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CHARACTERISATIONS OF NELSON ALGEBRAS

M. SPINKS AND R. VEROFF

Abstract. Nelson algebras arise naturally in algebraic logic as the algebraic
models of Nelson’s constructive logic with strong negation. This note gives

two characterisations of the variety of Nelson algebras up to term equivalence,
together with a characterisation of the finite Nelson algebras up to polynomial

equivalence. The results answer a question of Blok and Pigozzi and clarify

some earlier work of Brignole and Monteiro.

1. Introduction

Recall from the theory of distributive lattices [2, Chapter XI] that a De Morgan
algebra is an algebra 〈A;∧,∨,∼, 0, 1〉 of type 〈2, 2, 1, 0, 0〉 where 〈A;∧,∨, 0, 1〉 is a
bounded distributive lattice and for all a, b ∈ A, ∼∼ a = a, ∼(a ∧ b) = ∼ a ∨ ∼ b
and ∼(a ∨ b) = ∼ a ∧ ∼ b.

A Nelson algebra (also N -lattice or quasi-pseudo-Boolean algebra in the litera-
ture) is an algebra 〈A;∧,∨,→,∼, 0, 1〉 of type 〈2, 2, 2, 1, 0, 0〉 such that the following
conditions are satisfied for all a, b, c ∈ A [26, Section 0]:

(N1) 〈A;∧,∨,∼, 0, 1〉 is a De Morgan algebra with lattice ordering ≤;
(N2) The relation � defined for all a, b ∈ A by a � b if and only if a→ b = 1 is

a quasiordering (reflexive and transitive relation) on A;
(N3) a ∧ b � c if and only if a � b→ c;
(N4) a ≤ b if and only if a � b and ∼ b � ∼ a;
(N5) a � c and b � c implies a ∨ b � c;
(N6) a � b and a � c implies a � b ∧ c;
(N7) a ∧ ∼ b � ∼(a→ b) and ∼(a→ b) � a ∧ ∼ b;
(N8) ∼(a→ 0) � a and a � ∼(a→ 0);
(N9) a ∧ ∼ a � b.
The class N of all Nelson algebras is a variety [11], which arises naturally in

algebraic logic as the equivalent quasivariety semantics (in the sense of [4]) of
Nelson’s constructive logic with strong negation [25, Chapter XII]. For studies of
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28 M. SPINKS AND R. VEROFF

Nelson algebras see in particular Sendlewski [26], Vakarelov [31], and Rasiowa [25,
Chapter V].

A commutative, integral residuated lattice is an algebra 〈A;∧,∨, ∗,⇒, 1〉 of type
〈2, 2, 2, 2, 0〉, where: (i) 〈A;∧,∨〉 is a lattice with lattice ordering ≤ such that d ≤ 1
for all d ∈ A; (ii) 〈A; ∗, 1〉 is a commutative monoid; and (iii) for all a, b, c ∈ A,
a ∗ b ≤ c if and only if a ≤ b ⇒ c. By Blount and Tsinakis [9, Proposition 4.1]
the class CIRL of all commutative, integral residuated lattices is a variety. An
FLew-algebra 〈A;∧,∨, ∗,⇒, 0, 1〉 is a commutative, integral residuated lattice with
distinguished least element 0 ∈ A. The variety FLew of all FLew-algebras arises
naturally in algebraic logic in connection with the study of substructural logics;
see [19, 21, 22, 23] for details.

An FLew-algebra A is said to be 3-potent when a∗a∗a = a∗a for all a ∈ A, dis-
tributive when its lattice reduct is distributive, and classical when (a⇒ 0)⇒ 0 = a
for all a ∈ A. Rewriting b⇒ 0 as ∼ b for all b ∈ A, classicality expresses the law of
double negation in algebraic form. A Nelson FLew-algebra is a 3-potent, distributive
classical FLew-algebra such that

(
a⇒ (a⇒ b)

)
∧

(
∼ b⇒ (∼ b⇒ ∼ a)

)
= a⇒ b for

all a, b ∈ A.
The following description (to within term equivalence) of the variety of Nelson

algebras was obtained by the authors in [29, 30].

Theorem 1.1. [29, Theorem 1.1]
(1) Let A be a Nelson algebra. Define the derived binary terms ∗ and ⇒ by:

x ∗ y := ∼(x→ ∼ y) ∨ ∼(y → ∼x) (∗def)

x⇒ y := (x→ y) ∧ (∼ y → ∼x). (⇒def)

Then the term reduct AF := 〈A;∧,∨, ∗,⇒, 0, 1〉 is a Nelson FLew-algebra.
(2) Let A be a Nelson FLew-algebra. Define the derived binary term → and

the derived unary term ∼ by:

x→ y := x⇒ (x⇒ y) (→def)

∼x := x⇒ 0. (∼def)

Then the term reduct AN := 〈A;∧,∨,→,∼, 0, 1〉 is a Nelson algebra.
(3) Let A be a Nelson algebra. Then (AF )N = A.
(4) Let A be a Nelson FLew-algebra. Then (AN )F = A.

Hence the varieties of Nelson algebras and Nelson FLew-algebras are term equiva-
lent. �

In this note we give several further characterisations of Nelson algebras, all of
which may be understood as corollaries of Theorem 1.1. We shall make implicit
use of Theorem 1.1 without further reference throughout the paper.

A BCK-algebra is a 〈⇒, 1〉-subreduct of a commutative, integral residuated lat-
tice [32, Theorem 5.6]; for an equivalent quasi-equational definition, see Section 2.
We show in Section 2 that every finite Nelson algebra A is polynomially equivalent
to its own BCK-algebra term reduct 〈A;⇒, 1〉.
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CHARACTERISATIONS OF NELSON ALGEBRAS 29

A pseudo-interior algebra is a hybrid of a (topological) interior algebra and a
residuated partially ordered monoid; for a precise definition, see Section 3 below.
We prove in Section 3 that the variety of Nelson algebras is term equivalent to a
congruence permutable variety of pseudo-interior algebras with compatible opera-
tions. We obtain this result as a byproduct of the solution to a problem of Blok
and Pigozzi [5].

A lower BCK-semilattice is the conjunction of a meet semilattice with a BCK-
algebra such that the natural partial orderings on both algebras coincide; for a
formal definition see Section 4 below. We verify in Section 4 that the variety of
Nelson algebras is term equivalent to a variety of bounded BCK-semilattices. The
result clarifies earlier work on the axiomatics of Nelson algebras due to Brignole [10].

2. Finite Nelson algebras as BCK-algebras

A BCK-algebra is an algebra 〈A;⇒, 1〉 of type 〈2, 0〉 such that the following
identities and quasi-identity are satisfied:

(x⇒ y)⇒
(
(y ⇒ z)⇒ (x⇒ z)

)
≈ 1

1⇒ x ≈ x (1)
x⇒ 1 ≈ 1

x⇒ y ≈ 1 & y ⇒ x ≈ 1 ⊃ x ≈ y.

By Wroński [34] the quasivariety BCK of all BCK-algebras is not a variety. BCK-
algebras have been considered extensively in the literature; for surveys, see Iséki
and Tanaka [17] or Cornish [13]. Here we simply recall that for any BCK-algebra
A, the relation v on A defined for all a, b ∈ A by a v b if and only if a⇒ b = 1 is
a partial ordering, which has the property that for any f, g, h ∈ A,

f v g implies g ⇒ h v f ⇒ h (2)

f v g implies h⇒ f v h⇒ g. (3)

A non-empty subset F of a BCK-algebra A is said to be a BCK-filter if 1 ∈ F
and a, a ⇒ b ∈ F implies b ∈ F for all a, b ∈ A. Also, a non-empty subset of an
FLew-algebra A is said to be an FLew-filter if: (i) a ≤ b and a ∈ F implies b ∈ F ;
and (ii) a, b ∈ F implies a∗b ∈ F for all a, b ∈ A. It is easy to see that a non-empty
subset of an FLew-algebra A is an FLew-filter if and only if it is a BCK-filter of the
BCK-algebra reduct of A [19, p. 12].

Let A be an FLew-algebra [resp. BCK-algebra]. It is well known and easy to
see that every congruence φ on A [resp. congruence φ on A such that A/φ is a
BCK-algebra] is of the form θ(F ) for some FLew-filter [resp. BCK-filter] F , where
for all a, b ∈ A, a ≡ b (mod θ(F )) if and only if a⇒ b, b⇒ a ∈ F (put F := 1/φ).
See [19, Proposition 1.3] for the case of FLew-algebras and [7, Proposition 1] for
the case of BCK-algebras.

For any A ∈ BCK, let ConBCK A := {θ ∈ Con A : A/θ ∈ BCK}. In view of the
preceding discussion, we have
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30 M. SPINKS AND R. VEROFF

Lemma 2.1. For any FLew-algebra A, Con A = ConBCK〈A;⇒, 1〉. In particular,
if H

(
〈A;⇒, 1〉

)
⊆ BCK, then Con A = Con〈A;⇒, 1〉. �

Recall from [3] that a class K of similar algebras has definable principal con-
gruences (DPC) if and only if there exists a formula φ(x, y, z, w) in the first-order
language of K (whose only free variables are x, y, z, w) such that for any A ∈ K
and a, b, c, d ∈ A, c ≡ d (mod ΘA(a, b)) if and only if A |= φ[a, b, c, d]. When
φ(x, y, z, w) can be taken as a conjunction (viz., finite set) of equations, then K is
said to have equationally definable principal congruences (EDPC) [15].

For any integer n ≥ 0, consider the unary {∗}-terms xn defined recursively by
x0 := 1 and xk+1 := xk ∗ x when 0 ≤ k ∈ ω. Given n ∈ ω, an element a of an
FLew-algebra A is said to be n+1-potent if an+1 = an. A is said to be n+1-potent
if it satisfies an identity of the form

xn+1 ≈ xn. (E∗n)

Clearly the class E∗n of all FLew-algebras satisfying (E∗n) is equationally definable.

Theorem 2.2. [18, Theorem 2.1] For a variety V of FLew-algebras the following
conditions are equivalent:

(1) V has DPC;
(2) V has EDPC; and
(3) V ⊆ E∗n for some n ∈ ω. �

A ternary term e(x, y, z) is a ternary deductive (TD) term for an algebra A
if A |= e(x, x, z) ≈ z, and, for all a, b, c, d ∈ A, eA(a, b, c) = eA(a, b, d) if c ≡ d
(mod ΘA(a, b)) [5, Definition 2.1]. e(x, y, z) is said to be a ternary deductive (TD)
term for a class K of similar algebras if it is a TD term for every member of K. By
[5, Theorem 2.5], c ≡ d (mod ΘA(a, b)) for any A ∈ K if and only if eA(a, b, c) =
eA(a, b, d), whence K has EDPC. A TD term e(x, y, z) for an algebra A is said to
be commutative if in addition A |= e

(
x, y, e(x′, y′, z)

)
≈ e

(
x′, y′, e(x, y, z)

)
. A TD

term e(x, y, z) for a class K of similar algebras is said to be commutative if it is
commutative for every member of K [5, Definition 3.1].

For any integer n ≥ 0, consider the binary {⇒}-terms x⇒n y defined recursively
by x ⇒0 y := y and x ⇒k+1 y := x ⇒ (x ⇒k y) when 0 ≤ k ∈ ω. Given n ∈ ω, a
BCK-algebra is said to be n+ 1-potent if it satisfies an identity of the form

x⇒n+1 y ≈ x⇒n y. (E⇒n )

By Cornish [12, Theorem 1.4] the class E⇒n of all BCK-algebras satisfying (E⇒n ) is
a variety.

Theorem 2.3. [8, Theorem 4.2] For n ∈ ω, the following conditions are equivalent
for a variety V of BCK-algebras:

(1) V has DPC;
(2) V has EDPC;
(3) V ⊆ E⇒n ; and
(4) (x⇒ y)⇒n

(
(y ⇒ x)⇒n z

)
is a commutative TD term for V. �
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CHARACTERISATIONS OF NELSON ALGEBRAS 31

Let V be a variety of FLew-algebras. Suppose V ⊆ E∗n for some n ∈ ω and let
A ∈ V. By [7, Proposition 13, Lemma 14], A |= (E∗n) if and only if A |= (E⇒n ) if
and only if 〈A;⇒, 1〉 |= (E⇒n ), whence 〈A;⇒, 1〉 is n+ 1-potent. Since 〈A;⇒, 1〉 ∈
E⇒n and E⇒n is a variety of BCK-algebras, H

(
〈A;⇒, 1〉

)
⊆ BCK. By Lemma 2.1,

therefore, Con A = Con〈A;⇒, 1〉 and hence

c ≡ d (mod ΘA(a, b)) iff c ≡ d (mod Θ〈A;⇒,1〉(a, b))

iff e〈A;⇒,1〉(a, b, c) = e〈A;⇒,1〉(a, b, d)

iff eA(a, b, c) = eA(a, b, d)

where e(x, y, z) denotes the commutative TD term of Theorem 2.3. Of course,
A |= e(x, x, z) ≈ z. Thus e(x, y, z) is a commutative TD term for V.

Conversely, suppose e(x, y, z) := (x⇒ y)⇒n
(
(y ⇒ x)⇒n z

)
is a commutative

TD term for V. Let A ∈ V. By [5, Theorem 2.3, Corollary 2.4], A |= e(x, y, x) ≈
e(x, y, y), which is to say A satisfies

(x⇒ y)⇒n
(
(y ⇒ x)⇒n x

)
≈ (x⇒ y)⇒n

(
(y ⇒ x)⇒n y

)
. (4)

Therefore 〈A;⇒, 1〉 |= (4). But by [7, Proposition 13], a BCK-algebra satisfies (4)
if and only if it satisfies (E⇒n ). Hence 〈A;⇒, 1〉 is n + 1-potent. By the remarks
following Theorem 2.3 we infer that A is n + 1-potent, whence A ∈ E∗n. We have
established

Proposition 2.4. For n ∈ ω, (x⇒ y)⇒n
(
(y ⇒ x)⇒n z

)
is a commutative TD

term for a variety V of FLew-algebras if and only if V ⊆ E∗n. �

In [29, Proposition 3.2] the authors showed that the variety of Nelson algebras
satisfies the identity x ⇒ (x ⇒ y) ≈ x → y, where ⇒ denotes the derived binary
term defined as in (⇒def). See also Viglizzo [33, Chapter 1]. Since the variety of
all Nelson FLew-algebras is 3-potent, we have

Corollary 2.5. [28, Theorem 3.3, Remark 3.5] (x ⇒ y) →
(
(y ⇒ x) → z

)
is

a commutative TD term for the variety of Nelson algebras, where ⇒ denotes the
derived binary term defined as in (⇒def).

Proof. By Blok and Pigozzi [5, Theorem 2.3(iii)] the property of being a commu-
tative TD term for a variety can be characterised solely by equations, so the result
follows from the remarks preceding the corollary and Proposition 2.4. �

Next, recall the following classic result from the theory of FLew-algebras.

Proposition 2.6. [16, Theorem 2] The variety of FLew-algebras is arithmetical.
A Mal’cev term for FLew is

(
(x⇒ y)⇒ z

)
∧

(
(z ⇒ y)⇒ x

)
. �

From Proposition 2.6 we infer

Theorem 2.7. [28, Theorem 4.4] The variety of Nelson algebras is arithmetical.
A Mal’cev term for N is

(
(x ⇒ y) ⇒ z

)
∧

(
(z ⇒ y) ⇒ x

)
, where ⇒ denotes the

derived binary term defined as in (⇒def). �
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32 M. SPINKS AND R. VEROFF

Let A be a finite FLew-algebra. Because the monoid reduct of A is finite, A
must be n + 1-potent for some n ∈ ω. See also Cornish [13, p. 419]. By the
remarks following Theorem 2.3, we infer that 〈A;⇒, 1〉 is n + 1-potent and hence
that H

(
〈A;⇒, 1〉

)
⊆ BCK. We therefore have

Theorem 2.8. Every finite FLew-algebra A is polynomially equivalent to its BCK-
algebra reduct 〈A;⇒, 1〉.
Proof. The result follows Lemma 2.1, Proposition 2.6 and a result due to Pixley
[24, Theorem 1], which asserts that if B is a finite algebra in an arithmetical variety
and f : Bm → B is a function preserving congruences on B then f is a polynomial
of B. �

Corollary 2.9. Every finite Nelson algebra A is polynomially equivalent to its
BCK-algebra term reduct 〈A;⇒, 1〉. �

The class N{⇒,1} of all 〈⇒, 1〉-term reducts of Nelson algebras is strictly con-
tained within the variety of all 3-potent BCK-algebras. In particular, it can be
shown that N{⇒,1} satisfies the identity(

(x⇒ y)⇒ (y ⇒ x)
)
⇒ (y ⇒ x) ≈ 1. (L)

(Commutative) BCK-algebras satisfying the identity (L) have been studied ex-
tensively by Dvurečenskij and his collaborators in a series of papers beginning
with [14].

It is easy to see that 3-potent BCK-algebras need not satisfy (L) in general.
Hence, Corollary 2.9 prompts the following

Problem 2.10. Characterise the 〈⇒, 1〉-reducts of Nelson algebras. �

3. Nelson algebras as pseudo-interior algebras

A BCI-monoid is an algebra 〈A;∧, ∗,⇒, 1〉 where: (i) 〈A;∧〉 is a semilattice; (ii)
〈A; ∗, 1〉 is a commutative monoid; and for all a, b, c ∈ A, both (iii) a ≤ b implies
a∗c ≤ b∗c and c∗a ≤ c∗b; and (iv) a ≤ b⇒ c if and only if a∗b ≤ c [1, Section 2].
An integral BCI-monoid is a BCI-monoid A satisfying a ≤ 1 for all a ∈ A. By [1,
Proposition 2.8] the class of all (integral) BCI-monoids is equationally definable.
For a recent study of BCI-monoids, see Olson [20].

For any integer n ≥ 0, consider again the unary {∗}-terms xn defined re-
cursively by x0 := 1 and xk+1 := xk ∗ x when 0 ≤ k ∈ ω. A unary op-
eration f(c) on an integral BCI-monoid A is said to be compatible if for any
a, b ∈ A there is an n ∈ ω such that

(
(a⇒ b) ∧ (b⇒ a)

)n ≤ f(a) ⇒ f(b) [1, Sec-
tion 2]. An m-ary operation f(c1, . . . , cm) on A is said to be compatible if fi(c) :=
f(a1, . . . , ai−1, c, ai+1, . . . , am) is compatible for any a1, . . . , ai−1, ai+1, . . . , am ∈ A
and i = 1, . . . ,m. An integral BCI-monoid with compatible operations is an al-
gebra 〈A;∧,⇒, ∗, 1, fi〉i∈I such that 〈A;∧,⇒, ∗, 1〉 is an integral BCI-monoid and
any fi is compatible. By Aglianó [1, Remarks following Proposition 2.13] A :=
〈A;∧,⇒, ∗, 1, fi〉i∈I is an integral BCI-monoid with compatible operations if and
only if A′ := 〈A;∧,⇒, ∗, 1〉 is an integral BCI-monoid and the congruences on A
are determined by A′ in the sense that Con A = Con A′.
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Lemma 3.1. The variety of commutative, integral residuated lattices satisfies the
identity: (

(x⇒ y) ∧ (y ⇒ x)
)
⇒

(
(x ∨ z)⇒ (y ∨ z)

)
≈ 1. (5)

Proof. Let A ∈ CIRL and let a, b, c ∈ A. To establish (5), note first that CIRL
satisfies the identities

(x⇒ y)⇒
(
(x ∧ z)⇒ y

)
≈ 1 (6)

(x⇒ y)⇒
(
x⇒ (y ∨ z)

)
≈ 1. (7)

Indeed, from a ∧ c ≤ a and (2) we have a ⇒ b ≤ (a ∧ c) ⇒ b, which yields (6).
Similarly, from b ≤ b ∨ c and (3) we have a⇒ b ≤ a⇒ (b ∨ c), which gives (7).

Next, note that CIRL satisfies the identity

x⇒ (y ∨ z) ≈ (x ∨ z)⇒ (y ∨ z). (8)

Indeed, from the theory of residuated lattices [9, Lemma 3.2] we have that CIRL
satisfies the identity

(x ∨ y)⇒ z ≈ (x⇒ z) ∧ (y ⇒ z). (9)

But then

(a ∨ c)⇒ (b ∨ c) =
(
a⇒ (b ∨ c)

)
∧

(
c⇒ (b ∨ c)

)
by (9)

=
(
a⇒ (b ∨ c)

)
∧ 1 since c ≤ b ∨ c

= a⇒ (b ∨ c)
which yields (8) as claimed.

Now it is clear that

1 =
(
(a⇒ b)⇒ (a⇒ (b ∨ c))

)
⇒(

((a⇒ b) ∧ (b⇒ a))⇒ (a⇒ (b ∨ c))
)

by (6)

=
(
(a⇒ b) ∧ (b⇒ a)

)
⇒

(
a⇒ (b ∨ c)

)
by (7),(1)

=
(
(a⇒ b) ∧ (b⇒ a)

)
⇒

(
(a ∨ c)⇒ (b ∨ c)

)
by (8)

which gives (5) as desired. �

It is well known and easy to see that for any A ∈ CIRL, a ≤ b implies a ∗
c ≤ b ∗ c and c ∗ a ≤ c ∗ b for all a, b, c ∈ A. The 〈∧, ∗,⇒, 1〉-reduct of any
commutative, integral residuated lattice is thus an integral BCI-monoid. Moreover,
commutativity of the monoid operation ∗ together with Lemma 3.1 guarantees that
the lattice join ∨ is compatible with 〈A;∧, ∗,⇒, 1〉. Hence we have

Lemma 3.2. The variety of commutative, integral residuated lattices, hence FLew-
algebras, is a variety of integral BCI monoids with compatible operations. �

A TD term e(x, y, z) for an algebra A with a constant term 1 is said to be
regular (for A) with respect to 1 if a ≡ b (mod ΘA(eA(a, b, 1), 1)) for all a, b ∈ A
[5, Definition 4.1]. A TD term e(x, y, z) for a variety V with a constant term 1
is said to be regular (for V) with respect to 1 if it is regular with respect to 1 for
every member of V.

Rev. Un. Mat. Argentina, Vol 48-1



i
i

i
i

i
i

i
i

34 M. SPINKS AND R. VEROFF

Theorem 3.3. [1, Theorem 3.1, Corollary 3.2] For n ∈ ω, the following conditions
are equivalent for a variety V of integral BCI-monoids with compatible operations:

(1) The ternary term
(
(x ⇒ y) ∧ (y ⇒ x)

)n ∗ z is a commutative, regular TD
term for V with respect to 1;

(2) V has EDPC: for any A ∈ V and a, b, c, d ∈ A,

c ≡ d (mod ΘA(a, b)) iff
(
(a⇒ b) ∧ (b⇒ a)

)n ≤ (c⇒ d) ∧ (d⇒ c).

�

Let V be a variety of FLew-algebras. Observe that for any A ∈ V and a, b, c, d ∈
A, the statement

c ≡ d (mod ΘA(a, b)) iff
(
(a⇒ b) ∧ (b⇒ a)

)n ≤ (c⇒ d) ∧ (d⇒ c) (10)

is equivalent to its corresponding statement about FLew-filters, viz.:

c ∈ F(a) iff an ≤ c, (11)

where F(c) denotes the principal filter generated by c ∈ A. We claim that (11)
is equivalent to the assertion an+1 = an. So assume a is n + 1-potent. We have
c ∈ F(a) if and only if ak ≤ c for some k if and only if an ≤ c (because ar ≤ as,
for s ≤ r). Conversely, suppose (11) holds. Clearly, n+ 1-potency is equivalent to
an ≤ an+1, which in view of (11) reduces to an+1 ∈ F(a), which statement is true.

From the preceding discussion it follows that V |= (E∗n) if and only if (10) holds
for any A ∈ V and a, b, c, d ∈ A. Combining Lemma 3.2 with Theorem 3.3 therefore
yields

Proposition 3.4. For n ∈ ω,
(
(x⇒ y) ∧ (y ⇒ x)

)n ∗ z is a commutative, regular
TD term with respect to 1 for a variety V of FLew-algebras if and only if V ⊆ E∗n.
�

In [5, Problem 7.4] Blok and Pigozzi asked whether the variety of Nelson alge-
bras has a commutative, regular TD term, or even a TD term; for a discussion
and references, see Spinks [28]. The following corollary, in conjunction with Corol-
lary 2.5, completely resolves this question. But first, for a term t := t(~x) in the
language of Nelson algebras, let t2 abbreviate t ∗ t, where ∗ denotes the derived
binary term defined as in (∗def).

Corollary 3.5.
(
(x⇒ y) ∧ (y ⇒ x)

)2 ∗ z is a commutative, regular TD term with
respect to 1 for the variety of Nelson algebras, where ⇒ and ∗ denote the derived
binary terms defined as in (⇒def) and (∗def) respectively.

Proof. Since the property of being a commutative, regular TD term for a variety
can be characterised solely by equations (by [5, Theorem 2.3(iii)] and [5, Corol-
lary 4.2(i)]), the result follows from 3-potency and Proposition 3.4. �

Let 〈A; ·, 1〉 be a semigroup with a constant 1 that acts as a left identity for ·.
A unary operation ◦ on A is said to be a pseudo-interior operation on 〈A; ·, 1〉 if
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the following identities are satisfied [6, Definition 2.1]:

x◦ · y◦ ≈ y◦ · x◦

x · y ≈ x◦ · y
x · x ≈ x◦

1◦ ≈ 1.

Given a semigroup A with left identity 1 and pseudo-interior operation ◦, the
inverse right-divisibility ordering on A is the partial ordering ≤r defined for all
a, b ∈ A by a ≤r b if and only if there exists c ∈ A such that a = c · b [6,
Lemma 2.3].

An algebra 〈A; ·,→, ◦, 1〉 of type 〈2, 2, 1, 0〉 is said to be a pseudo-interior algebra
if [6, Definition 2.6]: (i) 〈A; ·, 1〉 is a semigroup with left identity 1; (ii) ◦ is a pseudo-
interior operation on 〈A; ·, 1〉; and (iii) → is an open left residuation on 〈A; ·, 1〉 in
the sense that (a → b)◦ = a → b for all a, b ∈ A, and moreover c · a ≤r b if and
only if c◦ ≤r a ⇒ b for all c ∈ A. An algebra A := 〈A; ·,→, ◦, 1, fi〉i∈I is said to
be a pseudo-interior algebra with compatible operations if A′ := 〈A; ·,→, ◦, 1〉 is
a pseudo-interior algebra and the congruences on A are determined by A′ in the
sense that Con A = Con A′ [6, Definition 2.7, Corollary 2.17]. By [6, Theorem 3.1]
the class of all pseudo-interior algebras, with or without compatible operations, is
equationally definable.

Theorem 3.6. [6, Theorem 4.1, Corollary 4.2] A variety V has a commutative,
regular TD term if and only if it is term equivalent to a variety of pseudo-interior
algebras with compatible operations. If e(x, y, z) is a commutative, regular TD term
for V with respect to 1, then

x · y := e(x,1, y)

x◦ := e(x,1,1)

x→ y := e
(
x, e(x, y, x),1

)
define terms realising the pseudo-interior operations ·, ◦, and → on any A ∈ V
such that all the fundamental operations of A are compatible with 〈A; ·,→, ◦, 1〉.
�

Let V be a variety of FLew-algebras. If V ⊆ E∗n for some n ∈ ω, then V is
term equivalent to a congruence permutable variety of pseudo-interior algebras
with compatible operations by Proposition 2.6, Proposition 3.4, and Theorem 3.6.
Conversely, if V is term equivalent to a congruence permutable variety of pseudo-
interior algebras with compatible operations, then V ⊆ E∗n for some n ∈ ω by
Theorem 3.6, EDPC, and Theorem 2.2. Therefore we have

Theorem 3.7. A variety V of FLew-algebras is term equivalent to a congruence
permutable variety of pseudo-interior algebras with compatible operations if and
only if V ⊆ E∗n for some n ∈ ω. If V ⊆ E∗n, then for any A ∈ V, terms realising
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the pseudo-interior operations ·, ◦, and → on A are defined by

x · y := xn ∗ y
x◦ := xn

x→ y :=
(
x⇒ (((x⇒ y) ∧ (y ⇒ x))n ∗ x)

)n
.

Proof. It remains only to establish the second assertion of the theorem. When V is
n+1-potent, the terms realising the pseudo-interior operations on any member of V
may be obtained by instantiating Theorem 3.6 with the TD term of Proposition 3.4
and simplifying the resulting expressions for x · y, x◦ and x → y using the now
well-developed arithmetic of commutative, integral residuated lattices [9, 19]. �

Since the variety of all Nelson FLew-algebras is 3-potent, from Theorem 3.7 we
have

Corollary 3.8. The variety of Nelson algebras is term equivalent to a congruence
permutable variety of pseudo-interior algebras with compatible operations. For any
A ∈ N, terms realising the pseudo-interior operations ·, ◦, and → on A are defined
by

x · y := x2 ∗ y
x◦ := x2

x→ y :=
(
x⇒ (((x⇒ y) ∧ (y ⇒ x))2 ∗ x)

)2

where the derived binary terms ⇒ and ∗ are defined as in (⇒def) and (∗def) re-
spectively. �

4. Nelson algebras as bounded BCK-semilattices

In 1963 D. Brignole resolved a problem, posed by A. Monteiro, that asked
whether Nelson algebras could be defined in terms of the connectives ⇒, ∧ and
the constant 0. See [10] or [33, Chapter 1, p. 21]. Let B (for Brignole) denote
the variety of all algebras 〈A;∧,⇒, 0〉 of type 〈2, 2, 0〉 axiomatised by the following
collection of identities

(x⇒ x)⇒ y ≈ y
(x⇒ y) ∧ y ≈ y

x ∧ ∼(x ∧ ∼ y) ≈ x ∧ (x⇒ y)

x⇒ (y ∧ z) ≈ (x⇒ y) ∧ (x⇒ z)
x⇒ y ≈ ∼ y ⇒ ∼x

x⇒
(
x⇒ (y ⇒ (y ⇒ z))

)
≈ (x ∧ y)⇒

(
(x ∧ y)⇒ z

)
∼(∼x ∧ y)⇒ (x⇒ y) ≈ x⇒ y

x ∧ (x ∨ y) ≈ x
x ∧ (y ∨ z) ≈ (z ∧ x) ∨ (z ∧ y)

(x ∧ ∼x) ∨ (y ∨ ∼ y) ≈ x ∧ ∼x
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where the derived nullary term 1 is defined as

1 := 0⇒ 0, (1def)

the derived unary term ∼ is defined as in (∼def), and the derived binary term ∨ is
defined by

x ∨ y := ∼(∼x ∧ ∼ y). (∨def)

Brignole established the following result:

Theorem 4.1. [10]

(1) Let A be a Nelson algebra and define the derived binary term⇒ as in (⇒def).
Then the term reduct AB := 〈A;∧,⇒, 0〉 is a member of B.

(2) Let A be a member of B. Define the derived binary terms ∨ and → as
in (∨def) and (→def) respectively, the derived unary term ∼ as in (∼def)
and the derived nullary term 1 as in (1def). Then the term reduct AN :=
〈A;∧,∨,→,∼, 0, 1〉 is a Nelson algebra.

(3) Let A be a Nelson algebra. Then (AB)N = A.
(4) Let A be a member of B. Then (AN )B = A.

Hence the variety of Nelson algebras and the variety B are term equivalent. �

A lower BCK-semilattice is an algebra 〈A,∧,⇒, 1〉 where [27, Lemma 1.6.24]:
(i) 〈A;⇒, 1〉 is a BCK-algebra; (ii) 〈A;∧〉 is a lower semilattice; and (iii) for all
a, b ∈ A, a ≤ b if and only if a v b, where ≤ and v denote the semilattice and BCK-
algebra partial orderings respectively. Lower BCK-semilattices have been studied
in particular by Idziak [16]. A bounded lower BCK-semilattice 〈A;∧,⇒, 0, 1〉 is a
lower BCK-semilattice with distinguished least element 0 ∈ A. A (bounded) lower
BCK-semilattice is said to be n+1-potent if its BCK-algebra reduct is n+1-potent.

Let B1 denote the variety of all algebras 〈A;∧,⇒, 0, 1〉 having type 〈2, 2, 0, 0〉
axiomatised by the identities defining B given above together with the identity
x⇒ x ≈ 1. It is clear that B1 is term equivalent to B and therefore also to both N
and NFLew. The following result illuminates Brignole’s description of Nelson alge-
bras given in Theorem 4.1 above.

Theorem 4.2. The variety of Nelson algebras is term equivalent to a variety of
bounded 3-potent BCK-semilattices.

Proof. It suffices to show any A ∈ B1 is a bounded 3-potent lower BCK-semilattice.
By [29, Theorem 3.7] the 〈⇒, 1〉-term reducts of members of NFLew are 3-potent
BCK-algebras. Hence 〈A;⇒, 1〉 is a 3-potent BCK-algebra. Of course, 〈A;∧〉 is
a lower semilattice. By Rasiowa [25, Theorem V.1.1], a ≤ b if and only if a v b
for all a, b ∈ B for any Nelson algebra B, where ≤ and v denote the lattice and
BCK-algebra partial orders respectively. Hence the semilattice partial order and
the BCK-algebra partial order coincide on A, and A is a 3-potent lower BCK-
semilattice. Finally, 0 is clearly the least element of A, whence A is a bounded
3-potent lower BCK-semilattice. �

Rev. Un. Mat. Argentina, Vol 48-1



i
i

i
i

i
i

i
i

38 M. SPINKS AND R. VEROFF

References
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[17] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Mathematica Japon-
ica 23 (1978), 1–26.

[18] T. Kowalski, Semisimplicity, EDPC and discriminator varieties of residuated lattices, Studia
Logica 77 (2004), 255–265.

[19] T. Kowalski and H. Ono, Residuated Lattices: An Algebraic Glimpse at Logics without

Contraction, Manuscript, 2000, 67 pp.

[20] J. S. Olson, Finiteness conditions on varieties of residuated structures, Ph.D. thesis, Uni-
versity of Illinois at Chicago, 2006.

Rev. Un. Mat. Argentina, Vol 48-1



i
i

i
i

i
i

i
i

CHARACTERISATIONS OF NELSON ALGEBRAS 39

[21] H. Ono and Y. Komori, Logics without the contraction rule, J. Symbolic Logic 50 (1985),

169–201.

[22] H. Ono, Logics without contraction rule and residuated lattices I, Festschrift of Prof.

R. K. Meyer, To appear.

[23] H. Ono, Substructural logics and residuated lattices — an introduction, in Trends in Logic:

50 Years of Studia Logica, Kluwer Academic Publishers, Dordrecht, 2003, pp. 193–228.

[24] A. F. Pixley, Characterisation of arithmetical varieties, Algebra Universalis 9 (1979), 87–98.

[25] H. Rasiowa, An Algebraic Approach to Non-Classical Logics, Studies in Logic and the Foun-

dations of Mathematics, no. 78, North-Holland Publ. Co., Amsterdam, 1974.

[26] A. Sendlewski, Some investigations of varieties of N -lattices, Studia Logica 43 (1984), 257–

280.

[27] M. Spinks, Contributions to the theory of pre-BCK-algebras, Ph.D. thesis, Monash Univer-
sity, 2003.

[28] M. Spinks, Ternary and quaternary deductive terms for Nelson algebras, Algebra Universalis

51 (2004), 125–136.

[29] M. Spinks and R. Veroff, Constructive logic with strong negation is a substructural logic over
FLew, I, Studia Logica, To appear.

[30] M. Spinks and R. Veroff, Constructive logic with strong negation is a substructural logic over

FLew, II, Studia Logica, To appear.

[31] D. Vakarelov, Notes on N -lattices and constructive logic with strong negation, Studia Logica
36 (1977), 109–125.

[32] C. J. van Alten and J. G. Raftery, Rule separation and embedding theorems for logics without

weakening, Studia Logica 76 (2004), 241–274.

[33] I. D. Viglizzo, Algebras de Nelson, Tesis de Magister en Matemática, Universidad Nacional
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