). Therefore, calling Ŝ = S ∪ Γ(S), we have

KS = QSTAB(G) ∩ GS ∩HbS .

Given S ⊂ J , we write any x ∈ Rn as x = (x, x̃), with x ∈ R|J∪bS|. Therefore,
denoting by G\S (respectively G 	 S), the subgraph obtained from G by the
deletion (destruction) of nodes in S, the following lemma holds.

Lemma 5. Given J ⊂ N , S ⊂ J and x = (x, x̃) ∈ Rn, x is an extreme point of
KS if and only if x ∈ GS ∩HbS and x̃ is an extreme point of QSTAB((G\S)	S).

This lemma is the key of the proof in [13] of Theorem 6 below.

Theorem 6. [13] For any J ⊂ N , PJ (QSTAB(G)) = STAB(G) if and only if
G\J is perfect.
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16 V. LEONI G. NASINI

The generalization of Lovász’s Perfect Graph Theorem given by Theorem 1 is a
direct consequence of the previous theorem.

The “symmetry” of Theorem 1 and Theorem 3 can be also expressed by similar
relationships between the extreme points of the disjunctive relaxations of the set
covering polyhedron associated to a clutter C and those associated to some minors
of C.
Given a clutter C over N = {1, . . . , n} and j ∈ N , C/j denotes the clutter obtained
from C by the contraction of j, i.e. the clutter defined over N − {j}, whose edges
are the minimal elements of {S \ {j} : S edge of C}. Also, C\j denotes the clutter
obtained from C by the deletion of j, i.e. the clutter defined over N − {j}, whose
edges are the edges of C not containing j. Given two disjoints subsets R, S of
N , C/R\S denotes the minor of C obtained by the contraction of nodes in R and
deletion of nodes in S. It is known that b(C/R\S) = b(C)/S\R.
In this way, in [10] it is proved that

Theorem 7. [10] For any J ⊂ N , P̄J(Q(C)) = Q∗(C) if and only if C/R\R is
ideal for every R ⊂ J .

Let us notice that, meanwhile the integrality of PJ (QSTAB(G)) involves the
perfection of only the subgraph induced by N\J (see Theorem 6), the “symmetric”
result for set covering polyhedra involves the idealness of many minors. In other
words, in this case there is not a particular minor of C which guarantees the
integrality of P̄J(Q(C)). This difference should be found in the characterization
of the extreme points of the disjunctive relaxations of Q(C). We present here an
scheme of the proof of Theorem 7 in [10].
In the following, J will be a fixed subset of N . For R ⊂ J, with R = J\R, let us
consider the polyhedron

QR := Q(C) ∩HR ∩ GR,

where
GR :=

{
x ∈ Rn

+ : xi ≥ 1 for i ∈ R
}

.

It can be easily seen that

P̄J(Q(C)) = conv(
⋃

R⊂J

QR).

Then, every extreme point of P̄J(Q(C)) is an extreme point of QR, for some R ⊂ J .
Moreover, writing any x ∈ Rn as x = (x, x̃), where x ∈ R|J| and denoting by
xR ∈ {0, 1}|J| the characteristic vector of R ⊂ J , we have

Lemma 8. Given x = (x, x̃) ∈ Rn and R ⊂ J , x is an extreme point of QR if and
only if x = xR and x̃ is an extreme point of Q(C/R\R).

The difference with the “stable set case” appears noting that it is not true that for
any R ⊂ J , every extreme point of QR is an extreme point of P̄J(Q(C)). However,
it can be proved that
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ON THE RELATIONSHIP BETWEEN DISJUNCTIVE RELAXATIONS 17

Lemma 9. [10] Let x = (xT , x̃) be an extreme point of QT , for some T ⊂ J and
S a minimal subset of T such that w = (xS , x̃) ∈ Q(C). Then, w is an extreme
point of QS and also, an extreme point of P̄J(Q(C)).

Now, we derive Theorem 7, the “symmetric” of Theorem 6:

Proof. (of Theorem 7)
Suppose that for some R ⊂ J , C/R\R is not ideal, i.e. that Q(C/R\R) has some
fractional extreme point x̃. Then, (xR, x̃) is a fractional extreme point of QR.
From Lemma 9, there exists S ⊂ R such that (xS , x̃) is a fractional extreme point
of P̄J(Q(C)), and then P̄J(Q(C)) is not integral. Therefore, P̄J(Q(C)) 6= Q∗(C).
To see the converse, if C/R\R is ideal for every R ⊂ J , from Lemma 8 follows
that QR is an integral polyhedron for every R ⊂ J . Therefore, P̄J(Q(C)) is also
integral.

Now we come back to Theorem 6. Let us observe that, in other words, this theorem
states that for any graph G, the disjunctive index of QSTAB(G) is the minimum
number of nodes that it is necessary to delete in G in order to obtain a perfect
graph.
A similar result have been found in [3], working on the matching polytope in a
graph. Let us recall that a matching in a graph G = (N,E) is a subset of edges
where any two of them are incident to a same node of G. The matching polytope
MATCH(G) is defined as the convex hull of the incidence vector of the matchings
in G. The natural original relaxation of MATCH(G) is

K≤(G) =

x ∈ R|E|
+ :

∑
j:(i,j)∈E

xij ≤ 1 for all i ∈ N

 .

It is known that K≤(G) = MATCH(G) if and only if G is bipartite. In [3], it is
proved that the disjunctive index of K≤(G) is the minimum number of edges that
must be taken off from E in order to obtain a bipartite graph.
This fact does not seem to be surprising if we recall that the matching polytope of
a graph G is exactly the stable set polytope of the line graph L(G) of G. However,
it cannot be seen as a particular case of Theorem 6 because the relaxation K≤(G)
of STAB(L(G)) is, in general, weaker than QSTAB(L(G)).
In a more general context, in a set packing problem we are given a clutter C over
a set N and optimize over K∗(C), the convex hull of 0 − 1 vectors in K(C) ={

x ∈ R|N |
+ : M(C)x ≤ 1

}
.

If we consider the associated graph G(C) of C defined by a set of nodes equal to N ,
the vertex set of C, and where two nodes in G(C) are adjacent if there exists an edge
of C that contains both of them, it is not hard to see that K∗(C) = STAB(G(C))
and K(C) is a relaxation, weaker than QSTAB(G(C)).
When K(C) = QSTAB(G(C)) we say that the clutter is conformal. For this family
of clutters we have the results on the disjunctive relaxations presented in Section
2.
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18 V. LEONI G. NASINI

The rest of this section is devoted to generalize Theorem 6 for other families of
clutters. We are looking for families of clutters C where, for any C in C, the
disjunctive index of the relaxation K(C) coincides with the minimum number
of nodes we must delete from G(C) in order to obtain a graph G′, such that
G′ = G(C′) for some C′ ∈ C and K(C′) = STAB(G′).
Given a family C of clutters and a graph G, let us say that G is a C-graph if
G = G(C) for some C ∈ C.
We need a consistent definition for the family we are looking for. For this purpose,
we have to impose some conditions.

Definition 10. A family of clutters C is hereditary if it satisfies the following
conditions:

1. if C and C′ are in C and G(C) = G(C′), then C = C′;
2. if C ∈ C and i is a vertex of C, then C \ i is in C.

Then, we have

Definition 11. Given an hereditary family of clutters C and G a C-graph such
that G = G(C) with C ∈ C, G is C-perfect if and only K(C) = STAB(G(C)).

Condition 1 in Definition 10 implies that C-perfection in Definition 11 is well
defined. Besides, it is not hard to see that G(C\i) = G(C)\{i}. Then, Condition 2
implies that any node induced subgraph of a C-graph is a C-graph, and moreover,
any node induce subgraph of a C-perfect graph is C-perfect.
According to Definition 11, when C is the family of conformal clutters, a C-perfect
graph is a perfect graph. Also, when C is the family of clutters with at most two
vertices in each edge, for any clutter C in C we have,

K(C) = FRAC(G(C)) := {x ∈ {0, 1}|N | : xi + xj ≤ 1, for all (i, j) edge in G(C)},

and it is known that C-perfect graphs are bipartite graphs.
This definition also includes K≤(G) as a relaxation of MATCH(G) = STAB(L(G)).
In this case, the elements of C have vertex set equal to the set of edges of a graph
G = (N,E), and the edges are the subsets of E incident in G to a node in N .
Besides, K(C) = K≤(G) and G(C) = L(G). It is known that L(G) is C-perfect if
and only if G is bipartite.
Now, the generalization of Theorem 6 will be formulated as

Theorem 12. If C belongs to an hereditary family of clutters C and G = G(C) =
(N,E), for any J ⊂ N , PJ (K(C)) = STAB(G) if and only if G\J is C-perfect.

To prove Theorem 12, it only remains to recall that

V (PJ(K(C))) =
⋃

S⊂J

V (KS),

where KS = K(C) ∩ GS ∩ HS and notice that again, KS is not empty if and only
if S is a stable set in G(C). Moreover, if x ∈ KS , xi = 0 for all i ∈ Γ(S) in G(C).
Therefore, calling Ŝ = S ∪ Γ(S), we have

KS = K(C) ∩ GS ∩HbS .
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ON THE RELATIONSHIP BETWEEN DISJUNCTIVE RELAXATIONS 19

It is not difficult to see that x = (x, x̃) ∈ Rn with x ∈ R|J∪bS| is an extreme point
of KS if x ∈ GS ∩ HbS and x̃ is an extreme point of K(C\(S ∪ Ŝ)). Moreover,
G(C\(S ∪ Ŝ)) = G(C)\(S ∪ Ŝ) = (G(C)\S)	 S.

Proof. (of Theorem 12)
Clearly, PJ(K(C)) = STAB(G(C)) if and only PJ(K(C)) is an integral polyhedron.
Equivalently, from the previous observations, K(C\(S ∪ Ŝ) has to be integral,
for any S ⊂ J . Equivalently, K(C\(S ∪ Ŝ)) = STAB(G(C)\(S ∪ Ŝ)). Finally,
PJ(QSTAB(G(C))) = STAB(G(C)) if and only if (G(C)\S) 	 S is C-perfect for
all S ⊂ J . Since (G(C)\S) 	 S is a node induced subgraph of G(C)\J , the result
follows.

Now, for any graph G, the results for QSTAB(G) and K≤(G) may be seen as
particular cases of the previous theorem. We also have that the disjunctive index
of FRAC(G) is the minimum number of nodes we must delete from G in order to
obtain a bipartite graph.

4. DISJUNCTIVE RELAXATIONS IN THE CONTEXT OF
POLYHEDRAL DUALITY

The relationship between extreme points and minors has been also found in the
context of “polyhedral duality” for set covering polyhedra [10]. The extreme points
of the blocker of a disjunctive relaxation are characterized in the following theorem:

Theorem 13. [10] Let S ⊂ J and α = (αS , α̃). Then, α ∈
[
P̄J(Q(C))

]B if and

only if α̃ ∈
[
Q(C/S\S)

]B
. Moreover, α is an extreme point of

[
P̄J(Q(C))

]B if and

only if α̃ is an extreme point of
[
Q(C/S\S)

]B
.

Theorem 4 easily follows from the previous result.
In this section, we will find similar relationships between the antiblocker of a
disjunctive relaxation of STAB(G) and some particular subgraphs of a graph G.

In the following, J will be denote a fixed subset of N . Let α = (α, α̃) ∈ Rn with
α ∈ R|J| and α ∈ [STAB(G)]C ∩ GS ∩HS for some S ⊂ J .
From the observations made by Gerards, Maróti and Schrijver in [8], we know that
if αi > 0 and j ∈ S (j 6= i), then (i, j) is an edge of G. In particular, since αi = 1
for all i ∈ S; S is a clique in G. Moreover, if i /∈ J and αi > 0, then i is a node of
G5 S := G	 S.
Now, let α be an extreme point of [PJ(QSTAB(G))]C ∩GS ∩HS , for some S ⊂ J
and J ⊂ N . Since [PJ(QSTAB(G))]C ⊂ [STAB(G)]C , α ∈ [STAB(G)]C ∩ GS ∩
HS . Then, we have α̃ ∈ [QSTAB(G\J)]C and α̃i = 0, when i is not a node of
G5 S. In the following theorem, we prove that the converse also holds, i.e.

Theorem 14. Let α = (α, α̃) ∈ [STAB(G)]C ∩GS∩HS. If α̃ ∈ [QSTAB(G\J)]C

and α̃i = 0 when i is not a node of G5S, then α ∈ [PJ(QSTAB(G))]C . Moreover,
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20 V. LEONI G. NASINI

if α is an extreme point of [PJ(QSTAB(G))]C then α̃ is an extreme point of
[QSTAB(G\J)]C .

Proof. Let x = (x, x̃) be an extreme point of PJ(QSTAB(G)) with x ∈ {0, 1}|J|
and x̃ ∈ QSTAB(G\J). Let us define R = {i ∈ J : xi = 1}. We need to show that
αx ≤ 1. Since αx = |R ∩ S| + α̃x̃, clearly αx ≤ 1 if |R ∩ S| = 0. If |R ∩ S| 6= 0,
then |R ∩ S| = 1 and it only remains to prove that α̃x̃ = 0.
Let R∩S = {k} and i ∈ N\J with α̃i > 0. Since (i, k) is an edge of G, x̃i +xk ≤ 1,
obtaining that x̃i = 0.
For the second part, let us assume that α̃ is a convex combination of two points
α̃1 and α̃2 in [QSTAB(G\J)]C . Defining α1 = (α, α̃1) and α2 = (α, α̃2), from the
previous results we have αi ∈ [PJ(QSTAB(G))]C for i = 1, 2 and α is a convex
combination of α1 and α2.

¿From this characterization follows an easy new alternative proof for Theorem 2.

Proof. (of Theorem 2)
Since STAB(G) ⊂ PJ([PJ(QSTAB(G))]C), it suffices to prove that the polyhe-
dron PJ([PJ(QSTAB(G))]C) is integral. If α = (α, α̃) is any extreme point of it,
then α is an extreme point of [PJ(QSTAB(G)]C . Moreover, α ∈ [STAB(G)]C ∩
GS ∩ HS , for some S ⊂ J. From Theorem 14, we have that α̃ is an extreme point
of [QSTAB(G\J)]C = STAB(G\J) and then, α̃ is integral.

5. SUMMARY AND CONCLUSIONS

In order to make the symmetry of the results between the “packing” and “covering”
cases clearer and to completely understand the relationship between the disjunctive
relaxations and the original problem associated to some minors, let us summarize
the results on the extreme points of the disjunctive relaxations and those of their
“dual polyhedra”.
Given a clutter C over N = {1, . . . , n} and J ⊂ N , let

K(C) =
{

x ∈ R|N |
+ : M(C)x ≤ 1

}
and

Q(C) =
{

x ∈ R|N |
+ : M(C)x ≥ 1

}
.

First, for the disjunctive relaxations, we have:

1. x = (x, x̃) ∈ Rn with x ∈ R|J∪bS| is an extreme point of PJ(K(C)) if and
only if there exists S ⊂ J such that x ∈ GS ∩HbS and x̃ is an extreme point
of K(C′) with G(C′) = (G(C)\S)	 S;

2. x = (x, x̃) ∈ Rn with x ∈ R|J| is an extreme point of PJ(Q(C)) if and only if
there exists S ⊂ J such that x = xS and x̃ is an extreme point of Q(C/S\S).

For the “dual polyhedra” of the disjunctive relaxations, let α = (α, α̃) ∈ Rn with
α ∈ R|J|. We have:

1. When C is the clutter of maximal cliques in a graph G:
α is an extreme point of [PJ(QSTAB(G))]C if and only if there exists

S ⊂ J such that α ∈ GS∩HS and α̃ is an extreme point of [QSTAB(G\J)]C ;
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2. α is an extreme point of
[
P̄J(Q(C))

]B if and only if there exists S ⊂ J such

that α = αS and α̃ is an extreme point of
[
Q(C/S\S)

]B
.

We believe that the aim of the paper is achieved: the results obtained reveal that
the way the disjunctive operator behaves is due to the fact that the extreme points
of a disjunctive relaxation and those of its “dual polyhedron” are strongly related
to the same combinatorial problem on a minor of the original clutter. From these
results we can say that the BCC operator “preserves” the original combinatorial
structure of the problem. The “negative” results obtained analyzing the behaviour
of other lift-and-project operators in the same context ([11] and [6]) are due to the
fact that the N and N+ operators do not share this “combinatorial” property of
the BCC operator.
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