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ETA SERIES AND ETA INVARIANTS OF Z4-MANIFOLDS

RICARDO A. PODESTÁ

Abstract. In this paper, for each n = 4r + 3, we construct a family of

compact flat spin n-manifolds with holonomy group isomorphic to Z4 such

that the spectrum of the Dirac operator D is asymmetric. For these manifolds
we will obtain explicit expressions for the eta series, η(s), in terms of Hurwitz

zeta functions, and for the eta-invariant, η, associated to D. The explicit

expressions will show the meromorphic continuation of η(s) to C is in fact
everywhere holomorphic.

Introduction

If A is a positive self-adjoint elliptic differential operator on a compact n-
manifold M , then it has a discrete spectrum, denoted by SpecA(M), consisting of
positive eigenvalues λ with finite multiplicity dλ. This spectrum can be properly
studied by the zeta function ζA(s) =

∑
λ−s, where the sum is taken over the non

zero eigenvalues of A and Re(s) > n
d , with d the order of A.

If A is no longer positive, then the eigenvalues can now be positive or negative.
In this case, the spectrum is said to be asymmetric if for some λ ∈ SpecA(M) we
have dλ 6= d−λ. To study this phenomenon, Atiyah, Patodi and Singer introduced
in [APS] the “signed” version of the zeta function, namely, the so called eta series
defined by

ηA(s) =
∑

0 6=λ∈SpecA

sign(λ) |λ|−s.

This series converges for Re(s) > n
d and defines a holomorphic function ηA(s)

which has a meromorphic continuation to C. It is a non trivial fact that this
function is really finite at s = 0 (See [APS2] for n odd, and [Gi], [Gi2], for n
even). The number ηA(0) is a spectral invariant, called the eta invariant, which
gives a measure of the spectral asymmetry of A.

In this paper, we will take A to be the Dirac operator D. It is a first order el-
liptic essentially self-adjoint operator defined on spin manifolds, that is, manifolds
admitting a spin structure. Consider the eta function associated to D, denoted
simply by η(s). The determination of η(s) and η(0) is in general a difficult task
and explicit computations of these objects are not easy to find in the literature.

For compact flat spin manifolds (see Preliminaries) we have the following pic-
ture. Pfäffle computed the η-invariants in the 3-dimensional case ([Pf]). A general
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32 RICARDO A. PODESTÁ

expression for η(s) for an arbitrary n-manifold M with a spin structure ε is given in
[MP2]. There, in the particular case of manifolds with holonomy group F ' Zk

2 ,
1 ≤ k ≤ n − 1, the authors obtained a very explicit expression for η(s), in terms
of differences of Hurwitz zeta functions ζ(s, α) =

∑
j≥0 (j + α)−s, for Re(s) > 1

and α ∈ (0, 1]. This allowed to compute the η-invariant simply by evaluation at
s = 0. Also in [MP2], similar results were obtained for a family of compact flat
spin p-manifolds with holonomy group F ' Zp, with p prime of the form 4r + 3.

These results led us to expect that the eta series of any compact flat spin
manifold with abelian holonomy group should be expressible in terms of differences
of Hurwitz zeta functions ζ(s, α) for α ∈ (0, 1] ∩Q.

The goal of the present paper is to deal with the simplest case not covered in
[MP2], that is, when F ' Z4. More precisely, we consider a rather large family of
compact flat spin manifolds M with holonomy group Z4 having asymmetric Dirac
spectrum and we compute the corresponding eta series and eta invariant for every
manifold in the family (in the case of symmetric spectrum one has that η(s) ≡ 0,
see (4.1)). The general expression for η(s) is either of the form

η(s) = CM,ε

(8π)s

(
ζ(s, 1

4 )− ζ(s, 3
4 )
)

or
η(s) = CM,ε

(8π)s

(
an

(
ζ(s, 1

8 )− ζ(s, 7
8 )
)

+ bn

(
ζ(s, 3

8 )− ζ(s, 5
8 )
))

where CM,ε, an, bn are explicit constants depending on M , the spin structure ε of
M , and the dimension n of M .

Acknowledgements. I would like to thank Professor Roberto Miatello for several
useful comments on a preliminary version that have contributed to improve the
exposition.

1. Preliminaries

Flat manifolds. We refer to [Ch]. A Bieberbach group is a discrete, cocompact,
torsion-free subgroup Γ of the isometry group I(Rn) of Rn. Such Γ acts properly
discontinuously on Rn, thus MΓ = Γ\Rn is a compact flat Riemannian manifold
with fundamental group Γ. By the Killing-Hopf theorem any such manifold arises
in this way. Any element γ ∈ I(Rn) = O(n)nRn decomposes uniquely as γ = BLb,
with B ∈ O(n), b ∈ Rn and Lb denotes translation by b. The translations in Γ
form a normal maximal abelian subgroup LΛ of finite index, with Λ a lattice in
Rn which is B-stable for each BLb ∈ Γ. As usual, one identifies LΛ with Λ. The
restriction to Γ of the canonical projection r : I(Rn) → O(n) given by BLb 7→ B
is a group homomorphism with kernel LΛ and F := r(Γ) is a finite subgroup of
O(n). The group F ' Λ\Γ is called the holonomy group of Γ and is isomorphic to
the linear holonomy group of the Riemannian manifold MΓ. The action of F on
Λ by conjugation is usually called the integral holonomy representation of Γ. By
an F -manifold we understand a Riemannian manifold with holonomy group F . In
this paper we shall consider Z4-manifolds which, by the Cartan-Ambrose-Singer
theorem, are necessarily flat.
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Spin groups. For standard results on spin geometry we refer to [LM] or [Fr]. Let
Cl(n) denote the Clifford algebra of Rn with respect to the standard inner product
〈, 〉 on Rn and let Cl(n) = Cl(n)⊗C be its complexification. If {e1, . . . , en} is the
canonical basis of Rn then a basis for Cl(n) is given by the set {ei1 · · · eik

: 1 ≤
i1 < · · · < ik ≤ n}. One has that vw + wv + 2〈v, w〉 = 0 holds for all v, w ∈ Rn,
thus eiej = −ejei and ei

2 = −1 for i, j = 1, . . . , n. Inside the group of units of
Cl(n) we have the compact Lie group

Spin(n) = {v1 · · · v2k : ‖vj‖ = 1, 1 ≤ j ≤ 2k},

which is connected if n ≥ 2 and simply connected if n ≥ 3. There is a Lie group
epimorphism µ : Spin(n) → SO(n) with kernel {±1} given by v 7→ (x 7→ vxv−1).

If Bj is a matrix for 1 ≤ j ≤ m, we will denote by diag(B1, . . . , Bm) the block
matrix having the block Bj in the diagonal position j. For t ∈ R let B(t) =[

cos t − sin t
sin t cos t

]
and, for t1, . . . , tm ∈ R, define

x0(t1, . . . , tm) :=
{

diag(B(t1), . . . , B(tm)) if n = 2m,

diag(B(t1), . . . , B(tm), 1) if n = 2m + 1,

x(t1, . . . , tm) :=
m∏

j=1

(
cos(tj) + sin(tj) e2j−1e2j

)
∈ Spin(n).

(1.1)

It is easy to check that, for any k ∈ Z, the elements x(t1, . . . , tm) satisfy

x(t1, . . . , tm)k = x(kt1, . . . , ktm)

−x(t1, t2, . . . , tm) = x(t1 + π, t2, . . . , tm).
(1.2)

We will also need to fix maximal tori in Spin(n) and SO(n).They are respectively
given by T = {x(t1, . . . , tm) : tj ∈ R, 1 ≤ j ≤ m} and by T0 = {x0(t1, . . . , tm) :
tj ∈ R, j = 1, . . . ,m} (see [LM] or [Fr]). The restriction µ : T → T0 is a 2-fold
cover and

µ(x(t1, . . . , tm)) = x0(2t1, . . . , 2tm). (1.3)

Spin representations. We consider (L,S) an irreducible complex representation of
the Clifford algebra Cl(n), restricted to Spin(n). The complex vector space S has
dimension 2m with m := [n

2 ]. If n is odd, then (L,S) is irreducible for Spin(n)
and is called the spin representation. If n is even, then S = S+ ⊕ S− where each
S± is irreducible of dimension 2m−1. If L± denote the restricted action of L on
S± then (L±,S±) are called the half-spin representations of Spin(n). We shall
write (Ln,Sn) and (L±

n ,S±n ) for (L,S) and (L±,S±) when we wish to specify the
dimension.

We will make repeatedly use of the following result (see [MP2]) which gives
the values of the characters χ

Ln
and χL±n

of the spin and half spin representations
on T . If n = 2m, then

χ
L
±
n

(x(t1, . . . , tm)) = 2m−1
( m∏

j=1

cos tj ± im
m∏

j=1

sin tj

)
. (1.4)

Rev. Un. Mat. Argentina, Vol 46-1



34 RICARDO A. PODESTÁ

Furthermore, χ
Ln

(x(t1, . . . , tm)) = 2m
∏m

j=1 cos tj for n = 2m or n = 2m + 1.

Spin structures. If (M, g) is an orientable Riemannian manifold, let B(M) be the
bundle of oriented frames on M and π : B(M) → M the canonical projection.
B(M) is a principal SO(n)-bundle over M . A spin structure on M is an equivariant
2-fold cover p : B̃(M) → B(M) where π̃ : B̃(M) → M is a principal Spin(n)-bundle
and π ◦ p = π̃. Such M endowed with a spin structure is called a spin manifold.

On compact flat manifolds MΓ = Γ\Rn, Γ a Bieberbach group, the spin struc-
tures are in a one to one correspondence with group homomorphisms ε commuting
the diagram

Spin(n)

Γ SO(n)
?
µ

�
���

���*
ε

-
r

(1.5)

that is, satisfying µ◦ε = r where r(γ) = B if γ = BLb ∈ Γ (see [Fr], [LM]). We
shall denote by (MΓ, ε) the spin manifold MΓ endowed with the spin structure ε
as in (1.5).

The spectrum of the Dirac operator. If (L,S) is the spin representation, the vec-
tor bundle S(MΓ, ε) := Γ\(Rn × S) → Γ\Rn = MΓ with action γ · (x,w) =
(γx, L(ε(γ))(w)), where γ ∈ Γ, w ∈ S, is called the spinor bundle of MΓ. The
space Γ∞(S(MΓ, ε)) of smooth sections of the spinor bundle can be identified with
the set {f : Rn → S smooth : f(γx) = L(ε(γ))f(x)}.

One can consider the Dirac operator D acting on smooth sections f of S(MΓ, ε)
by Df(x) =

∑n
i=1 ei · ∂f

∂xi
(x), where ei · w = L(ei)(w) for w ∈ S. One has that

D is an elliptic first-order differential operator, which is symmetric and essentially
self-adjoint. Furthermore, over compact manifolds, D has a discrete spectrum
consisting of real eigenvalues ±2πµ, µ ≥ 0, of finite multiplicity d±µ . If f ∈ ker D,
f is called a harmonic spinor.

In [MP2] explicit expressions for the multiplicities d±µ for any compact flat spin
manifold (MΓ, ε) with translation lattice Λ and holonomy group F were obtained.
We now recall the ingredients for these expressions.

Let F1 = {B ∈ F = r(Γ) : nB = 1} where nB := dim ker(B − Id). Put
Λ∗

ε = {u ∈ Λ∗ : ε(λ) = e2πiλ·u, λ ∈ Λ}, with Λ∗ the dual lattice of Λ, and

Λ∗
ε,µ = {u ∈ Λ∗

ε : ‖u‖ = µ}. (1.6)

Now, for each γ = BLb ∈ Γ, let (Λ∗
ε,µ)B denotes the set of elements fixed by B in

Λ∗
εµ, that is

(Λ∗
ε,µ)B = {u ∈ Λ∗

ε,µ : Bv = v}. (1.7)
Furthermore, for γ ∈ Γ, let xγ be a fixed, though arbitrary, element in the

maximal torus of Spin(n− 1), conjugate in Spin(n) to ε(γ). Finally, define a sign
σ(u, xγ), depending on u and on the conjugacy class of xγ in Spin(n − 1), in the
following way. If γ = BLb ∈ Λ\Γ and u ∈ (Λ∗

ε)
B r {0}, let hu ∈ Spin(n) such

that hu u h−1
u = ‖u‖en. Hence, huε(γ)h−1

u ∈ Spin(n − 1). Take σε(u, xγ) = 1 if
huε(γ)h−1

u is conjugate to xγ in Spin(n − 1) and σε(u, xγ) = −1 otherwise. As
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a consequence, σ(−u, xγ) = −σ(u, xγ) and σ(αu, xγ) = σ(u, xγ) for every α > 0
(see Definition 2.3, Remark 2.4 and Lemma 6.2 in [MP2] for details).

For n odd, the multiplicity of the eigenvalue ±2πµ, for µ > 0, is given by

d±µ (Γ, ε) = 1
|F |

( ∑
γ ∈ Λ\Γ
B 6∈ F1

∑
u∈(Λ∗ε,µ)B

e−2πiu·b · χ
L
±
n−1

(xγ) +

∑
γ ∈ Λ\Γ
B ∈ F1

∑
u∈(Λ∗ε,µ)B

e−2πiu·b · χ
L
±σ(u,xγ )
n−1

(xγ)
)

,

(1.8)

while for n even, it is given by the first term in (1.8) (i.e., the sum over B 6∈ F1) with
L±

n−1 replaced by Ln−1. For µ = 0, with n even or odd, we have that d0(Γ, ε) =
1
|F |
∑

γ∈Λ\Γ χ
Ln

(ε(γ)) = dim SF , if ε|Λ = 1, and d0(Γ, ε) = 0, otherwise.

2. A family of spin Z4-manifolds

In this section, for each n ≥ 3, we shall construct a family of n-dimensional pair-
wise non-homeomorphic spin Z4-manifolds, having asymmetric Dirac spectrum. In
this way, we will obtain non trivial eta series and eta invariants, to be computed
in the next sections. Put J̃ :=

[
0 −1
1 0

]
. For each j, l ≥ 1 and k ≥ 0, we set

Bj,k := diag(J̃ , . . . , J̃︸ ︷︷ ︸
j

,−1, . . . ,−1︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
l

), (2.1)

where 2j + k + l = n ≥ 3.
Then Bj,k ∈ O(n), B 4

j,k = Id and Bj,k ∈ SO(n) if and only if k is even. Let
Λ = Ze1 ⊕ · · · ⊕ Zen be the canonical lattice of Rn and for j, k, l as before define
the groups

Γj,k := 〈Bj,kL en
4

,Λ〉. (2.2)

We have that Λ is Bj,k-stable. Since (Bm
j,k − Id)m

4 en = 0 ∈ Λ, for 0 ≤ m ≤ 3, and
(
∑3

m=0 Bm
j,k) en

4 = en ∈ Λ r (
∑3

m=0 Bm
j,k)Λ, by Proposition 2.1 in [MR], each Γj,k

is a Bieberbach group. In this way, we have a family

Fn = {Mj,k := Γj,k\Rn : 1 ≤ j ≤ [n−1
2 ], 0 ≤ k ≤ n− 2j − 1, l ≥ 1} (2.3)

of compact flat manifolds with holonomy group F ' Z4. It is easy to see that the
cardinality of Fn is given by #Fn = [n−1

2 ]
(
n− [n−1

2 ]− 1
)

= o(n2).

Lemma 2.1. For Mj,k ∈ Fn we have

H1(Mj,k, Z) ' Zl ⊕ Zj+k
2 . (2.4)

Hence the manifolds in Fn are non-homeomorphic to each other.

Proof. We compute H1(Mj,k, Z) ' Γj,k/[Γj,k,Γj,k]. For γ = Bj,kL en
4

, we have

[Γj,k,Γj,k] = 〈[γ, Lei ] = L(Bj,k−Id)ei
: 1 ≤ i ≤ n〉

= 〈L−e1±e2 , . . . , L−e2j−1±e2j
, L2e2j+1 , . . . , L2e2j+k

〉.
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36 RICARDO A. PODESTÁ

Using this, and the fact that γ4 = Len
, it is easy to see that H1(Mj,k, Z) '

Zl⊕Zj+k
2 . Thus, if Mj,k and Mj′,k′ are homeomorphic then l = l′ and j+k = j′+k′.

Since n = 2j + k + l = 2j′ + k′ + l′ we have that j = j′ and k = k′. Therefore, the
manifolds in Fn are non-homeomorphic to each other.

We now study the existence of spin structures on n-dimensional Zd-manifolds
following [MP], where the existence of spin structures on Zk

2-manifolds was consid-
ered. Let Γ be a Bieberbach group with holonomy group F ' Zd and translation
lattice Λ. Then MΓ = Γ\Rn with Γ = 〈γ, Λ〉 where γ = BLb, B ∈ O(n), b ∈ Rn,
BΛ = Λ and Bd = Id.

Assume there is a spin structure defined on MΓ, that is, a group homomorphism
ε : Γ → Spin(n) such that µ◦ε = r. Then, necessarily ε(Lλ) ∈ {±1}, for λ ∈ Λ.
Thus, if λ1, . . . , λn is a Z-basis of Λ and we set δi := ε(Lλi

), for every λ =∑
i miλi ∈ Λ with mi ∈ Z, we have ε(Lλ) =

∏
i δmi

i =
∏

mi odd δi.
For any γ = BLb ∈ Γ we will fix a distinguished (though arbitrary) element in

µ−1(B), denoted by uB . Thus, ε(γ) = σ uB , where σ ∈ {±1} depends on γ and
on the choice of uB .

The morphism ε is determined by its action on the generators of Γ. Hence, we
will identify this morphism with the (n + 1)-tuple

ε ≡ (δ1, . . . , δn, σ uB) (2.5)

where δi = ε(Lλi) and σ is defined by the equation ε(γ) = σuB .
Now, since ε is a morphism and γ = BLb ∈ Γ, for any λ ∈ Λ we have

ε(LBλ) = ε(γLλγ−1) = ε(γ)ε(Lλ)ε(γ−1) = ε(Lλ). (2.6)

Therefore, if ε is a spin structure on MΓ, since γd ∈ LΛ, then the character
ε|Λ : Λ → {±1} must satisfy the following conditions for any γ = BLb ∈ Γ:

(ε1) ε(γd) = (σuB)d

(ε2) ε(L(B−Id)λ) = 1, λ ∈ Λ.
(2.7)

We thus set

Λ̂(Γ) := {χ ∈ Hom(Λ, {±1}) : χ satisfies (ε1) and (ε2)}. (2.8)

The next result says that these necessary conditions for the existence of spin
manifolds are also sufficient in the case of manifolds with cyclic holonomy groups.
We adapt the proof of Theorem 2.1 in [MP] to our case.

Proposition 2.2. If Γ = 〈BLb,Λ〉 is a Bieberbach group with holonomy group
F = 〈B〉 ' Zd and σ is as in (2.5), then the map ε 7→ (ε|Λ, σ) defines a bijective
correspondence between the spin structures on MΓ and the set Λ̂(Γ)×{±1}. Hence,
the number of spin structures on MΓ is either 0 or 2r for some 1 ≤ r ≤ n.

Proof. It suffices to prove that, given ε ∈ Λ̂(Γ), we can extend it into a group
homomorphism from Γ to Spin(n), also called ε, satisfying (1.5).

Let γ = BLb. Since Λ is normal in Γ and Bd = Id, we see that any γ0 ∈ Γ can
be written uniquely as γ0 = γkLλ, with 0 ≤ k ≤ d − 1, λ ∈ Λ. For any choice of
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uB ∈ µ−1(B), we set ε(γ) = σuB , with σ ∈ {±1}, and, for a general element in Γ,
we define

ε(γkLλ) = ε(γ)kε(Lλ)

for 0 ≤ k ≤ d − 1. Thus, we get a well defined map ε : Γ → Spin(n) such that
µ ◦ ε = r, and we claim it is a group homomorphism.

In fact, note that if γ = BLb then γk = BkLb(k) where b(k) :=
∑k−1

i=0 B−ib. We
have that γkγl = Bk+lLB−lb(k)+b(l) and also γkγl = γk+l = Bk+lLb(k+l). Hence,
by using these relations and condition (ε2) we get

ε(γkLλγlLλ′) = ε(BkLb(k)+λBlLb(l)+λ′) = ε(Bk+lLB−l(b(k)+λ)+b(l)+λ′)

= ε(γk+lLB−lλ+λ′) = ε(γ)k+lε(Lλ)ε(L′
λ) = ε(γkLλ)ε(γlLλ′)

for any λ, λ′ ∈ Λ.
It is clear that the number of spin structures is either 2r, for some r ≥ 1, or

0, in case the equations given by conditions (ε1) and (ε2) are incompatible ones.
Since each of these equations divides by 2 the number of spin structures and the
covering torus has exactly 2n such structures we have that r ≤ n. This completes
the proof.

Since spin manifolds are orientable, we need to restrict ourselves to the mani-
folds Mj,k with k = 2k0 even. We have the following result

Corollary 2.3. Every orientable Z4-manifold Mj,k, k = 2k0, has 2n−j spin struc-
tures ε parametrized by the (n+1)-tuples (δ1, . . . , δn, σuBj,k

) as in (2.5) satisfying:

δ1 = δ2, · · · , δ2j−1 = δ2j and δn = (−1)j (2.9)

where uBj,k
=
(√

2
2

)j
(1 + e1e2) · · · (1 + e2j−1e2j) e2j+1 · · · e2j+k.

Proof. We first note that Bj,k = x0(π
2 , . . . , π

2︸ ︷︷ ︸
j

, π, . . . , π︸ ︷︷ ︸
k0

, 0, . . . , 0︸ ︷︷ ︸
[ l
2 ]

) ∈ T0 in the no-

tation of (1.1). Hence, µ−1(Bj,k) = ±x(π
4 , . . . , π

4 , π
2 , . . . , π

2 , 0 . . . , 0) ∈ T , by (1.3)
and we take uBj,k

= x(π
4 , . . . , π

4 , π
2 , . . . , π

2 , 0 . . . , 0).
Let γj,k = Bj,kL en

4
. Since ε(γj,k) = σuBj,k

and γ4
j,k = Len

for every j, k,
condition (ε1) gives

δn = ε(γj,k)4 = u4
Bj,k

= x(π, . . . , π︸ ︷︷ ︸
j

, 2π, . . . , 2π︸ ︷︷ ︸
k0

, 0, . . . , 0) = (−1)j ,

where we have used (1.2) in the third equality. Moreover, condition (ε2) gives
1 = ε(L(Bj,k−Id)e2i−1) = δ2i−1δ2i for 1 ≤ i ≤ j, hence (2.9) holds. Since there are
no more relations imposed on the δi’s the result follows.

Remark 2.4. It would be natural to consider the larger family Fn with matrices
in (2.1) replaced by

Bj,h,k = diag(J̃ , . . . , J̃︸ ︷︷ ︸
j≥1

, J, . . . , J︸ ︷︷ ︸
h≥0

,−1, . . . ,−1︸ ︷︷ ︸
k≥0

, 1, . . . , 1︸ ︷︷ ︸
l≥0

), (2.10)
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where J := [ 0 1
1 0 ], 2(j + h) + k + l = n and h + l 6= 0. That is, consider

Gn = {Mj,h,k := Γj,h,k\Rn} where Γj,h,k = 〈Bj,h,kL en

4
,Λ〉 if l ≥ 1 and Γj,h,k =

〈Bj,h,kL e2j+1
2

,Λ〉 if l = 0.

However, this larger family of Z4-manifolds has trivial eta series unless h = 0
and l = 1, i.e. the case previously considered. In fact, we have nBj,h,k

≥ 2 for
every j, h, k with h + l ≥ 2 and, by Corollary 2.6 in [MP2], the spectrum of D
is symmetric. The remaining case (h = 1 and l = 0) is more involved, but one
checks it by proceeding similarly as in the next section.

3. The spectrum of the Dirac operator

Since we are looking for spectral asymmetry of D, by Corollary 2.6 in [MP2], we
will restrict ourselves to orientable odd dimensional manifolds in Fn with F1 6= ∅
(recall that F1 = {B ∈ F : dim(Rn)B = 1}). Hence, we fix n = 2m + 1 and take

Fn
1 := {Mj,k ∈ Fn : k = 2k0, l = 1}. (3.1)

Also, for each Mj,k ∈ Fn
1 we choose, in the notation of (1.1) and Corollary 2.3, the

spin structure

εσ
j,k =

(
1, . . . , 1, (−1)j , σx(π

4 , . . . , π
4︸ ︷︷ ︸

j

, π
2 , . . . , π

2︸ ︷︷ ︸
k
2

)), σ ∈ {±1}. (3.2)

For simplicity, we will use the following shorter notation

x
k1,...,kt

(θ1, . . . , θt) := x(θ1, . . . , θ1︸ ︷︷ ︸
k1

, . . . , θt, . . . , θt︸ ︷︷ ︸
kt

). (3.3)

By using expression (1.8), we will explicitly compute the multiplicity of the
eigenvalues of the Dirac operator D of the spin manifolds (Mj,k, εσ

j,k).

We shall need the following auxiliary function. Let ω(j) := 3−(−1)j

2 , i.e.

ω(j) =
{

1 if j is even
2 if j is odd.

(3.4)

Theorem 3.1. Let n = 2m + 1 = 4r + 3. The Z4-manifolds Mj,k ∈ Fn
1 with spin

structures εσ
j,k as in (3.2) have asymmetric Dirac spectrum and, in the notation

of (1.6), the multiplicity of the non zero eigenvalue ±2πµ of D is given by

d±µ (εσ
j,k) =

{
4r−1|Λεσ

j,k,µ| ± σ (−1)r+[ t
ω(j) ] 2m−ω(j)−[ j

2 ] µ = 2t+1
ω(j)

4r−1|Λεσ
j,k,µ| otherwise

(3.5)

for k 6= 0, and by

d±µ (εσ
m,0) =

{
4r−1|Λεσ

m,0,µ| ± (−1)r 2r−1
(
(−1)t 2r + σ (−1)[

t
2 ]
)

µ = 2t+1
2

4r−1|Λεσ
m,0,µ| otherwise

for k = 0, where t ∈ N0 in both cases and ω(j) is as in (3.4).
Furthermore, for every Mj,k ∈ Fn

1 there are no non-trivial harmonic spinors,
that is, d±0 (εσ

j,k) = 0.
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Proof. For fixed j, k, let γ = Bj,kL en
4

be the generator of Γj,k. For 1 ≤ h ≤ 3, let
bh ∈ Rn be defined by γh = Bh

j,kLbh
and we put

S±h (µ) :=
∑

u∈(Λεσ
j,k

,µ)Bh

e−2πiu·bh χ
L
±σ(u,x

γh )

n−1

(xγh). (3.6)

Since F1(Γj,k) 6= ∅, because nB = nB3 = 1, and since nB2 = 1 if and only if k = 0,
the formula in (1.8) now reads

d±µ (εσ
j,k) = 1

4

(
2m−1 |Λεσ

j,k,µ| + S±1 (µ) + δk,0 S±2 (µ) + S±3 (µ)
)
, (3.7)

where δk,0 is Kronecker’s delta function.

Now, since εσ
j,k(γ) ∈ T , the maximal torus in Spin(n − 1), we can take xγ =

εσ
j,k(γ) = σx

j,k0
(π

4 , π
2 ), xγ2 = x

j,k0
(π

2 , π) and xγ3 = σx
j,k0

( 3π
4 , 3π

2 ) since

xγh = ε(γh) = ε(γ)h = (σxγ)h

and x(θ1, . . . , θm)h = x(hθ1, . . . , hθm) for h ∈ N (see (1.2)). Furthermore, since
Bj,k en = en and for u = en we can take hu = 1, then σ(en, xγh) = 1 for each
1 ≤ h ≤ 3. Moreover, σ(µen, xγh) = 1 and σ(−µen, xγh) = −1, because µ > 0
(see Preliminaries). On the other hand bh = hen

4 .

Since Λ is the canonical lattice Zn then Λ∗ = Λ and we can write Λ∗
ε = Λ + uε

where uε =
∑

{i:δi=−1} ei. Furthermore, since δi = 1 for 1 ≤ i ≤ n − 1 and
δn = (−1)j (see (3.2)), we have that Λ∗

εσ
j,k

= Ze1 ⊕ · · · ⊕ Zen if j is even and

Λ∗
εσ

j,k
= Ze1 ⊕ · · · ⊕ Zen−1 ⊕ (Z + 1

2 )en if j is odd. Thus,

(Λ∗
εσ

j,k
)Bh

j,k =
{

Zen j even
(Z + 1

2 )en j odd.
(3.8)

Clearly, if µ is such that (Λ∗
εσ

j,k,µ)Bh
j,k = ∅ for every 1 ≤ h ≤ 3, only the identity

of Γ can give a non-zero contribution to (1.8) and the multiplicity formula now
reads d±µ (εσ

j,k) = 4r−1 |Λεσ
j,k,µ|. Thus, from now on, we will assume that µ satisfies

(Λ∗
εσ

j,k,µ)Bh
j,k 6= ∅ for some 1 ≤ h ≤ 3. Then, we have (Λ∗

εσ
j,k,µ)Bh

j,k = {±µen} with

µ ∈ N for j even and µ ∈ N0 + 1
2 for j odd and hence we have

S±h (µ) = e−
π
2 ihµ χL±n−1

(xγh) + e
π
2 ihµ χL∓n−1

(xγh). (3.9)

If, furthermore, χL−n−1
(xγh) = −χL+

n−1
(xγh) holds, then

S±h (µ) = (e−
π
2 ihµ − e

π
2 ihµ)χL±n−1

(xγh) = −2 i sin(πhµ
2 ) χL±n−1

(xγh). (3.10)

By (1.4), the characters χL±n−1
(xγh) have the expression

χL±n−1
(xγh) = σh2m−1

(
(cos(hπ

4 ))j(cos(hπ
2 ))k0 ± im(sin(hπ

4 ))j(sin(hπ
2 ))k0

)
.
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The explicit values, for 1 ≤ h ≤ 3, are given in the following table:

χ
L±n−1

(xγh) k > 0 k = 0

h = 1 ±σ 2m−1im (
√

2
2

)j σ 2m−1 (
√

2
2

)m(1± im)

h = 2 0 ±2m−1 im

h = 3 ±σ 2m−1 im (
√

2
2

)j(−1)k0 σ 2m−1 (
√

2
2

)m ((−1)± im)

(3.11)

Case 1: k > 0. Let h = 1 or 3. Suppose that j is even, then µ ∈ N. If µ is
even, S±h (µ) = 0 because sin(πhµ

2 ) = 0. Let µ = 2t + 1 with t ∈ N0. Since
sin( (2t+1)hπ

2 ) = (−1)t+[ h
2 ], by (3.10) we have

S±h (µ) = −2 i (−1)
µ−1

2 +[ h
2 ] χL±n−1

(xγh).

Replacing these values in (3.7) we get

d±µ (εσ
j,k) = 1

4

(
2m−1|Λεσ

j,k,µ| − 2 i (−1)t
(
χL±n−1

(xγ)− χL±n−1
(xγ3)

))
= 1

4

(
2m−1|Λεσ

j,k,µ| ± σ (−1)t+1 2m im+1(
√

2
2 )j

(
1− (−1)k0

))
(3.12)

= 4r−1|Λεσ
j,k,µ| ± σ (−1)t+r 2m−1−[ j

2 ]

where we have used that m = 2r + 1 and that k0 is odd, because j is even and
n = 2(j + k0) + 1 ≡ 3 (4).

Now, if j is odd, µ = 2t+1
2 with t ∈ N0. One has that

sin
(π(2t+1)

4

)
= sin

( 3π(2t+1)
4

)
= (−1)[

t
2 ](

√
2

2 ). (3.13)

Then, by using that k0 is even because j is odd, we get that

d±µ (εσ
j,k) = 1

4

(
2m−1|Λεσ

j,k,µ| − 2 i (−1)[
t
2 ](

√
2

2 )
(
χL±n−1

(xγ) + χL±n−1
(xγ3)

))
= 1

4

(
2m−1|Λεσ

j,k,µ| ± σ (−1)[
t
2 ]+1 2m im+1(

√
2

2 )j+1
(
1 + (−1)k0

))
(3.14)

= 4r−1|Λεσ
j,k,µ| ± σ (−1)r+[ t

2 ] 2m−2−[ j
2 ].

Taking µ = 2t+1
ω(j) , with ω(j) = 3−(−1)j

2 , from (3.12) and (3.14) we finally obtain
expression (3.5).

Case 2: k = 0. Then j is odd and µ = 2t+1
2 with t ∈ N0. We have that

S±2 (µ) = ±(−1)t+1 2m im+1 = ±(−1)t+r 22r+1, (3.15)

by (3.10); and, for h = 1, 3, by (3.11) we obtain

S±h (µ) = σ 2m−1(
√

2
2 )m

(
e−

π
2 ihµ

(
(−1)[

h
2 ] ± im

)
+ e

π
2 ihµ

(
(−1)[

h
2 ] ∓ im

))
= σ 2m−1(

√
2

2 )m
(
(−1)[

h
2 ]2 cos(πhµ

2 )± im(−2i) sin(πhµ
2 )
)
.

Then, since cos
(π(2t+1)

4

)
− cos

( 3π(2t+1)
4

)
= 0, by using (3.13) we have

S±1 (µ) + S±3 (µ) = ∓σ 2m+1 (
√

2
2 )m+1 sin(π(2t+1)

4 )

= ±σ (−1)r+[ t
2 ] 2r+1.

(3.16)
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By introducing the values of (3.15) and (3.16) in (3.7), we get to the expressions
in the statement of the proposition.

Finally, the claim concerning to the multiplicity of the 0-eigenvalue follows
directly from the expressions just after (1.4) and (1.8), respectively.

Remark 3.2. From the multiplicity formulae obtained in Proposition 3.1 we see
that, generically, there are no Dirac isospectrality between manifolds in Fn

1 .
On the other hand, if m = 2r, that is, if n = 4r + 1, then the spectrum of D is

symmetric with multiplicities given by d±µ (εσ
j,k) = 4r−1|Λεσ

j,k,µ| for every pair j, k.
This follows by (3.12) and (3.14) in the proof of Theorem 3.1, in the case k > 0,
and by (3.7) for k = 0, since both (3.15) and (3.16) vanish in this case. Hence,
for a fixed n, {(M2j,k, εσ

2j,k) : 1 ≤ j ≤ r}, is a set of m mutually D-isospectral
Z4-manifolds, and similarly for {(M2j+1,k, εσ

2j,k) : 1 ≤ j ≤ r}.

4. Eta series and eta invariants of Z4-manifolds

In general, for a differential operator A having positive and negative eigenval-
ues we can decompose the spectrum SpecA(M) = S ∪̇A where S and A are the
symmetric and the asymmetric components of the spectrum, respectively. That
is, if λ = 2πµ, λ ∈ S if and only if d+

µ (M) = d−µ (M). We say that SpecA(M) is
symmetric if A = ∅.

As a measure of the spectral asymmetry of a differential operator A on a man-
ifold M , Atiyah, Patodi and Singer introduced the eta series

ηA(s) =
∑

λ ∈ SpecD(M)
λ 6= 0

sign(λ)
|λ|s

=
1

(2π)s

∑
µ∈ 1

2π A

d+
µ (M)− d−µ (M)

|µ|s
(4.1)

generalizing the zeta functions for the Laplacian. It is known that this series
converges absolutely for Re(s) > n

d , where d is the order of A, and defines a
holomorphic function ηA(s) in this region, having a meromorphic continuation to
C that is holomorphic at s = 0 ([APS2], [Gi2]). The eta invariant is defined
by ηA := ηA(0). It is known that if n 6≡ 3 mod (4) then η(s) ≡ 0 for every
Riemannian manifold M (see [Fr]).

Now, we let A = D, the Dirac operator. By using the results obtained in the
previous section we shall compute the expression for the eta series and the values
of the η-invariants for the spin Z4-manifolds considered. We have the following
result

Theorem 4.1. Let n = 2m + 1 = 4r + 3. The eta series for the Z4-manifolds
Mj,k ∈ Fn

1 with spin structures εσ
j,k as in (3.2) are given for k > 0 by

ηεσ
j,k

(s) =
Cj,σ

(8π)s

2ω(j)−1∑
h=0

(−1)[
h+ω(j)

2 ] ζ
(
s, 2h+1

4ω(j)

)
(4.2)
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with Cj,σ = σ (−1)r 2m+1−ω(j)−[ j
2 ], and by

ηεσ
m,0

(s) =
(−1)r 2r

(8π)s

3∑
h=0

(
σ + (−1)[

h+1
2 ] 2r

)
ζ
(
s, 2h+1

8

)
(4.3)

where ζ(s, α) =
∑∞

j=0(j + α)−s is the Hurwitz zeta function for Re(s) > 1, α ∈
(0, 1], and ω(j) is as defined in (3.4).

Furthermore, the meromorphic continuation of ηεσ
j,k

(s) to C is everywhere holo-
morphic for all manifolds Mj,k ∈ Fn

1 .

Note. Observe that, for k > 0, all the eta functions {ηεσ
2j,k

(s)} are mutually
proportional and the same happens with {ηεσ

2j+1,k
(s)}.

Proof. By Proposition 3.1 we have that

d+
µ (εσ

j,k)− d−µ (εσ
j,k) =

{
σ (−1)r+[ t

ω(j) ] 2m+1−ω(j)−[ j
2 ] k > 0

(−1)r 2r
(
σ (−1)[

t
2 ] + (−1)t2r

)
k = 0.

(4.4)

Now, by (4.1) and (4.4), in the case k > 0, we have

ηεσ
j,k

(s) =
Cj,σ

(2π)s

∞∑
t=0

(−1)[
t

ω(j) ]

( 2t+1
ω(j) )s

(4.5)

where Cj,σ = σ (−1)r 2m+1−ω(j)−[ j
2 ].

If j is even, the series in (4.5) equals
∞∑

t=0

(−1)t

(2t + 1)s
=

1
4s

( ∞∑
t=0

1
(t + 1

4 )s
−

∞∑
t=0

1
(t + 3

4 )s

)
=

1
4s

(
ζ(s, 1

4 )− ζ(s, 3
4 )
)
.

where we have separated the contributions of 2t and 2t+1, and hence in this case

ηεσ
j,k

(s) =
σ (−1)r 2m−[ j

2 ]

(8π)s

(
ζ(s, 1

4 )− ζ(s, 3
4 )
)
. (4.6)

For j odd, the series in (4.5) now equals
∞∑

t=0

(−1)[
t
2 ]

(t + 1
2 )s

=
1
4s

∞∑
t=0

1
(t + 1

8 )s
+

1
(t + 3

8 )s
− 1

(t + 5
8 )s

− 1
(t + 7

8 )s

=
1
4s

(
ζ(s, 1

8 ) + ζ(s, 3
8 )− ζ(s, 5

8 )− ζ(s, 7
8 )
)
.

where we have separated the contributions of 4t + h, with 0 ≤ h ≤ 3, and hence

ηεσ
j,k

(s) =
Cj,σ

(8π)s

3∑
h=0

(−1)[
h
2 ] ζ(s, 2h+1

8 ). (4.7)

By putting together expressions (4.6) and (4.7) we get formula (4.2).
On the other hand, for k = 0, by (4.1) and (4.4), we have

ηεσ
m,0

(s) =
(−1)r 2r

(2π)s

∞∑
t=0

σ (−1)[
t
2 ] + (−1)t2r

(t + 1
2 )s

.
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The series above equals
∞∑

t=0

(σ + 2r)
(4t + 1

2 )s
+

(σ − 2r)
(4t + 3

2 )s
− (σ − 2r)

(4t + 5
2 )s

− (σ + 2r)
(4t + 7

2 )s

where again we have separated the cases 4t + h, 0 ≤ h ≤ 3. Now, proceeding as
before, we obtain

ηεσ
m,0

(s) = (−1)r2r

(8π)s

(
(σ+2r)

(
ζ(s, 1

8 )−ζ(s, 7
8 )
)
+(σ−2r)

(
ζ(s, 3

8 )−ζ(s, 5
8 )
))

. (4.8)

From here it is clear that (4.3) holds.
The last assertion clearly follows from the explicit expressions for eta series

obtained in (4.6), (4.7) and (4.8) since the Hurwitz zeta function ζ(s, α) has a
simple pole at s = 1 with residue 1 (see [Ap]).

Corollary 4.2. The eta invariants of the spin Z4-manifolds Mj,k ∈ Fn
1 with spin

structures εσ
j,k are given by

ηεσ
j,k

(0) =

{
σ (−1)r+[

ω(j)
2 ] 2m−1−[ j

2 ] k > 0, 1 ≤ j < 2r + 1

(−1)r 2r (σ + 2r−1) k = 0, j = 2r + 1.
(4.9)

where ω(j) is as in (3.4). In particular ηεσ
j,k

(0) ∈ Q r {0}.

Proof. This is a consequence of the expressions given in Theorem 4.1 and the fact
that ζ(0, α) = 1

2 − α for every α ∈ (0, 1].

We now illustrate the results in the lowest dimensions considered, that is n = 3
and n = 7.

Example 4.3. For n = 3 there is only one manifold in F3
1, namely M1,0 where

B1,0 =
[

J̃
1

]
. Since r = 0 and k = 0, by (4.3) we have

ηε+
1,0

(s) = 2
(8π)s

(
ζ(s, 1

8 )− ζ(s, 7
8 )
)
, ηε−1,0

(s) = −2
(8π)s

(
ζ(s, 3

8 )− ζ(s, 5
8 )
)

and by (4.9)
ηε+

1,0
(0) = 3

2 , ηε−1,0
(0) = − 1

2 .

This is in agreement with the values obtained in [Pf].

Example 4.4. For n = 7 there are 3 manifolds in F7
1. They are M1,4, M2,2

and M3,0 where B1,4 =

[
J̃
−I

−I
1

]
, B2,2 =

[
J̃

J̃
−I

1

]
, B3,0 =

[
J̃

J̃
J̃

1

]
and

−I =
[−1

−1

]
. Now, by (4.2) and (4.3) we get

ηεσ
1,4

(s) = −4σ
(8π)s

((
ζ(s, 1

8 )− ζ(s, 7
8 )
)

+
(
ζ(s, 3

8 )− ζ(s, 5
8 )
))

ηεσ
2,2

(s) = −4σ
(8π)s

(
ζ(s, 1

4 )− ζ(s, 3
4 )
)

ηε+
3,0

(s) = −2
(8π)s

(
3
(
ζ(s, 1

8 )− ζ(s, 7
8 )
)
−
(
ζ(s, 3

8 )− ζ(s, 5
8 )
))

ηε−3,0
(s) = −2

(8π)s

(
−
(
ζ(s, 1

8 )− ζ(s, 7
8 )
)
− 3
(
ζ(s, 3

8 )− ζ(s, 5
8 )
))

Rev. Un. Mat. Argentina, Vol 46-1



44 RICARDO A. PODESTÁ

and, again by (4.9), also

ηεσ
1,4

(0) = −4σ, ηεσ
2,2

(0) = −2σ, ηε+
3,0

(0) = −4, ηε−3,0
(0) = 3.

Remark 4.5. To conclude, we conjecture that for a compact flat manifold of
dimension 4r + 3, with a “nice” integral holonomy representation, the eta series
η(s) can be put in terms of differences of Riemann-Hurwitz zeta functions ζ(s, α),
where α ∈ (0, 1] ∩Q, and that the meromorphic continuation to C is holomorphic
everywhere. Hence, from this expression, the η-invariant is easily computed simply
by evaluation at s = 0. More precisely, we claim that the eta series has the
expression

ηΓ,ε(s) =
CΓ,ε

(2π)s

N∑
j=1

fj,Γ,ε(s)
(
ζ(s, αj)− ζ(s, 1− αj)

)
where N < |F |, CΓ,ε is a constant depending on M and on the spin structure ε
and each fj,Γ,ε(s) is an entire function (trigonometric or constant). The results
in this paper, together with those in [MP2] bring support to this conjecture. We
plan to get deeper into this question in the future.
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