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Abstract. Let R be a ring (associative, with 1). A non-zero module M is
said to be a Prüfer module provided there exists a surjective, locally nilpotent
endomorphism with kernel of finite length. The aim of this note is to construct
Prüfer modules starting from a pair of module homomorphisms w,v:U0→U1,

where w is injective and its cokernel is of finite length. For R=Z the ring of
integers, one can construct in this way the ordinary Prüfer groups considered
in abelian group theory. Our interest lies in the case that R is an artin algebra.

1. The construction.

Let R be a ring (associative, with 1). The modules to be considered will usually
be left R-modules. Our main interest will be the case where R is an artin algebra,
however the basic construction should be of interest for any ring R. In fact, the
standard examples of what we call Prüfer modules are the Prüfer groups in abelian
group theory, thus Z-modules. Here is the definition of a Prüfer module: it is a
non-zero module P which has a surjective, locally nilpotent endomorphism φ with
kernel of finite length. If H is the kernel of φ, we often will write P = H [∞],
and we will denote the kernel of φt by H [t]. Observe the slight ambiguity: given
a Prüfer module P , not only φ but also all non-trivial powers of φ and maybe
many other endomorphisms will have the required properties (surjectivity, local
nilpotency, finite length kernel).

The content of the paper is as follows. In the first section we show that any
pair of module homomorphisms w, v : U0 → U1, where w is injective with non-
zero cokernel of finite length, gives rise to a Prüfer module. Section 2 provides
some examples and section 3 outlines the relationship between Prüfer modules and
various sorts of self-extensions of finite length modules. The final sections 4 and 5
deal with degenerations in the sense of Riedtmann-Zwara: we will show that this
degeneration theory is intimately connected to the existence of Prüfer modules
with some splitting property, and we will exhibit an extension of a recent result by
Bautista and Pérez. Our interest in the questions considered here was stimulated
by a series of lectures by Sverre Smalø [S] at the Mar del Plata conference, March
2006, and we are indebted to him as well as to M.C.R.Butler and G.Zwara for
helpful comments.

For the relevance of Prüfer modules when dealing with artin algebras of infinite
representation type, we refer to a forthcoming paper [R5]. The appendix to section
3.3 provides some indications in this direction.
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48 CLAUS MICHAEL RINGEL

1.1. The basic frame. A pair of exact sequences

0 → U0
w0−−→ U1 → H → 0 and 0 → K → U0

v0−→ U1 → Q→ 0

yields a module U2 and a pair of exact sequences

0 → U1
w1−−→ U2 → H → 0 and 0 → K → U1

v1−→ U2 → Q→ 0

by forming the induced exact sequence of 0 → U0
w0−−→ U1 → H → 0 using the map

v0:
0 0
y

y

K K
y

y

0 −−−−→ U0
w0−−−−→ U1 −−−−→ H −−−−→ 0

yv0

yv1

∥∥∥

0 −−−−→ U1
w1−−−−→ U2 −−−−→ H −−−−→ 0

y
y

Q Q
y

y

0 0
Recall that a commutative square

X
f

−−−−→ Y1

g

y
yg′

Y2 −−−−→
f ′

Z

is said to be exact provided it is both a pushout and a pullback, thus if and only if
the sequence

0 → X

h

f
g

i

−−−→ Y1 ⊕ Y2
[ g′

−f ′ ]
−−−−−→ Z → 0

is exact. Note that our basic setting provides an exact square

U0
w0−−−−→ U1

v0

y
yv1

U1 −−−−→
w1

U2

Next, we will use that the composition of exact squares is exact:
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THE LADDER CONSTRUCTION OF PRÜFER MODULES 49

(E1) The composition of two exact squares

X −−−−→ Y1 −−−−→ Z1y
y

y

Y2 −−−−→ Z2 −−−−→ A

yields an exact square
X −−−−→ Z1y

y

Y2 −−−−→ A

1.2. The ladder. Using induction, we obtain in this way modules Ui and pairs
of exact sequences

0 → Ui
wi−→ Ui+1 → H → 0 and 0 → K → Ui

vi−→ Ui+1 → Q→ 0

for all i ≥ 0.

We may combine the pushout diagrams constructed inductively and obtain the
following ladder of commutative squares:

U0
w0−−−−→ U1

w1−−−−→ U2
w2−−−−→ U3

w3−−−−→ · · ·

v0

y v1

y v2

y v3

y

U1
w1−−−−→ U2

w2−−−−→ U3
w3−−−−→ U4

w4−−−−→ · · ·

We form the inductive limit U∞ =
⋃

i Ui (along the maps wi).

Since all the squares commute, the maps vi induce a map U∞ → U∞ which we
denote by v∞:

U0
w0−−−−→ U1

w1−−−−→ U2
w2−−−−→ U3

w3−−−−→ · · ·
⋃

i Ui = U∞

v0

y v1

y v2

y v3

y
yv∞

U1
w1−−−−→ U2

w2−−−−→ U3
w3−−−−→ U4

w4−−−−→ · · ·
⋃

i Ui = U∞

We also may consider the factor modules U∞/U0 and U∞/U1. The map v∞ :
U∞ → U∞ maps U0 into U1, thus it induces a map

v : U∞/U0 −→ U∞/U1.

Claim. The map v is an isomorphism. Namely, the commutative diagrams

0 −−−−→ Ui−1
wi−1

−−−−→ Ui −−−−→ H −−−−→ 0
yvi−1

yvi

∥∥∥

0 −−−−→ Ui
wi−−−−→ Ui+1 −−−−→ H −−−−→ 0
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50 CLAUS MICHAEL RINGEL

can be rewritten as

0 −−−−→ Ui−1
wi−1

−−−−→ Ui −−−−→ Ui/Ui−1 −−−−→ 0
yvi−1

yvi

yvi

0 −−−−→ Ui
wi−−−−→ Ui+1 −−−−→ Ui+1/Ui −−−−→ 0

with an isomorphism vi : Ui/Ui−1 → Ui+1/Ui. The map v is a map from a fil-
tered module with factors Ui/Ui−1 (where i ≥ 1) to a filtered module with factors
Ui+1/Ui (again with i ≥ 1), and the maps vi are just those induced on the factors.

It follows: The composition of maps

U∞/U0
p

−−−−→ U∞/U1
v−1

−−−−→ U∞/U0

with p the projection map is an epimorphism φ with kernel U1/U0. It is easy to see
that φ is locally nilpotent, namely we have φt(Ut/U0) = 0 for all t.

Summary. (a) The maps vi yield a map

v∞ : U∞ → U∞

with kernel K and cokernel Q.
(b) This map v∞ induces an isomorphism v : U∞/U0 → U∞/U1. Compos-

ing the inverse of this isomorphism with the canonical projection p, we obtain an
endomorphism φ = (v)−1 ◦ p

U∞/U0
p
−→ U∞/U1

v−1

−−→ U∞/U0.

If the cokernel H of w0 is non-zero and of finite length, then U∞/U0 is a Prüfer
module with respect to φ, with basis H; in this case, we call U∞/U0 (or better the
pair (U∞/U0, φ)) the Prüfer module defined by the pair (w0, v0) or by the ladder
Ui. Prüfer modules which are obtained in this way will be said to be of ladder type.

If necessary, we will use the following notation: Ui(w0, v0) = Ui, for all i ∈
N∪{∞} and P (w0, v0) = U∞/U0 for the Prüfer module. Since P (w0, v0) is a Prüfer
module with basis the cokernel H of w0, we will sometimes write H [n] = Un/U0 or
even H [n;w0, v0].

Remark: Using a terminology introduced for string algebras [R3], we also could
say: U∞ is expanding, U∞/U0 is contracting.

Lemma. Assume that P = P (w, v) with w, v : U0 → U1. Then P is generated
by U1.

Proof: For i ≥ 2, the module Ui is a factor module of Ui−1 ⊕ Ui−1, thus by
induction, Ui is generated by U1.
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1.3. The chessboard. Assume now that both maps w0, v0 : U0 → U1 are
monomorphisms. Then we get the following arrangement of commutative squares:

U0
w0−−−−→ U1

w1−−−−→ U2
w2−−−−→ U3

w3−−−−→ · · ·

v0

y v1

y v2

y v3

y

U1
w1−−−−→ U2

w2−−−−→ U3
w3−−−−→ · · ·

v1

y v2

y v3

y

U2
w2−−−−→ U3

w3−−−−→ · · ·

v2

y v3

y

U3
w3−−−−→ · · ·

v3

y

· · ·

Note that there are both horizontally as well as vertically ladders: the horizontal
ladders yield U∞(w0, v0) (and its endomorphism v∞); the vertical ladders yield
U∞(v0, w0) (and its endomorphism w∞).

2. Examples.

(1) The classical example: Let R = Z be the ring of integers, and U0 = U1 =
Z its regular representation. Module homomorphisms Z → Z are given by the
multiplication with some integer n, thus we denote such a map just by n. Let
w0 = 2 and v0 = n. If n is odd, then P (2, n) is the ordinary Prüfer group for the
prime 2, and U∞(2, n) = Z[ 12 ] (the subring of Q generated by 1

2 ). If n is even, then
P (2, n) is an elementary abelian 2-group.

(2) Let R = K(2) be the Kronecker algebra over some field k. Let U0 be simple
projective, U1 indecomposable projective of length 3 and w0 : U0 → U1 a non-
zero map with cokernel H (one of the indecomposable modules of length 2). The
module P (w0, v0) is the Prüfer module for H if and only if v0 /∈ kw0, otherwise it
is a direct sum of copies of H .

(3) Trivial cases: First, let w be a split monomorphism. Then the Prüfer module
with respect to any map v : U0 → U1 is just the countable sum of copies of H .
Second, let w : U0 → U1 be an arbitrary monomorphism, let β : U1 → U1 be an
endomorphism. Then P (w, βw) is the countable sum of copies of H .

(4) Assume that there exists a split monomorphism v : U0 → U1, say U1 =
U0 ⊕X and v = [ 1

0 ] : U0 → U1. Then

0 → U0
w
−→ U0 ⊕X → H → 0

is a Riedtmann-Zwara sequence as discussed in section 4, thus H is a degeneration
of X .
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Remark: Not all Prüfer modules are of ladder type. Consider the generalized
Kronecker algebra Λ with countably many arrows α0, α1, . . . starting at the vertex
a and ending in the vertex b. Define a representation P = (Pa, Pb, αi)i as follows:
Let Pa = Pb be a vector space with a countable basis e0, e1, . . . and let αi : Pa → Pb

be defined by αi(ej) = ej−i provided j ≥ i and αi(ej) = 0 otherwise. Let φa, φb

be the endomorphism of Pa of Pb, respectively, which sends e0 to 0 and ei to ei−1

for i ≥ 1. Then P is a Prüfer module (with respect to φ, but also with respect to
any power of φ). Obviously, P is a faithful Λ-module. Assume that P = P (w, v)
for some maps w, v : U0 → U1 with U0, U1 of finite length. Then P is generated
by U1, according to Lemma 1.2. However U1 is of finite length and no finite length
Λ-module is faithful.

3. Ladder extensions.

3.1. The definition. Let H be a non-zero module of finite length. A self-
extension 0 → H → H [2] → H → 0 is said to be a ladder extension provided there
is a commutative diagram with exact rows

0 −−−−→ U0 −−−−→ U1
q

−−−−→ H −−−−→ 0
yf

y
∥∥∥

0 −−−−→ H −−−−→ H [2] −−−−→ H −−−−→ 0

such that f factors through q, say f = qv for some v : U0 → U1.

This means that we have a commutative diagram with exact rows of the following
kind (here f = qv0):

0 −−−−→ U0
w0−−−−→ U1

q
−−−−→ H −−−−→ 0

v0

y v1

y
∥∥∥

0 −−−−→ U1
w1−−−−→ U2 −−−−→ H −−−−→ 0

q

y
y

∥∥∥

0 −−−−→ H −−−−→ H [2] −−−−→ H −−−−→ 0.

Thus, in order to construct all the ladder extensions of H , we may start with an
arbitrary epimorphism q : U1 → H, form its kernel w0 and consider any homomor-
phism v0 : U0 → U1.

According to section 1 we know: Ladder extensions build up to form Prüfer
modules.

Lemma. Let k be a commutative ring and Λ a k-algebra. Then H [2;w0, v0] =
H [2;w0, v0 + µw0] for any µ ∈ k.

Proof: We deal with the exact sequence induced by qv0 or q(v0 + µw0), respec-
tively. But q(v0 + µw0) = qv0 + qµw0 = qv0, since qw0 = 0.
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Also, any central automorphism λ of U0 yields isomorphic extensionsH [2;w0, v0]
and H [2;w0, λv0]. This shows that the extension H [2;w0, v0] only depends on the
k-subspace 〈w0, v0〉.

Remark. Not all self-extensions are ladder extensions. For example: A non-
zero self-extension of a simple module S over an artinian ring is never a ladder
extension!

Proof: Construct the corresponding ladder, thus the corresponding Prüfer mod-
ule S[∞]. The module S[n] would be a (serial) module of Loewy length n, with n
arbitrary. But the Loewy length of any module over the artinian ring R is bounded
by the Loewy length of RR, thus S[∞] cannot exist.

Example. Here is a further example of a self-extension which is not a ladder
extension. Consider the following quiver Q

a b
β◦ ◦....................................................... ............

......
.......
........
............
.........................................................................................................................................................

..........
.......
.......
..................
............

with one loop β at the vertex b, and one arrow from a to b. We consider the

representations of Q with the relation β3 = 0. The universal covering Q̃ of Q has
many D5 subquivers Q′ of the form

◦ ◦

◦

◦

◦
.................................................
......
......
......

.................................................
......
......
......

................................................................... ...................................................................

and we consider some representations of Q′; we present here the corresponding
dimension vectors.

1

1

1

1

2

.................................................
......
......
......

.................................................
......
......
......

................................................................... ...................................................................

H ′

0

0

1 1

1
.................................................
......
......
......

.................................................
......
......
......

................................................................... ...................................................................

H

0

0

1 1

1
.................................................
......
......
......

.................................................
......
......
......

................................................................... ...................................................................

H ′′

There is an obvious exact sequence

0 → H → H ′ → H ′′ → 0.

Under the covering functor, the representations H and H ′′ are identified, thus we
obtain a self-extension. One easily checks that this self-extension is not a ladder
extension.

Proposition. Let H be an indecomposable module with Auslander-Reiten trans-
late isomorphic to H. Assume that there is a simple submodule S of H with
Ext1(S, S) = 0. Then the Auslander-Reiten sequence ending (and starting) in H is
a ladder extension.

Proof. Let 0 → H → H ′ → H → 0 be the Auslander-Reiten sequence. Denote
by u : S → H the inclusion map. Since the map H → H/S factors through
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H → H ′, there is a commutative diagram with exact rows of the following form:

0 −−−−→ S
w

−−−−→ U
q

−−−−→ H −−−−→ 0

u

y
y

∥∥∥

0 −−−−→ H −−−−→ H ′ −−−−→ H −−−−→ 0

Now form the induced exact sequence:

0 −−−−→ S −−−−→ U ′ −−−−→ S −−−−→ 0
∥∥∥

y u

y

0 −−−−→ S
w

−−−−→ U
q

−−−−→ H −−−−→ 0

Since Ext1(S, S) = 0, the induced sequence splits, thus we obtain a map v : S → U
with qv = u. It follows that H ′ = H [2;w, v].

We do not know whether one can delete the assumption about the existence of
S.

3.2. Standard self-extensions.

Let H be an R-module, say with an exact sequence 0 → ΩH
u
−→ PH

p
−→ H → 0,

where PH denotes a projective cover of H . We know that

Ext1(H,H) = Hom(ΩH,H) = Hom(ΩH,H)/ Im(Hom(u,H)).

Note that

Im(Hom(u,H)) ⊆ Im(Hom(ΩH, p)) ⊆ Hom(ΩH,H).

(Proof: Hom(u,H) : Hom(PH,H) → Hom(ΩH,H), thus take φ : PH → H
and form φu. Since p : PH → H is surjective and PH is projective, there is
φ′ : PH → PH with φ = pφ′. Thus φu = pφ′u is in the image of Hom(ΩH, p).)

Thus we can consider

Ext1(H,H)s := Im(Hom(ΩH, p))/ Im(Hom(u,H))

as a subgroup of Hom(ΩH,H)/ Im(Hom(u,H)) = Ext1(H,H). We call the ele-
ments of Ext1(H,H)s the standard self-extensions.

Proposition. Standard self-extensions are ladder extensions.

Proof. Here is the usual diagram in which way a map f : ΩH → H yields a
self-extension of H

0 −−−−→ ΩH
u

−−−−→ PH
p

−−−−→ H −−−−→ 0

f

y
y

∥∥∥

0 −−−−→ H −−−−→ H [2] −−−−→ H −−−−→ 0
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The standard extensions are those where the map f factors through p, say f = pw′

with w′ : ΩH → PH :

0 −−−−→ ΩH
u

−−−−→ PH
p

−−−−→ H −−−−→ 0

w′

y w′

1

y
∥∥∥

0 −−−−→ PH
u1−−−−→ U2 −−−−→ H −−−−→ 0

p

y
y

∥∥∥

0 −−−−→ H −−−−→ H [2] −−−−→ H −−−−→ 0

3.3. Modules of projective dimension 1.

Proposition. If the projective dimension of H is at most 1, then any self-
extension of H is standard, thus a ladder extension.

Proof: Consider a module H with a projective presentation 0 → P ′ → P
p
−→

H → 0. Any self-extension of H is given by a diagram of the following kind:

0 −−−−→ P ′ u
−−−−→ P

p
−−−−→ H −−−−→ 0

f

y
y

∥∥∥

0 −−−−→ H −−−−→ H [2] −−−−→ H −−−−→ 0

Since P ′ is projective and p : P → H surjective, there is a map f ′ : P ′ → P such
that f = pf ′. The self-extension is given just by H [2] = H [2;u, f ′].

Corollary. If R is a hereditary ring, any self-extension is standard, thus a
ladder extension.

Example of a ladder extension which is not standard. Consider the quiver Q

c

b

a

◦

◦

◦

.................................................
......
......
......

.................................................
......
......
......

.................................................
......
......
......

.................................................
......
......
......

α β

γ δ

such that δα = 0 = γβ = γα− δβ. Consider the indecomposable length 2 module
H = (β : a → b) annihilated by α. Then the kernel ΩH of PH → H is ΩH = (γ :
b→ c). We may visualize this as follows:

•

•

•

•

•

•

•

•................................................... ........
........
........
........
........
........
.........
........
........
........
........
........
...........................................................................................................

........................................................................................................................................................ ............ ..................................................................................................... ................................................................................................ ............ .................................................................................... ............0 0
γ γ δ

βα β
b

c

a

b b

c

a

b

u p

There is a ladder extension of H , given by the non-trivial map f : ΩH → H , but
this map does not factor through PH , since Hom(ΩH,PH) is one-dimensional,
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generated by u. Note that f : ΩH/K → H factors through p : PH/u(K) → H ,
where K = S(c) is the kernel of f .

Appendix. Here, we want to indicate that the Corollary can be used in order
to obtain a conceptual proof of the second Brauer-Thrall conjecture for hereditary
artin algebras.

Assume that there is no generic module. We show: Any indecomposable module
is a brick without self-extensions. Assume that there is an indecomposable module
M which is not a brick or which does have self-extensions. If M is not a brick, then
the brick paper [R2] shows that there are bricks M ′ with self-extensions. Thus,
we see that there always is a brick H with self-extensions. Take any non-zero self-
extension of H . According to 3.2, such a self-extension is standard, thus a ladder
extension, thus we obtain a corresponding Prüfer module H [∞]. The process of
simplification [R1] shows that all the modules H [n] are indecomposable. Thus
H [∞] is not of finite type and therefore there exists a generic module [R5].

But if any indecomposable module is a brick without self-extensions, the qua-
dratic form is weakly positive. Ovsienko asserts that then there are only finitely
many positive roots, thus the algebra is of bounded representation type and there-
fore of finite representation type.

3.4. Warning. A Prüfer module H [∞] is not necessarily determined by H [2],
even if it is of ladder type.

As an example take the generalized Kronecker quiver with vertices a, b and
three arrows α, β, γ : a → b. and let H be the two-dimensional indecomposable
representation annihilated by α and β. Consider a projective cover q : PH → H ,
let ΩH be its kernel, say with inclusion map w : ΩH → PH.

0 → ΩH
w
−→ PH

q
−→ H → 0 (∗)

The ladders to be considered are given by the various maps f : ΩH → PH such
that the image of f is not contained in ΩH (otherwise, the induced self-extension
of H will split). In order to specify a self-extension H [2] of H , we require that H [2]
is annihilated say by γ.

We will consider several copies of PH . If ei ∈ (PH)a is a generator, let us
denote ei1 = α(ei), ei2 = β(ei), ei3 = γ(ei), thus, ei1, ei2, ei3 is a basis of (PH)b.

We start with PH generated by e1 and consider the exact sequence (∗) as dis-
played above. We see that e12, e13 is a basis of ΩH.

Now, let us consider two maps f, g : ΩH → PH , here we denote the generator
of PH by e0. The first map f is given by f(e12) = e01 and f(e13) = 0. The second
map g : ΩH → PH is defined by g(e12) = e01 and g(e13) = e02.

Note that qf = qg, thus H [2;w, f ] = H [2;w, g] and actually this is precisely the
self-extension of H annihilated by γ.

An easy calculation shows that H [3;w, f ] (and even H [∞;w, f ]) is annihilated
by γ, whereas H [3;w, g] is faithful. The following displays may be helpful; always,
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we exhibit the modules:

U0 = ΩH
w0−−−−→ U1 = PH

w1−−−−→ U2yv0

yv1

yv2

U1 = PH
w1−−−−→ U2

w2−−−−→ U3yq

y
y

H −−−−→ H [2] −−−−→ H [3]

First the display for the homomorphism f .

e13 e12

e1

e13 e12 e11

.....................................

..........................

.....................................

e1

e13 e12 e11

e2

e22

e21

.....................................

..........................

.....................................

..........................

.....................................

e0

e03 e02 e01
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Now the corresponding display for the homomorphism g.
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......
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.................................................
......
......
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.................................................
......
......
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.................................................
......
......
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.................................................
......
......
......

4. Degenerations.

Definition: Let X,Y be finite length modules. Call Y a degeneration of X
provided there is an exact sequence of the form 0 → U → X ⊕U → Y → 0 with U
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of finite length. (such a sequence will be called a Riedtmann-Zwara sequence). The
map U → U is called a corresponding steering map. (Note that in case we deal
with modules over a finite dimensional k-algebra and k is an algebraically closed
field, then this notion of degeneration coincides with the usual one, as Zwara [Z2]
has shown.)

The proof of the following result is essentially due to Zwara, he used this argu-
ment in order to show that Y is a degeneration of X if and only if there is an exact
sequence 0 → Y → X ⊕ V → V → 0 (a co-Riedtmann-Zwara sequence) with V of
finite length.

Proposition. Let X,Y be Λ-modules of finite length. The following conditions
are equivalent:

(1) Y is a degeneration of X.
(2) There is a Prüfer module Y [∞] and some natural number t0 such that
Y [t+ 1] ≃ Y [t] ⊕X for all t ≥ t0.

(3) There is a Prüfer module Y [∞] and some natural number t0 such that
Y [t0 + 1] ≃ Y [t0] ⊕X.

Here is the recipe how to obtain a Prüfer module Y [∞] starting from a degen-
eration: If Y is a degeneration of X , say with steering module U , then there exists
a monomorphism µ : U → U ⊕X with cokernel Y . The Prüfer module Y [∞] we
are looking for is

Y [∞] = P (µ, [ 1
0 ]).

Proof of the implication (3) =⇒ (1). Assume that there is a Prüfer module
Y [∞] such that Y [t+ 1] ≃ Y [t] ⊕X. We get the following two exact sequences

0 → Y [t] → Y [t+ 1] → Y [1] → 0,

0 → Y [1] → Y [t+ 1] → Y [t] → 0, (1)

in the first, the map Y [t+1] → Y [1] is given by applying ψt, in the second the map
Y [t+ 1] → Y [t] is given by applying ψ. In both sequences, we can replace Y [t+ 1]
by Y [t] ⊕X. Thus we obtain as first sequence a new Riedtmann-Zwara sequence,
and as second sequence a dual Riedtmann-Zwara sequence:

0 → Y [t] → Y [t] ⊕X → Y → 0,

0 → Y → Y [t] ⊕X → Y [t] → 0, (2)

note that both use the same steering module, namely Y [t]. Thus:

Remark. We see: The module Y is a degeneration of X if and only if there
exists a module V and an exact sequence 0 → Y → V ⊕X → V → 0.

Proof of the proposition. We need further properties of exact squares:
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(E2) For any map a : U → V , and any module X, the following diagram is
exact:

U
a

−−−−→ V

[ 1
0 ]

y
y[ 10 ]

U ⊕X −−−−→
a⊕1X

V ⊕X.

(E3) Let

X
f

−−−−→ Y1

0

y
y

Y2 −−−−→
f ′

Z

be exact. Then f ′ is split mono.
(E4) Assume that we have the following exact square

U
a

−−−−→ V

b

y b′

y

W −−−−→
a′

X

and that b is a split monomorphism, then the sequence

0 → U
[ a
b ]

−−→ V ⊕W
[b′ a′]
−−−−→ X → 0

splits.

Proofs. (E2) is obvious. (E3): Since
[

f
0

]
is injective, f : X → Y1 is injective.

Let Q be the cokernel of f . We obtain the map f ′ by forming the induced exact

sequence of 0 → X
f
−→ Y1 → Q → 0, using the zero map X → Y1. But such an

induced exact sequence splits. (E4) Assume that pb = 1U . Then [0 p] [ a
b ] = 1U .

There is the following lemma (again, see Zwara [Z1]):

Lemma (Existence of nilpotent steering maps.) If there is an exact se-
quence 0 → U → X ⊕ U → Y → 0, then there is an exact sequence 0 → U ′ →
X ⊕ U ′ → Y → 0 such that the map U ′ → U ′ is nilpotent.

Proof: We can decompose U = U1 ⊕ U2 = U ′
1 ⊕ U ′

2 such that the given map
f : U → U maps U1 into U ′

1, U2 into U ′
2 and such that the induced map f1 : U1 → U ′

1

belongs to the radical of the category, whereas the induced map f2 : U2 → U ′
2 is

an isomorphism. We obtain the following pair of exact squares

U1

[ 10 ]
−−−−→ U1 ⊕ U2 −−−−→ X

f1

y f1⊕f2

y
y

U ′
1 −−−−→

[ 10 ]
U ′

1 ⊕ U ′
2 −−−−→ Y
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(the left square is exact according to (E2)). The composition of the squares is the
desired exact square (note that U ′

1 is isomorphic to U1).

Assume that a monomorphism w =

[
φ
g

]
: U → U ⊕ X with cokernel Y and

φt = 0 is given. Consider also the canonical embedding v =

[
1
0

]
: U → U ⊕ X

and form the ladder Ui(w, v) for this pair of monomorphisms w, v. The modules
Y [i] = Ui(w, v)/U0(w, v) are just the modules we are looking for: As we know,
there is a Prüfer module (Y [∞], ψ) with Y [i] being the kernel of ψi.

We construct the maps wn, vn explicitly as follows:

wn =




φ
g

1Xn



 =

[
w

1Xn

]
: U ⊕Xn → (U ⊕X) ⊕Xn

and

vn =

[
1U⊕Xn

0

]
: U ⊕Xn → U ⊕Xn ⊕X,

using the recipe (E2). Thus we obtain the following sequence of exact squares:

U U⊕X U⊕X⊕X U⊕X⊕X⊕X

U⊕X U⊕X⊕X U⊕X⊕X⊕X U⊕X⊕X⊕X⊕X

-

h

φ
g

i

?

h

1
0

i

-

"

φ
g

1

#

?

»

1
1

0 0

–

-

2

4

φ
g

1
1

3

5

?

2

4

1
1

1
0 0 0

3

5

?

2

6

4

1
1

1
1

0 0 0 0

3

7

5

-

-
"

φ
g

1

#

-
2

4

φ
g

1
1

3

5

-
2

6

6

4

φ
g

1
1

1

3

7

7

5

-

In particular, we have Un = Un(w, v) = U ⊕Xn.

Note that the composition wn−1 · · ·w0 : U → U ⊕ Xn is of the form

[
φn

gn

]
for

some gn : U → Xn.
We also have the following sequence of exact squares:

U = U0
w0−−−−→ U1

w1−−−−→ U2
w2−−−−→ U3

w3−−−−→ · · ·
y

y
y

y

0 −−−−→ Y [1]
s1−−−−→ Y [2]

s2−−−−→ Y [3]
s3−−−−→ · · ·

where the vertical maps are of the form

Un = U ⊕Xn [hn qn]
−−−−−→ Y [n].
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The composition of these exact squares yields an exact square

U
wn−1···w0

−−−−−−→ U ⊕Xn

y
y[hn qn]

0 −−−−→ Y [n]

Here we may insert the following observation: This sequence shows that the module
Y [n] is a degeneration of the module Xn.

Since the composition wn−1 · · ·w0 : U → U ⊕ Xn is of the form

[
φn

gn

]
, and

φt = 0, it follows that ht is a split monomorphism, see (E3).

Also, we can consider the following two exact squares, with w =

[
φ
g

]
: U → V =

U ⊕X (the upper square is exact, according to (E2)):

U
w

−−−−→ V

[ 10 ]
y

y[ 1
0 ]

U ⊕Xt
[w

1 ]
−−−−→ V ⊕Xt

[ht qt]

y
y[ht+1 qt+1]

Y [t] −−−−→ Y [t+1]

The vertical composition on the left is ht, thus, as we have shown, a split monomor-
phism. This shows that the exact sequence corresponding to the composed square
splits (E4): This yields

U ⊕ Y [t+1] ≃ Y [t] ⊕ V = Y [t] ⊕ U ⊕X.

Cancelation of U gives the desired isomorphism:

Y [t+1] ≃ Y [t] ⊕X.

Remark to the proof. Given the Riedtmann-Zwara sequence

0 → U

h

φ
g

i

−−−→ U ⊕X → Y → 0,

we have considered the following pair of monomorphisms

w = [ 1
0 ] , w′ =

[
φ
g

]
: U → U ⊕X.

The corresponding Prüfer modules areX(∞) and Y [∞], respectively. And Un(w,w′) =
U ⊕Xn. As we know, we can assume that φ is nilpotent. Then all the linear com-
binations

w + λw′ =
[

1+λφ
g

]

with λ ∈ k are also split monomorphisms (with retraction [ η 0 ], where η = (1 +
λφ)−1).
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Corollary. Assume that Y is a degeneration of X. Then there exists a Prüfer
module Y [∞] such that Y [∞] is isomorphic to Y [t]⊕X(∞) for some natural number
t.

5. Application: The theorem of Bautista-Pérez.

Here we assume that we deal with an artin algebra Λ, and all the modules are
Λ-modules of finite length.

Proposition. Let W be a module with Ext1(W,W ) = 0 and assume there
is given an exact sequence 0 → U → V → W → 0. Then the cokernel of any
monomorphism U → V is a degeneration of W .

Corollary (Bautista-Pérez). Let U, V be modules, and let W and W ′ be
cokernels of monomorphisms U → V. Assume that both Ext1(W,W ) = 0 and
Ext1(W ′,W ′) = 0. Then the modules W and W ′ are isomorphic.

Both assertions are well-known in case k is an algebraically closed field: in this
case, the conclusion of the proposition just asserts that W ′ is a degeneration of W
in the sense of algebraic geometry. The main point here is to deal with the general
case when Λ is an arbitrary artin algebra. The corollary stated above (under the
additional assumptions that V is projective and that w(U), w′(U) are contained in
the radical of V ) is due to Bautista and Pérez [BP] and this result was presented
by Smalø with a new proof [S] at Mar del Plata.

We need the following well-known lemma.

Lemma. Let W be a module with Ext1(W,W ) = 0. Let U0 ⊂ U1 ⊂ U2 ⊂ · · · be
a sequence of inclusions of modules with Ui/Ui−1 = W for all i ≥ 1. Then there is
a natural number n0 such that Un ⊂ Un+1 is a split monomorphism for all n ≥ n0.

Let us use it in order to finish the proof of the proposition. Let U0 = U,U1 = V,
and w0 : U0 → V0 the given monomorphism with cokernel W . Let v0 : U0 → U1 be
an additional monomorphism, say with cokernel W ′. Thus we are in the setting of
section 1. We apply the Lemma to the chain of inclusions

U0
w0−−→ U1

w1−−→ U2
w2−−→ · · ·

and see that there is n such that wn : Un → Un+1 splits. This shows that Un+1 is
isomorphic to Un ⊕W. But we also have the exact sequence

0 → Un
vn−→ Un+1 →W ′ → 0.

Replacing Un+1 by Un ⊕W , we see that we get an exact sequence of the form

0 → Un
vn−→ Un ⊕W →W ′ → 0

(a Riedtmann-Zwara sequence), as asserted.

Proof of the Corollary. It is well-known that the existence of exact sequences

0 → X → X ⊕W →W ′ → 0 and 0 → Y → Y ⊕W ′ →W → 0
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implies that the modules W and W ′ are isomorphic [Z1]. But in our case we just
have to change one line in the proof of the proposition in order to get the required
isomorphism. Thus, assume that both Ext1(W,W ) = 0 and Ext1(W ′,W ′) = 0.
Choose n such that both the inclusion maps

wn : Un → Un+1 and vn : Un → Un+1

split. Then Un+1 is isomorphic both to Un ⊕W and to Un ⊕W ′, thus it follows
from the Krull-Remak-Schmidt theorem that W and W ′ are isomorphic.

Remark. Assume that w,w′ : U → V are monomorphisms with cokernels W
and W ′, respectively, and that Ext1(W,W ) = 0 and Ext1(W ′,W ′) = 0. Then w
splits if and only if w′ splits.

Proof: According to the corollary, we can assume W = W ′. Assume that w

splits, thus V is isomorphic to U ⊕W . Look at the exact sequence 0 → U
w′

−→
V → W → 0. If it does not split, then dimEnd(V ) < dimEnd(U ⊕W ), but V is
isomorphic to U ⊕W.

As we have mentioned, the lemma is well-known; an equivalent assertion was
used for example by Roiter in his proof of the first Brauer-Thrall conjecture, a
corresponding proof can be found in [R4]. We include here a slightly different
proof:

Applying the functor Hom(W,−) to the short exact sequence 0 → Ui−1
wi−1

−−−→
Ui →W → 0, we obtain the exact sequence

Ext1(W,Ui−1) → Ext1(W,Ui) → Ext1(W,W ).

Since the latter term is zero, we see that we have a sequence of surjective maps

Ext1(W,U0) → Ext1(W,U1) → · · · → Ext1(W,Ui) → · · · ,

being induced by the inclusion maps U0 → U1 → · · · → Ui → · · · . The maps
between the Ext-groups are k-linear. Since Ext1(W,U0) is a k-module of finite
length, the sequence of surjective maps must stabilize: there is some n0 such that
the inclusion Un → Un+1 induces an isomorphism

Ext1(W,Un) → Ext1(W,Un+1)

for all n ≥ n0. Now we consider also some Hom-terms: the exactness of

Hom(W,Un+1) → Hom(W,W ) → Ext1(W,Un) → Ext1(W,Un+1)

shows that the connecting homomorphism is zero, and thus that the map Hom(W,Un+1) →
Hom(W,W ) (induced by the projection map p : Un+1 →W ) is surjective. But this
means that there is a map h ∈ Hom(W,Un+1) with ph = 1W , thus p : Un+1 → W
is a split epimorphism and therefore the inclusion map Un → Un+1 is a split
monomorphism.

Remark. In general, there is no actual bound on the number n0. However, in
case of dealing with the chain of inclusions

U0
w0−−→ U1

w1−−→ U2
wn−−→ · · ·
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such a bound exists, namely the length of Ext1(W,U0) as a k-module, or, even
better, the length of Ext1(W,U0) as an E-module, where E = End(W ).

Proof: Look at the surjective maps

Ext1(W,U0) → Ext1(W,U1) → · · · → Ext1(W,Ui) → · · · ,

being induced by the maps Un
wn−−→ Un+1 (and these maps are not only k-linear,

but even E-linear). Assume that Ext1(W,Un) → Ext1(W,Un+1) is bijective, for
some n. As we have seen above, this implies that the sequence

0 → Un
wn−−→ Un+1 →W → 0 (∗)

splits. Now the map wn+1 is obtained from (∗) as the induced exact sequence
using the map w′

n. With (∗) also any induced exact sequence will split. Thus wn+1

is a split monomorphism (and Ext1(W,Un+1) → Ext1(W,Un+2) will be bijective,
again). Thus, as soon as we get a bijection Ext1(W,Un) → Ext1(W,Un+1) for some
n, then also all the following maps Ext1(W,Um) → Ext1(W,Um+1) with m > n
are bijective.

Example. Consider the D4-quiver with subspace orientation:

a

b

c

d
.........

..........
.........

.................................

......................................................

............................................
.....
............

and let Λ be its path algebra over some field k. We denote the indecomposable
Λ-modules by the corresponding dimension vectors. Let

U0 =
0

1 0
0
, U1 =

1
2 1

1
, W =

1
1 1

1
, W ′ =

0
1 1

1
⊕

1
0 0

0
.

Note that a map w0 : U0 → U1 with cokernel W exists only in case the base-
field k has at least 3 elements; of course, there is always a map w′

0 : U0 → U1 with
cokernel W ′.

We have dimExt1(W,U0) = 2, and it turns out that the module U2 is the
following:

U2 =
0

1 1
1
⊕

1
1 0

1
⊕

1
1 1

0
.

The pushout diagram involving the modules U0, U1 (twice) and U2 is constructed
as follows: denote by µa, µb, µc monomorphisms U0 → U1 which factor through the
indecomposable projective modules P (a), P (b), P (c), respectively. We can assume
that µc = −µa − µb, so that a mesh relation is satisfied. Denote the 3 summands
of U2 by Ma,Mb,Mc, with non-zero maps νa : U1 →Ma, νb : U1 → Mb, νc : U1 →
Mc, such that νaµa = 0, νbµb = 0, νcµc = 0. There is the following commutative
square, for any q ∈ k, we are interested when q /∈ {0, 1}:
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U0 U1

U1 U2

-
w0=µa+qµb

?

v0=µa

?

v1=

»

0
νb
νc

–

-

w1=

» νa
νb

(1−q)νc

–

(the only calculation which has to be done concerns the third entries: νc(µa +
qµb) = (1 − q)νcµa). Note that w1 (as well as w′

1) does not split.
But now we deal with a module U2 such that Ext1(W,U2) = 0. This implies

that U3 is isomorphic to U2 ⊕W . Thus the next pushout construction yields an
exact sequence of the form

0 → U2 → U2 ⊕W →W ′ → 0.

Acknowledgement. The author is indebted to Dieter Vossieck for a careful
reading of the final version of the paper.
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