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In this note, I will describe some recent progress on the well-posedness the-
ory of the Benjamin-Ono (BO) equation, one of the challenging, well-studied, but
not completely understood, dispersive models in one space dimension. To put
matters in perspective, I will start by describing the theory for the Korteweg-de
Vries (KdV) equation, another well-studied dispersive model, for which the well-
posedness theory has been well-understood for some time. (For references for the
results described here see [Bou93], [KPV93], [KPV96], [CCT03], [CKS+03], [BP],
[IK] and the references in those papers.) Both equations are completely inte-
grable and possess infinitely many conserved quantities (for real-valued solutions,
to which we will stick to from now on). Recall that{

∂tu+ ∂3
xu+ u∂xu = 0 x ∈ R

u|t=0 = u0 t ∈ R.
(KdV)

By local in time well-posedness (l.w.p.), with data u0 in a Banach space of data
B, we will mean existence, uniqueness, persistence inB and continuous dependence
of the flow on the data in B, for a time T = T (u0) (u0 ∈ B → u ∈ C([−T, T ];B)
is continuous). If T (u0) = +∞, we have global in time well-posedness (g.w.p.).
Note that KdV is time reversible (u(x, t) a solution ⇐⇒ u(−x,−t) is a solution)
which explains the symmetric time intervals. The data space B will usually be

taken as the Sobolev space Hs(R) =
{
f ∈ S′(R) :

∫
(1 + |ξ|)2s

∣∣∣f̂(ξ)
∣∣∣2 dξ <∞}

,

where f̂(ξ) =
∫
eixξf(x) dx and s ∈ R. When s = k ∈ N, Hs(R) consists of

f ∈ L2 such that
(

d
dx

)k
f ∈ L2. An important difficulty in establishing l.w.p. for

KdV in Hs is the presence of the derivative in the non-linear term u∂xu which
needs to be “absorbed”. In the late 70s it was observed that the energy method
(a method used for the study of symmetric hyperbolic systems) applies to give
l.w.p. for KdV in Hs, for suitable s (Bona-Smith). Here, the energy method only
uses the antisymmetry of ∂3

x, which gives
∫
∂3

xf · f dx = 0. It hinges on having
a priori control of

∫ T

−T
||∂xu(t)||L∞x dt in terms of sup|t|<T ||u(t)||Hs . For instance,

when u ∈ Hs(R), s > 3/2, Sobolev embedding gives ||∂xu||L∞x ≤ C ||u||Hs and this
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control is immediate. Thus (Bona-Smith) we obtain l.w.p. in Hs(R), s > 3/2.
Note however that the same argument applies to Burger’s equation{

∂tu+ u∂xu = 0
u|t=0 = u0,

(B)

giving l.w.p. in Hs(R), s > 3/2. But, for (B), this is the sharp index for l.w.p.
and people became interested in whether this result can be improved or not for
KdV. It is instructive to consider conserved quantities for KdV:

∫
u2(x, t) dx,∫ {

∂xu)2 − u3

3

}
dx are constant in time. The second one is the Hamiltonian as-

sociated to KdV. Note that they imply the a priori bounds supt ||u(t)||L2 < ∞,
and supt ||u(t)||H1 < ∞. They do not give control on

∫ T

−T
||∂xu||L∞x dt, so that

the energy method cannot be applied. (Uniqueness is in question.) Neverthe-
less, in 1983, Kato and, independently, Kruzhkov-Faminski obtained the ‘a priori’
estimates (local smoothing)

sup
l(I)=1

∫ T

−T

∫
I

(∂xu)
2
dx dt ≤ CT (||u0||L2)

sup
l(I)=1

∫ T

−T

∫
I

(
∂2

xu
)2
dx dt ≤ CT (||u0||H1) ,

which, combined with the previous a priori bounds, led to the existence of ‘weak
solutions’ with data in L2(R), H1(R). Their uniqueness could not be established.

In the late 80s and early 90s, Kenig-Ponce-Vega introduced into the problem
methods of harmonic analysis and were able to make further progress. They proved
(91) that KdV is l.w.p. in Hs(R), s > 3/4 and g.w.p. in H1(R). The second result
is a direct consequence of the first one and the Hamiltonian. Two proofs were
given. The first one established control of

∫ T

−T
||∂xu||L∞x , without using Sobolev

(an “enhanced energy method”). The second one used an integral equation which
could be solved by Picard iteration using the contraction mapping principle in
a suitable Banach space of solution functions S. The proofs relied on the same
estimates. I will now briefly describe the second proof.

Consider the associated linear problem{
∂tw + ∂3

xw = −h
w|t=0 = w0,

whose solution is w(t) = S(t)w0 +
∫ t

0
S(t − t′)h(t′) dt′, where the homogeneous

solution operator is S(t)w0 =
∫
ei(xξ+tξ3)ŵ(ξ) dξ (Duhamel’s principle, method of

variation of the constants). We let h = u∂xu, and thus we need to solve the integral
equation u(t) = S(t)u0 +

∫ t

0
S(t − t′)u∂xu dt

′. Let ω(ξ) = ξ3, the ‘dispersive’
character of the equation is reflected on the lower bound for |ω′(ξ)| = 3ξ2. In
order to apply the contraction principle in a suitable space S, we exploited the
lower bound of |ω′(ξ)| be establishing the sharp local smoothing estimate

||∂xS(t)u0||L∞x L2
t
≤ C ||u0||L2

x
.
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In order to estimate the nonlinear term u∂xu = ∂x(u2/2), we paired this with the
maximal function estimate∣∣∣∣∣

∣∣∣∣∣ sup
|t|<1

|S(t)u0|

∣∣∣∣∣
∣∣∣∣∣
L2

x

≤ C ||u0||Hs , s > 3/4,

which is close to the restriction problem in harmonic analysis and which uses the
curvature of the level sets of ω.

Further progress was made by Bourgain (93) who introduced new function
spaces in which to do the contraction, establishing l.w.p. and g.w.p. in L2(R).
The first (simple but important) observation of Bourgain’s is that to prove l.w.p.
for T < 1 one can replace the above integral equation with

u(t) = ψ(t)S(t)u0 + ψ(t)
∫ t

0

S(t− t′)u∂xu dt
′, (+)

where ψ ∈ C∞
0 (R), ψ ≡ 1 for |t| < 1. From now on ∧ will denote the Fourier trans-

form of 1 or 2 variables and ∨ its inverse. It is easy to see that (ψ(t)S(t)u0)∧(ξ, λ) =
ψ̂(λ− ξ3) · û0(ξ) = ψ̂(λ− ω(ξ))û0(ξ). Also, it is not difficult to see that(

ψ(t)
∫ t

0

S(t− t′)h(t′) dt′
)∧

(ξ, λ) ' ĥ(ξ, λ)
(λ− ω(ξ) + i)

(ω(ξ) = ξ3).

In order to solve (+) by the contraction map principle in a solution space S, for
data which are (small) in L2(R) and obtain our l.w.p. result, one needs:

i) For u0 ∈ L2, ψ(t)S(t)u0 ∈ L2

ii) S ⊂ C(R;L2(R))

iii)
∣∣∣∣∣∣∣∣{ 1

λ−ω(ξ)+i (∂x(u · v))∧
}∨∣∣∣∣∣∣∣∣

S

≤ C ||u||S ||v||S .

Bourgain introduced the spaces (ω(ξ) = ξ3)

Xs
b =

{
f ∈ S′(R2) :

∫ ∫
(1 + |ξ|)2s(1 + |λ− ω(ξ)|)2b

∣∣∣f̂(ξ, λ)
∣∣∣2 dξ dλ <∞}

.

It is easy to see that for u0 ∈ L2, ψ(t)S(t)u0 ∈ X0
b , b ∈ R, and that for b > 1/2

X0
b ⊂ C(R;L2(R)). All boils down then to the “bilinear smooting” estimate∣∣∣∣∣

∣∣∣∣∣
{

1
λ− ξ3 + i

(∂x(u · v)∧)
}∨

∣∣∣∣∣
∣∣∣∣∣
X0

b

≤ C ||u||X0
b
||v||X0

b
,

which Bourgain showed to hold for some b > 1/2.
Note that

∂x(u · v)∧(ξ, λ) = ξû ∗ v̂(ξ, λ) =

= ξ

∫ ∫
û(ξ1, λ1)v̂(ξ − ξ1, λ− λ1) dξ1 dλ1.

The key ingredient in the proof of the “bilinear smoothing” estimate is: let

Ω(ξ1, ξ2) = ω(ξ1) + ω(ξ2)− ω(ξ1 + ξ2) = ξ31 + ξ32 − (ξ1 + ξ2)3 =

= −3ξ1ξ2(ξ1 + ξ2).
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With ξ2 = ξ − ξ1 (ξ = ξ1 + ξ2), this is used in conjunction with:

λ− ω(ξ) = {(λ− λ1)− ω(ξ − ξ1)}+ {λ1 − ω(ξ1)}+ {ω(ξ − ξ1) + ω(ξ1)− ω(ξ)} ,

to use our information on û, v̂ ∈ X0
b , to ‘trade’ (λ − ω(ξ) + i) for ξ, in order to

“absorb the x-derivative”. Lower bounds on Ω(ξ1, ξ2) are crucial for this.
Bourgain’s method was extended to Hs(R), s > −3/4 by Kenig-Ponce-Vega

(96), to obtain l.w.p.
A difference to point out between obtaining w.p. using the energy method

(possibly “enhanced”) and the contraction principle is that, in the first case one
only obtains the continuity of the solution map u0 7→ u, while in the second case
(for analytic nonlinearities) one obtains that u0 7→ u is real analytic.

Christ-Colliander-Tao (2003) showed that, for KdV, for s < −3/4, the solution
map is not uniformly continuous on bounded sets, so that the KPV result is in
a sense optimal. Moreover, by developing a new general method (the method of
almost conservation laws) Colliander-Keel-Staffilani-Takaoka-Tao (2001) were able
to show g.w.p. for KdV, s > −3/4.

The ideas and techniques explained have had a multitude of other applications,
to, for example, non-linear Schrödinger and non-linear wave equations, and to
many other problems, not only dealing with well-posedness issues.

I will now turn to the (BO) equation:{
∂tu+H∂2

xu+ u∂xu = 0
u|t=0 = u0.

(BO)

Here H denotes the Hilbert transform on R defined by (Hf)∧(ξ) = −i sign(ξ)f̂(ξ).
Thus, we have a non-local operator. As I mentioned before, this is a model in
water wave theory which like KdV is completely integrable and has infinitely many
conserved quantities. My interest in it comes from the fact that there is an exact
balance between the strength of the nonlinearity and the smoothing properties
of the linear part, which prevents the direct application of the techniques we
discussed before. Notice first that H is antisymmetric, while ∂2

x is symmetric, so
that

∫
H∂2

xf · f = 0. Thus, the energy method applies and shows that (BO) is
l.w.p. in Hs(R), s > 3/2 (Iorio 86). The first two conserved quantities for (BO)
are

∫
u2(x, t) dx and the Hamiltonian

∫
uH∂xu dx− 1

3

∫
u3 dx =

∫
(D1/2

x u)2− 1
3u

3.
It has infinitely many such conserved quantities, each corresponding to a derivative
of order k/2, k ∈ N. (The next ones correspond to 1 and 3/2 derivatives.) In 91
Ponce used a version for (BO) of Kato’s smoothing effect to show that for data u0

in H3/2(R) one can control
∫ T

−T
||∂xu||L∞x , to get by an “enhanced” energy method

l.w.p. in H3/2 and hence g.w.p. by the conservation law. The associated linear
problem is {

∂tw +H∂2
xw = −h

w|t=0 = w0

whose solution is

w(t) = S(t)w0 +
∫ t

0

S(t− t′)h(t′) dt′ with S(t)f(x) =
∫
ei(xξ+tω(ξ))f̂(ξ) dξ,
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RECENT PROGRESS IN THE WELL-POSEDNESS 109

ω(ξ) = − |ξ| ξ. Thus, |ω′(ξ)| = 2 |ξ|. This means that in the “local smoothing”
estimate, we only gain 1/2 derivative, instead of 1:∣∣∣∣∣∣D1/2

x S(t)u0

∣∣∣∣∣∣
L∞x L2

t

≤ C ||u0||L2
x
.

Thus, we cannot ‘absorb’ the full derivative in the non-linearity u∂xu and the KPV
argument using local smoothing and maximal function estimates does not apply. In
93, in connection with work on non-linear Schrödinger equations with derivatives
in the non-linearity, Kenig-Ponce-Vega discovered the following inhomogeneous
“double smoothing” estimate: for u ∈ C∞

0 (R2),

||∂xu||L∞x L2
t
≤ C

∣∣∣∣(∂t +H∂2
x)(u)

∣∣∣∣
L1

xL∞t
.

One can then show ([KPV93]) that (BO) is l.w.p. in H5/2(R) ∩ L2(|x|2 dx), for
data of small norm, by contraction.

How about using Bourgain spaces, for the usual Sobolev spaces? As before, the
crucial quantity is Ω(ξ1, ξ2) = ω(ξ1)+ω(ξ2)−ω(ξ1 +ξ2), where now ω(ξ) = − |ξ| ξ.
Once can then see that

|Ω(ξ1, ξ2)| = 2min {|ξ1| , |ξ2| , |ξ1 + ξ2|} ·med {|ξ1| , |ξ2| , |ξ1 + ξ2|} .
Note that if |ξ1| = 1/N , |ξ2| = N , |ξ1 + ξ2| ' N , but |Ω(ξ1, ξ2)| = 2. This is
responsible for the fact that for a “bilinear smoothing” estimate of the type∣∣∣∣∣

∣∣∣∣∣
{

1
λ− ω(ξ) + i

(∂r
x(u · v))∧

}∨
∣∣∣∣∣
∣∣∣∣∣
Xs

b

≤ C ||u||Xs
b
||v||Xs

b

to hold, for any s, we must have r ≤ 1/2. Thus, we can only smooth 1/2 a
derivative in the “bilinear smoothing” estimate. It turns out that things go cata-
strophically wrong, as was shown by Molinet-Sant-Tzvetkov (2001): for no s ∈ R,
T > 0, is the map Hs(R) 3 u0 7→ u ∈ C([−T, T ];Hs(R)) of class C2 at u0 = 0.
Thus, we cannot show l.w.p., for any s, by contraction, and the mapping u0 7→ u,
s ≥ 3/2 is continuous but not C2. This was strengthened by Koch-Tzvetkov (2003)
who showed (for s > 0) that his map is not uniformly continuous at u0 = 0. These
examples exhibit the fact that the interaction of the small frequencies (|ξ| ≤ 1)
with the large frequencies (|ξ| ' N) are responsible for this catastrophic failure.
After this there were 2 results on further “enhancements” of the energy method.
Koch-Tzvetkov (2003) showed l.w.p. in Hs, s > 5/4, and then Kenig-Koenig
(2003) combined their argument with the ‘local-smoothing estimate’ of Ponce’s to
obtain s > 9/8.

Then, in 2004, there was a breakthrough by Tao, who introduced a “gauge
transformation” and used it to prove, by an “enhanced energy method”, l.w.p. in
H1(R). Because of the higher conservation law, this also shows g.w.p. in H1(R).

Finally, in 2005, Burq-Planchon used Tao’s gauge transformation and Bourgain
spaces to prove l.w.p. in Hs(R), s > 1/4 and hence, by the use of the Hamiltonian,
g.w.p. in Hs(R), s ≥ 1/2. Independently, also in 2005, Ionescu-Kenig showed
g.w.p. in Hs(R), s ≥ 0. The rest of the lecture will be devoted to a sketch of some
of the ideas in the Ionescu-Kenig proof. Besides the obstacle coming from the
“low-high” frequency interaction (Molinet-Saut-Tzvetkov example), if we consider
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a “bilinear smoothing” estimate for function in Bourgain spaces, with no small
frequencies, i.e.:∣∣∣∣∣

∣∣∣∣∣
{

1
λ− ω(ξ) + i

(∂x(u · v)∧)
}∨

∣∣∣∣∣
∣∣∣∣∣
Xs

b

≤ C ||u||Xs
b
· ||v||Xs

b
,

for functions with û(ξ, λ) = v̂(ξ, λ) = 0 for |ξ| ≤ 1, one can see that even for
functions of “low modulation” (i.e. supp û, v̂ ⊂ {(ξ, λ) : |λ− ω(ξ) ≤ |ξ||}, ω′(ξ) =
|ξ|), we must have b = 1/2, and even then, there is a “logarithmic divergence” for
any s. This is another difficulty that we need to keep in mind. Our proof proceeds
in the following steps:

Step 1: We construct a space of data, L̃2, which coincides with L2 for frequencies
ξ, |ξ| ≥ 1, and for which, in the small frequencies |ξ| ≤ 1, we have “special
structure”. (This is reminiscent of the spaces considered by KPV in 93.) One then
modifies the Bourgain spaces, for low modulation functions, by adding to it the
space of functions f such that (∂t+H∂2

x)(f) has finite (normalized) L1
xL

2
t norm (in

physical space). (This norm comes from the “double smoothing” effect mentioned
before.) This is inspired by Tataru’s work (1998) on wave maps, where the physical
space norm is the energy norm. Using these spaces, the “logarithmic divergence”
is removed, for functions having “special structure” in the low frequencies, and we
show l.w.p. in L̃2 (small norm) by contraction mapping.

Step 2: “Removal of low frequencies”: The first point is that for general data
u0 ∈ L2, its low frequency part u0,low is very smooth and hence by the early results
we obtain a global smooth solution ulow, with u0,low as initial data. We then let
ũ = u− ulow and write the equation for ũ:{

∂tũ+H∂2
xũ+ ∂x(ulowũ) + ũ∂xũ = 0

u|t=0 = u0,high

where u0,high is the high frequency part of u0. The difficulty now comes from the
linear term ∂x(ulowũ) which still contains the dangerous “low-high” interactions.
To eliminate it, we do a “gauge transformation”. Let P+ = the Fourier multiplier
χ[0,∞)(ξ). Then P+H = −i, so that applying P+ to the equation for ũ gives{

∂tP+ũ− i∂2
xP+ũ+ ∂xP+(ulowũ) + P+(ũ∂xũ) = 0

P+ũ|t=0 = P+(u0,high).

Now, one introduces an “integrating factor”, by writing P+ũ = e−i eUw, where
∂xŨ = 1

2ulow, which “eliminates” the term ∂xP+(ulowũ). This is the “gauge
transformation”. Note that Ũ is real-valued, since ulow is so, and hence e−i eU
is bounded and smooth. We eventually obatin a (system) of equations for w, of
the form {

∂tw +H∂2
xw = E(w)

w|t=0 = w0

where w0 ∈ L̃2. The non-linearity E(w) is “essentially” of the form ∂x(e−i eUw2).
We would be in good shape if e−i eU was a good multiplier of the solution spaces of
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Step 1. Thus, let w ∈ X0
1/2, say, i.e.,∫ ∫
(1 + |λ− ω(ξ)|) |ŵ(ξ, λ)|2 dξ dλ <∞,

where ω(ξ) = − |ξ| ξ. Let a(x, t) be very smooth, say

supp â(ξ, λ) ⊂
{

1
2
≤ |ξ| ≤ 1, |λ| ≤ 1

}
.

Does a · w ∈ X0
1/2? Now,

â · w(ξ, λ) =
∫ ∫

â(ξ1, λ1)ŵ(ξ − ξ1, λ− λ1) dξ1 dλ1.

Recall that λ − ω(ξ) = [λ1 − ω(ξ1)] + [(λ − λ1) − ω(ξ − ξ1)] + [ω(ξ1) + ω(ξ −
ξ1) − ω(ξ)] = Ω(ξ1, ξ − ξ1) and that, in our situation, |Ω(ξ, ξ − ξ1)| ' |ξ − ξ1|.
Thus, if |(λ− λ1)− ω(ξ − ξ1)| � |ξ − ξ1|, there is a huge change in modulation
from the modulation of w and nothing good can be said. However, for the “high
modulation” part of w, we are fine. Thus, if we write w = wlow+whigh, supp ŵlow ⊂
{|λ− ω(ξ)| � |ξ|}, we can say nothing about a · wlow, but a · whigh ∈ X0

1/2. But
a · w2 = 2awhigh · wlow + awlow · wlow. The last term seems troublesome, but we
are saved because (wlow · wlow)low = 0, and the proof proceeds.
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