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A QUALITATIVE UNCERTAINTY PRINCIPLE FOR
COMPLETELY SOLVABLE LIE GROUPS.

B. BOUALI

Abstract. In this paper, we study a qualitative uncertainty principle for

completely solvable Lie groups.

1. Introduction

Let G be a connected, simply connected, and completely solvable Lie group,
with Lie algebra G. Let G∗ be the dual of G. The equivalence classes of irreducible
unitary representations Ĝ of G is parameterized by the coadjoint orbits G∗/G via
the Kirillov bijective map

K : Ĝ→ G∗/G
We recall that if (Vρ, ρ) ∈ Ĝ and l ∈ K(ρ), then there exists an analytic subgroup

H of G and a unitary character ξ of H, such that the induced representation ρ is
equivalent to IndGHξ. Moreover the push forward of a Plancherel measure in Ĝ is
a measure equivalent to a Lebesguian measure on convenient set of representatives
in G∗ for Ĝ.

Let f in L1(Rn) and set f̂ its Fourier transform, let Af = {x ∈ Rn : f(x) 6= 0}
and Bf = {x ∈ Rn : f̂(x) 6= 0}. By Bénédicks theorem [1, Theorem 2], if λ(Af ) <
∞ and λ(Bf ) <∞ then f = 0 a.e. Here, λ denote Lebesgue measure on Rn. That
is, for Rn the qualitative uncertainty principle holds.

In this note we prove that a completely solvable Lie group has the qualitative
uncertainty principle. In [4] we showed the theorem for nilpotent Lie groups, by
induction on the dimension of G. To prove the theorem we apply induction, for
this, we need an explicit description of the dual space Ĝ of G as well as an explicit
description of Plancherel measure on Ĝ. For our approach we use a result of B.N.
Currey [3], which is a generalization of a result of L. Pukanszky. Let G be a locally
compact group. Denote a fixed Haar measure on G by m and the corresponding
Plancherel measure on Ĝ by µ.

Let Af = {x ∈ G : f(x) 6= 0} and Bf = {π ∈ Ĝ : f̂(π) 6= 0},

Definition 1.1. G has the qualitative uncertainty principle if m(Af ) < ∞ and
µ(Bf ) <∞, then f = 0 m-a.e.
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42 B. BOUALI

Remark 1.1. The group (Rn,+) has the qualitative uncertainty principle [1, The-
orem 2].

2. Preliminaries

Let G be a connected, simply connected, and completely solvable Lie group,
with the Lie algebra G. Let G∗ be its dual. Since G is completely solvable, there
exists a chain of ideals of G

(0) = G0 ⊂ G1 ⊂ ... ⊂ Gn = G

such that the dimension of Gj is j, for all j ≤ n. We fix an ordered basis B =
{X1, X2, .., Xn} of G such that Gj is spanned by the vectors X1, .., Xj ,1 ≤ j ≤ n.
Let B∗ = {X∗1 , X∗2 , .., X∗n} be the dual basis of B. We fix a Lebesgue measure dX
on G and a right invariant Haar measure m on G such that m(expX) = JG(X)dX
where

JG(X) = |det(1− e−adX

adX
)|

Let δ be the modular function such that for all g ∈ G, m(gg′) = δ(g)m(g′). Let
O be a co-adjoint orbit in G∗ and l ∈ O. The bilinear form Bl : (X,Y )→ l([X,Y ])
defines a skew-symmetric and nondegenerate bilinear form on G/Gl. Since the map
X → X.l induces an isomorphism between G/Gl and the tangent space of O at l,
the bilinear form Bl defines a nondegenerate 2-form wl on this tangent space. If
2k is the dimension of O we note that

BO := (2k)−k(k!)−1wl ∧ wl ∧ .. ∧ wl (k times)

is a canonical measure on O. Lemma 3.2.2 in [2] says that there exists a nonzero
rational function ψ on G∗ such that

ψ(g.l) = δ(g)−1
ψ(l), g ∈ G, l ∈ G∗

and there exists a unique measure mψ on G∗/G such that∫
G∗
φ(l)|ψ(l)|dl =

∫
G∗/G

(
∫
O

φ(l)dBO(l))dmψ(O)

for all Borel function φ on G∗. B.N. Currey [3,] gave an explicit description of the
measure mψ with the help of the coadjoint orbits. We recall the theorem proved
by B.N. Currey which is a essential tool to prove our main theorem.

Theorem 2.1. Let G be a connected, simply connected and completely solvable Lie
group. There exists a Zariski open subset U in G∗, a subset J = {j1 < j2 < ... <
j2k} of {1, 2, ..., n}, a subset M = {jr1 < jr2 < ... < jra} of J , for each j ∈ M
a real valued rational function qj, non vanishing on U , and real analytic functions
Pj in the variables w1, w2, .., w2k, l1, l2, .., ln such that the following hold.

(1) If a denotes the number of elements of M , for each ε ∈ {1,−1}a, the set

Uε = {l ∈ U | sign of qjrm (l) = εm, 1 ≤ m ≤ a}

is a non empty open subset in G∗.
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(2) Define V ⊂ R2k by V =
∏
Rr, where Rr =]0,∞[ if jr ∈ M and Rr = R

otherwise. Let ε ∈ {1,−1}a, for v ∈ V , define εv ∈ R2k by (εv)j = εmvj if
j = jrm ∈M and (εv)j = vj otherwise. Then for each l ∈ Uε, the mapping
v −→

∑
j∈J Pj(εv, l)X

∗
j is a diffeomorphism of V with the coadjoint orbit

of l.
(3) Define WD as the subspace spanned by the vectors {X∗i | i 6∈ J} and WM

the subspace spanned by the vectors {X∗i | i ∈M} Then the set

W = {l ∈ (WD ⊕WM ) ∩ U || qj(l) |= 1, j ∈M}
is a cross-section for the coadjoint orbits in U . for each j ∈M the rational
function qj is of the form qj(l) = lj+pj(l1, l2, .., lj−1), where pj is a rational
function.

(4) For each l ∈ U , let ε(l) ∈ {1,−1}a such that l ∈ Uε(l). Then the mapping
P : V ×W −→ U , defined by P (v, l) =

∑
j Pj(ε(l)v, l)X

∗
j , is a diffeomor-

phism.

If the subset M is empty, then W = WD ∩ U and the coordinates for W are
obtained by identifying WD with Rn−2k, which is the parametrization of Ĝ in the
nilpotent case. If M is not empty and a the number of elements in M . From [3],
for each ε ∈ {1,−1}a Uε is a non empty Zariski open subset and U = ∪εUε (disjoint
union). Set Wε = W ∩ Uε. from [3] we have:

Wε = {l ∈ (WD ⊕WM ) ∩ U | for each j = jrm ∈M, lj = εm − pj(l1, ...., lj−1)}
pj is a rational nonsingular function on U .

Let ε ∈ {−1, 1}a. From [3], there is a Zariski open subset Λε of WD and a rational
function pε : Λε −→ WM such that Wε is the graph of pε. From [3], the projection
of Uε into WD parallel to WJ defines a diffeomorphism of WD with Λε.

Summarizing: let G be connected, simply connected and completely solvable Lie
group. Let {X∗1 , X∗2 , ..., X∗n} be a Jordan-Holder basis of G∗. Then, there is a finite
family of disjoint open subsets Uε of G∗ and there is a subspace WD of G∗ such
that for each ε, the orbits in Uε are parameterized by a Zariski open subset Λε of
WD. The union of this open sets determines an open dense subset of G∗/G whose
complement has Plancherel measure zero.

3. The ax+ b Group.

Consider the group

G =
{(

a b
0 1

)
| a > 0, b ∈ R

}
We use the notation

(a, b) =
(
a b
0 1

)
. Matrix multiplication is:

(a1, b1)(a2, b2) = (a1a2, a1b2 + b1)

and the inverse is
(a, b)−1 = (a−1,−ba−1).
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44 B. BOUALI

The Lie algebra G of G is the set of matrices

G =
{(

x y
0 0

)
x, y ∈ R

}
We choose as ordered base B,

X =
(

1 0
0 0

)
and Y =

(
0 1
0 0

)
We have [X,Y ] = Y . Thus the group is not nilpotent.

Let {X∗, Y ∗} the dual basis of G∗. Let l = αX∗ + βY ∗ ∈ G. The orbits of G in
G∗ are: the upper half plane β > 0, the lower half plan β < 0 and the points (α, 0).
Here, J = {j1, j2} = {1, 2} and M = {j2} ⊂ J , so that V = R2, V =]0,+∞[×R.
WD = (0) and WM is spanned by the vector X∗j2 . The Zariski open sets U+ and
U− are the half planes of G∗ and U = U+ ∪U−. Since there are two orbits, the set

W = {l ∈WM ∩ U : | qj2(l) |= 1, j2 ∈M}
has exactly two points. We have W+ = W ∩ U+ and W− = W ∩ U−. The Zariski
open set Λ+ or Λ− of WD, reduces to a point.

4. Fourier transform.

We must consider two cases(see [5]):
(1) All the orbits in general position are saturated with respect to Gn−1. That

is, for each l ∈ G∗, Gl ⊂ Gn−1. Then, we may and will choose a basis of G
BWε

= {X1(l), X2(l), ...., Xn−1(l), Xn}.
where the last vector of the basis does not depend on l. We apply the
previous setting to Gn−1 := exp(Gn−1). Let J1 = J \ {n, j1} the index set
for Gn−1, then M1 is a subset of J1, let a1 denote the number elements
of M1. For each ε1 ∈ {−1, 1}a1 , the set Uε1 is nonempty open subset of
G∗n−1. Let WD1 = WD ⊕ RX∗j1 and then WM1 is the subspace spanned by
X∗j , j ∈ M1. We apply the inductive hypothesis to Gn−1, hence, there is
a Zariski open subset Λε1 ⊂ WD1 and a rational function pε1 : Λε1 → WD1

such that Wε1 is the graph of pε1 . Let Λε1 denote the projection of Λε on
G∗n−1. From [5,lemma 3.2], the measure dµ1 on Wε1 in terms of the measure
dµ on Wε and dX∗j1 is dµ1 = dµ× dX∗j1

(2) If some orbit G · l in general position is not saturated with respect to Gn−1,
we can still obtain a basis of G such that the last vector of the basis does not
depend on l, Xn ∈ Gl and Xi ∈ G

lj
j for certain j with lj = l | Gj . In this case

since Gl = Gln−1 , we have WD = WD1 + RXn. Moreover Λε = Λε1 + RXn
∗.

The Plancherel measure can be written as dµ(l) = dµ1 × dX∗n.

5. The main theorem.

Theorem 5.1. Let G be a connected, simply connected, completely solvable Lie
group with the unitary dual Ĝ, and let f be integrable function on G (f ∈ L1(G)).
If m(Af ) <∞ and µ(Bf ) <∞ then f = 0 almost every where.
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Proof 5.1. We proceed by induction on the dimension n of G. The result is true
if the dimension of G is one, since G ∼= R (see [1,theorem2]). Assume that the
result is true for all completely solvable Lie groups of dimension n − 1. Suppose
that m(Af ), µ(Bf ) are finite. From [4, lemma 1.6], m1(Aft) is finite. To conclude,
it remains to show that µ1(Bft) is finite. We can assume that Bf is contained in
Wε (It suffices to take Bf as the finite union of Bf ∩Wε).We consider tho cases

(1) We suppose that Gl ⊂ Gn−1 for all l ∈Wε. That is, all the orbits in general
position are saturated with respect to Gn−1. For φ ∈ G∗, let φ0 be the
restriction of φ to Gn−1, then πφ = IndGGn−1

πφ0 is irreducible. From [6,
proposition 2.5] we have:∫ ⊕

G∗n−1

IndGGn−1
πφ0dλG∗n−1

(φ0) '
∫ ⊕
G∗
πφdλG∗(φ) (1)

where dλG∗ is the Lebesgue measure on G∗ and dλG∗n−1
is the Lebesgue

measure on G∗n−1. From the formula (1) and the definition of Xn, we
conclude that the map φ → φ0 is an isomorphism which respect to the
measures dλG∗n−1

and dλG∗ , then

µ1(Bft) = µ(Bf ) <∞.
By induction hypothesis f t = 0 almost everywhere on Gn−1 for almost
everywhere t ∈ R, which implies that f = 0 almost everywhere on G by
using the theorem of Fubini.

(2) Some orbit G · l is not satured with respect to Gn−1. That is, Gl 6⊂ Gn−1

for some l ∈ Wε. For φ0 ∈ G∗n−1, we choose an extension φ defined by
φ(Xn) = 0. From this we have

indGGn−1
πφ0 ∼

∫ ⊕
R
πφ0+sX∗

n
ds.

Hence

µ(Bf ) =
∫

R
µ1(Bft)dt <∞.

Then for almost everywhere t ∈ R, µ1(Bft) is finite. By inductive hypothe-
sis f t = 0 almost everywhere on Gn−1 for almost everywhere t in R, which
implies that f = 0 almost everywhere on G by Fubini’s theorem.

Remark 5.1. The ax+ b group has the qualitative uncertainty principle.

Question 5.1. Do the exponential solvable Lie groups have the qualitative uncer-
tainty principle ?
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nilpotents, Journal of Lie theory,volume 9(1999) 157-191.

B. Bouali

University of Mohammed premier,

OUJDA, MOROCCO

Recibido: 13 de febrero de 2006

Aceptado: 20 de julio de 2007

Rev. Un. Mat. Argentina, Vol 48-1


