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We dedicate this work to the 60th birthday of Maria Ines Platzeck and the 70th
birthday of Hector Merklen.

Abstract. In this work we extend, to the path algebras context, some results
obtained in the commutative context, [2]. The main result is that one can
extend the Gröbner bases of an ungraded ideal to one possible definition of
homogenization for the non commutative case.

1

We will introduce very briefly the homogenization process in the commutative
case, just to explain the main motivation of our work. In the commutative context,
the Buchberger Algorithm give us a very direct strategy for computing Gröbner
Basis for a given ideal I ∈ k[x1, x2, . . . , xn]: we consider a finite set {f1, f2, ...fk}
of generators of I, compute the S polynomials, for any pair i,j, reduce them, and if
the remainder is non zero, add this remainder to the list of the given polynomials,
to make all the S polynomials reduce to zero.

Although this process always finish, in the commutative case, it can be very
inefficient and time consuming, by instance getting S polynomials of much higher
degree that the ones we begin with. It is easy to see ( see [1]) that if we begin with a
set of homogeneos polynomials this problem does not occur and the S polynomials
we obtain are again homogeneous.

So, lets define this process for Λ = k[x1, x2, . . . , xn]: Let f ∈ Λ and w a new vari-
able. If f has total degree d then the polynomial given by f∗ = wdf(x1/w, x2/w, . . .
, xn/w) ∈ k[x1, x2, . . . , xn, w] is a homogeneous polynomial in the extended poly-
nomial algebra, called the homogenization of f . For an ideal I ∈ k[x1, x2, . . . , xn]
define I∗ to be the ideal of k[x1, x2, . . . , xn, w] given by I∗ =< f∗|f ∈ I >. For
any h ∈ k[x1, x2, . . . , xn, w], define h∗ = h(x1, x2, . . . , xn, 1) ∈ k[x1, x2, . . . , xn].

As we will prove, in the last section, if G is a Gröbner basis for I with respect
to a certain order, then the set G∗ = {g∗|g ∈ G} is a Gröbner Basis for the ideal
I∗ with respect to the extended order.
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For the non commutative case, this process has been extended in many contexts,
and most computer programs devoted to non commutative Grobner Basis work only
with homogeneous ideals [4].

2. Preliminaries

In this section, we define some concepts that will be used in the following sec-
tions. All these concepts can be found in [3], with a detailed description of the
theory of Gröbner basis.

In order to have a Gröebner basis theory in an algebra we need a multiplicative
basis with an admissible order. We define, in the sequence, these concepts.

A K-basis is called a multiplicative basis of Λ. if for every b, b′ ∈ B we have
bb′ ∈ B or bb′ = 0.

We also will need the multiplicative basis to be completely ordered. We stress
that we are not interested in an arbitrary order in B, but we want an order that
preserves the multiplicative structure of B.

DEFINITION. 2.1. [3] We will say that a well order in B, is admissible, if it satisfies
the following conditions, for every p, q, r, s ∈ B:

(i) If p < q then pr < qr, if both are non zero;
(ii) If p < q then sp < sq, if both are non zero;
(iii) If p = sqr then p ≥ q.

Let K be a field and Λ a K-algebra with a fixed K-basis B = {bi}i∈I .
Since B is a K-basis of Λ, for each a ∈ Λ, there is a unique family (λi)i∈I such

that a =
∑

i∈I λibi, where λi = 0, except for a finite number of indices.
If a =

∑

i∈I λibi, we will say that bi occurs in a if λi 6= 0. We define now the
notion of tip, which is also called in the literature by leading term.

DEFINITION. 2.2. [3] If B = {bi}i∈I is a K-basis of Λ, as a vector space, well
ordered by > in B, and if a =

∑

i∈I λibi is non zero, we will call tip of a and
denote by T ip(a) the largest basis element in the support of a and its coefficient λi

is denoted by CT ip(a).

If X is a subset of Λ, we define

(i) T ip(X) = {b ∈ B : b = T ip(x) for some 0 6= x ∈ X}
(ii) NonT ip(X) = B \ T ip(X)

So, both T ip(X) and NonT ip(X) are subsets of B depending on the choice of the
well order of B.
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DEFINITION. 2.3. [3] Let I be a two sided ideal of Λ, we will say that a set G ⊂ I
is a Gröbner basis for I with respect to the order >, if

〈T ip(G)〉 = 〈T ip(I)〉

as two-sided ideals.

DEFINITION. 2.4. [3] Let b1, b2 ∈ X ⊂ Λ, we will say that b1 divides b2 (in X) if
there exist c, d ∈ X such that b2 = b1d, b2 = cb1 or b2 = cb1d.

We will say that a K-algebra Λ has Gröbner basis theory if Λ has a multiplicative
basis B with an admissible order > in this basis.
From this point on, we assume that the K-algebra Λ has a Gröbner basis theory.
Moreover I will always denote a two-sided ideal in Λ.

Given a multiplicative basis B of an arbitrary algebra and U and a fixed minimal
set of generators of B, as a semigroup, we define ℓ(b) the length of b ∈ B as the
smaller n ∈ N such that b = b1b2 · · · bn with bi ∈ U. If f ∈ Λ f 6= 0 define the length
of f by ℓ(f) = max {ℓ(b) : b ∈ B occurs in f}.
We say that an element f =

∑n

i=1 λibi, with λi ∈ K and bi ∈ B, is homogeneous if
ℓ(f) = ℓ(bi) for every 1 ≤ i ≤ n. An ideal J is homogeneous if can be generated by
homogeneous elements.

3. Homogenization

In this section, we present our main results, which extend the algorithms used
in commutative algebra, and also some results obtained in [2].

Since the polynomial ring on n commutative variables is a special case of a
quotient of a path algebra and, as it was proved in [2], any algebra with 1 that
admits Gröbner basis theory is isomorphic to a quotient of a path algebra, we asked
ourselves if the same process ( that is, the homogenization process) can be extended,
and which results remain true in the general case of quotient path algebras. In this
work, we consider the non commutative version of the homogenization process, for
path algebras KQ/I, where I is a two-sided ideal in KQ.

In [2], Green used a similar technic of the extension by loops, to construct
Gröbner basis to some indecomposable projectives in Mod-KQ, based on a special
admissible order, where the loops where always maximal elements.

In our work, we start with a quotient of a path algebra with an admissible order,
and we define another quotient of path algebra, also with an admissible order, which
we will call the extended by loops algebra.

Let K be a field and Q a finite quiver. Let Λ = KQ/I be the path algebra
associated to Q and I a two-sided ideal of KQ. Consider in Λ the multiplicative
basis B and > an admissible order in B.
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DEFINITION. 3.1. Let Λ = KQ/I, as above, we define Q̃, where Q̃ has the same

vertices of Q and for each vertex i of Q, we add a loop li in Q̃1, and we consider
the K-algebra Λ′ = KQ̃/Ĩ, where Ĩ = 〈I, αZ − Zα〉 as a two-sided ideal of KQ̃,
with α ∈ Q1 and Z =

∑

i∈|Q0|
li. We call Λ′ the extended by loops algebra of Λ.

Observe that Z is the sum of all the new loops that were added to the quiver.
For Λ′ we consider the following basis B̃ = {Znb : b ∈ B and n ≥ 0}. Both Λ and

Λ′ are finitely generated as K-algebras, moreover B and B̃ are finitely generated as
semigroups.
For each generator set U of B, as a semigroup, we associate the following generator
for B̃, Ũ = U ∪ {li : i ∈ |Q0|}. It is not hard to see that U is minimal if and only

if Ũ is minimal.
Define in B̃ the order

ei ≺ lj ≺ b, for every i, j ∈ |Q0| and b ∈ B and

Znb1 ≺ Zmb2 if :

{

if b1 < b2 in B or
if b1 = b2 in B and n < m

We show now that this is, in fact, an admissible order.
Let Znb1, Z

mb2, Z
rb3, Z

sb4 ∈ B̃, then:

(1) if Znb1 ≺ Zmb2 and Znb1Z
rb3 and Zmb2Z

rb3 are non zero, we have that,
if b1 < b2 then b1b3 < b2b3. Now, if b1 = b2, n < m and so b1b3 = b2b3 and
n + r < m + r. Then, Znb1Z

rb3 ≺ Zmb2Z
rb3.

(2) in the same way, if Znb1 ≺ Zmb2, then Zrb3Z
nb1 ≺ Zrb3Z

mb2, if the
products are non zero.

(3) if Znb1 = Zmb2Z
rb3Z

sb4 = Zm+r+sb2b3b4, we have that r ≤ n and b3 ≤ b1

so Zrb3 � Znb1.

Therefore, the order ≺ given above is an admissible order.

DEFINITION. 3.2. For f =
∑m

i=1 λibi ∈ Λ, we define the homogenization of f in
Λ′ by

f∗ =
∑m

i=1 λiZ
ℓ(f)−ℓ(bi)bi.

Observe that, for every f ∈ Λ, the homogenization of f is an homogeneous
element.

LEMMA 3.3. For every f, g ∈ Λ, we have Zk(fg)∗ = f∗g∗, with k = ℓ(f) + ℓ(g)−
ℓ(fg).

PROOF. Let f =
∑n

i=1 λibi and g =
∑m

j=1 βjbj, with λi, βj ∈ Λ and bi, bj ∈ B.

Since ℓ(f) + ℓ(g) ≥ ℓ(fg), consider the natural number k = ℓ(f) + ℓ(g) − ℓ(fg).
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Then,

f∗g∗ = (

n
∑

i=1

λibi)
∗(

m
∑

j=1

βjbj)
∗

= (

n
∑

i=1

λiZ
ℓ(f)−ℓ(bi)bi)(

m
∑

j=1

βjZ
ℓ(g)−ℓ(bj)bj)

=
∑

i,j

λiβjZ
(ℓ(f)+ℓ(g))−(ℓ(bi)+ℓ(bj))bibj

=
∑

i,j

λiβjZ
ℓ(fg)−ℓ(bibj)Zkbibj

= Zk(
∑

i,j

λiβjbibj)
∗

= Zk((

n
∑

i=1

λibi)(

m
∑

j=1

βjbj))
∗

= Zk(fg)∗

Now, we define the following application, between the algebras Λ′ and Λ:

ϕ : Λ′ → Λ

that associates to each element Znb ∈ B̃ the element b ∈ B, for every n ∈ N.
Observe that, for every b ∈ B, there exists Zb ∈ B̃ such that ϕ(Zb) = b. In this
way, we have that ϕ extended by linearity to every element in Λ′ is, in fact, an
epimorphism of algebras. Also, observe that ker(ϕ) = 〈Z − 1〉.

To simplify the notation, we call g∗ = ϕ(g) for every g ∈ Λ′.

LEMMA 3.4. For every f ∈ Λ we have (f∗)∗ = f .

PROOF. Let f =
∑n

i=1 λibi, with λi ∈ Λ and bi ∈ B. Observe that
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(f∗)∗ = (

n
∑

i=1

λiZ
ℓ(f)−ℓ(bi)bi)∗

=
n

∑

i=1

(λiZ
ℓ(f)−ℓ(bi)bi)∗

=

n
∑

i=1

λi(Z
ℓ(f)−ℓ(bi)))∗(bi)∗

=

n
∑

i=1

λibi

= f

LEMMA 3.5. Let g ∈ Λ′ homogeneous of length d and let d′ = ℓ(g∗). Then d′ ≤ d

and g = Zd−d′

(g∗)
∗.

PROOF. The inequality d′ ≤ d follows from the definition of g∗. Let m ∈
suppB̃(g), m = Zit, with t ∈ B. Then the monomial m∗ ∈ suppB(g∗) correspondent
to m is t. As ℓ(t) = d − i the monomial in supp((g∗)

∗) correspondent to m∗ is

tZd′−(d−i). Then Zd−d′

(g∗)
∗ = g.

DEFINITION. 3.6. Let F ⊂ Λ and G ⊂ Λ′, we define by

F ∗ = {f∗ : f ∈ F}

G∗ = {g∗ : g ∈ G}

LEMMA 3.7. Let f ∈ Λ. Then ℓ(f) = ℓ(f∗).

PROOF. Consider f =
∑m

i=1 λibi with λi ∈ K and bi ∈ B, where B is a basis of
Λ, 1 ≤ i ≤ m.

By definition we have that f∗ =
∑m

i=1 λiZ
l(f)−l(bi)bi. For every summand of f∗

we have:

ℓ(Zℓ(f)−ℓ(bi)bi) = ℓ(Zℓ(f)−ℓ(bi)) + ℓ(bi) = (ℓ(f) − ℓ(bi)) + ℓ(bi) = ℓ(f)

Then, ℓ(f∗) = max {ℓ(Zℓ(f)−ℓ(bi)bi) : 1 ≤ i ≤ m} = ℓ(f)

LEMMA 3.8. Let F = {fi}i∈I be a subset of Λ, not necessarily finite, and f =
∑m

i=1 rifisi ∈ 〈F 〉. If d = max {ℓ((ri)
∗(fi)

∗(si)
∗) : 1 ≤ i ≤ m} and d′ = ℓ(f).

Then Zd−d′

f∗ ∈ 〈F ∗〉.
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PROOF. Consider ki = ℓ(ri) + ℓ(fi) + ℓ(si) − ℓ(rifisi), 1 ≤ i ≤ m, by 3.3 we
have zki(rifisi)

∗ = (ri)
∗(fi)

∗(si)
∗

Let f = (
∑m

i=1(ri)
∗(fi)

∗(si)
∗)∗ =

∑m

i=1 Zd−ℓ(ri)+l(fi)+l(si)(ri)
∗(fi)

∗(si)
∗ =

(
∑m

i=1 Zd−ℓ(ri)+l(fi)+l(si)Zki(rifisi)
∗, by lemma 3.3. So, f ∈ 〈F ∗〉 and is homo-

geneous (by construction ) with d′
′
= ℓ(f) ≤ d. Moreover, using lemma 3.3 and

lemma 3.4, we have

f∗ = (

m
∑

i=1

Zd−ℓ(ri)+ℓ(fi)+ℓ(si)Zki(rifisi)
∗)∗

=

m
∑

i=1

Z
d−ℓ(ri)+ℓ(fi)+ℓ(si)
∗ (r∗i )∗(f

∗
i )∗(s

∗
i )∗

=

m
∑

i=1

rifisi = f

Using Lemma 3.5, we can conclude that

f = Zd′′−d′

(f∗)
∗ = Zd′′−d′

f∗

As d′
′
≤ d, finally we have:

Zd−d′

f∗ = Zd−d′′

Zd′′−d′

f∗ = Zd−d′′

f ∈ 〈F ∗〉

LEMMA 3.9. Let F be a subset of Λ. Then (〈F ∗〉)∗ = 〈F 〉.

PROOF. Let f ∈ 〈F 〉. By Lemma 3.8, Zkf∗ ∈ 〈F ∗〉, for some k ∈ N, and then

f = (f∗)∗ = (Zkf∗)∗ ∈ (〈F ∗〉)∗

By the other hand, if g ∈ 〈F ∗〉, say g =
∑m

i=1 ri(fi)
∗si with fi ∈ F and ri, si ∈ Λ′

for 1 ≤ i ≤ m, we have

g∗ = (

m
∑

i=1

ri(fi)
∗si)∗

=

m
∑

i=1

(ri)∗[(fi)
∗]∗(si)∗

=

m
∑

i=1

(ri)∗fi(si)∗

So, g∗ ∈ 〈F 〉.
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We reproduce here the Elimination Theorem, found in [2], to discuss and com-
pare the two results. For that, we define some new concepts.

Let Q be a quiver and <ll a length-lexicographic order defined in the basis of
paths B of Q. Let α be a maximal arrow with respect to <ll in B.

We define the quiver Qα in the following way: (Qα)0 = Q0 and (Qα)1 = Q1\{α}.
For T a set of indices, we define the following application V : T −→ Q0. Let

P =
∐

i∈T

V (i)KQ a ( right) projective in KQ-Mod.

We define Pα =
∐

i∈T

V (i)KQα a right projective module in

KQα-Mod.
Let BP be a K-basis of P with order ≺ such that:

(1) For every m1, m2 ∈ BP and every b ∈ B, if m1 ≺ m2, then m1b ≺ m2b, if
m1b and m2b are non zero.

(2) For every m ∈ BP and every b1, b2 ∈ B, if b1 <ll b2, then mb1 ≺ mb2, if
both are non zero.

(3) For every m ∈ BP and every b ∈ B, mb = 0 or mb ∈ BP .

Let m ∈ P , m =
∑

i∈T

λimibi, with mi ∈ BP , bi ∈ B e λi ∈ K. We call

tip(m) = the mi such that mi � mj for every j ∈ T . For X ⊂ P , we will
call by tip(X) = {tip(x) : x 6= 0, x ∈ X}.

Following Green, we say that G ⊂ P is right a Gröbner basis for P , with respect
to the order ≺, if tip(G) generates tip(P ) as a right module.

Here is Green’s Elimination Theorem, found in [2].

THEOREM 3.10. [2] Let Q be a quiver and let <ll be a length-lexicographic order
in B, where B is the set of paths in Q. Let α be a maximal arrow with respect to

<ll in Q and P =
∐

i∈T

V (i)KQ a projective in KQ-Mod. Let BP be an ordered basis

( as defined above ) for P . If G is a right uniform (reduced ) Gröbner basis for P,
then Gα = G ∩ Pα is a right uniform (reduced ) Gröbner basis for Pα.

As a consequence of the Elimination Theory, Green find a new algebra KQ[T ],
that we will call added by loops.

This algebra KQ[T ] is an hereditary algebra, obtained adding loops to Q, as
above, but without adding any relation. Observe that both are hereditary algebras
and the basis of KQ[T ] is ordered in such a way that the new loops are maximal
elements. In this situation, given two ideals and generators sets (Gröbner basis),
we can find, as described in [2], a generators set (Gröbner basis), of the intersection
of these ideals, constructed by the Elimination Theorem (that can be found, with
more details, in [2], section 8).

In our work, there are no additional hypothesis over the given order, the only
additional assumption is that the extra loops must be between the vertices and the
arrows.
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Moreover, we consider the more general case, where Λ = KQ/I, is not necessarily
hereditary.

THEOREM 3.11. Let F be a subset of Λ and let G ⊂ Λ′ be homogeneous. If G is
a Gröbner basis for 〈F ∗〉, then G∗ is a Gröbner basis for 〈F 〉.

PROOF. Suppose that G is a Gröbner basis for 〈F ∗〉. We will prove the theorem,
using the definition of Gröbner basis.

As G∗ ⊂ 〈F 〉, then 〈T ip(G∗)〉 ⊆ 〈T ip(〈F 〉)〉, and we only need to verify that
〈T ip(〈F 〉)〉 ⊆ 〈T ip(G∗)〉, that is, if given f ∈ 〈F 〉 there exists g∗ ∈ G∗ such that
T ip(g∗) divides T ip(f).

Let f ∈ 〈F 〉, we can write f =
∑m

i=1 λibi, where λi ∈ K and bi ∈ B for 1 ≤ i ≤ m.
Without lost of generality, assume that T ip(f) = b1, then

f∗ = λ1Z
ℓ(f)−ℓ(b1)b1 +

m
∑

i=2

λiZ
ℓ(f)−ℓ(bi)bi

it follows by the given order that T ip(f∗) = Zℓ(f)−ℓ(b1)b1 = ZnT ip(f).
By lemma 3.8, there exists k ∈ N such that h = Zkf∗ ∈ 〈F ∗〉. By the above

observation, T ip(h) = ZkZnT ip(f).
As G is a Gröbner basis for 〈F ∗〉, there exists g ∈ G such that T ip(h) =

ZkrrT ip(g)Zkss, for some Zkrr, Zkss ∈ B̃. T ip(g) ∈ B̃, so T ip(g) = Zkgb for
some b ∈ B and kg ∈ N. By the definition of order in Λ′, for every Ztbt 6= T ip(g)
that occurs in g, Zkgb > Ztbt, then b > bt, or b = bt and kg > t , but this cannot
occur, because g is homogeneous, so T ip(g)∗ = b.

Then, T ip(h) = ZkZnb1 = ZkrrT ip(g)Zkss =
ZkrrZkg bZkss = Zkr+kg+ksrbs. So, we have
b1 = (T ip(h))∗ = (ZkZnb1)∗ = (ZkrrT ip(g)Zkss)∗ = (ZkrrZkg bZkss)∗ =

(Zkr+kg+ksrbs)∗ = rbs.

Then T ip(f) = rT ip(g∗)s, and s G∗ is a Gröbner basis for 〈F 〉.
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[2] Green, E. L., Multiplicative Bases,Gröbner Bases, and Right Grbner Bases, J. Symbolic
Computation, 29, 2000, n.4-5, 601-623.
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Universidade de São Paulo,
CP 66281, 05315-970, São Paulo, Brasil
agchalom@ime.usp.br

Eduardo do Nascimento Marcos

Departamento de Matemática – IME,
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