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BIFURCATION THEORY APPLIED TO THE ANALYSIS OF

POWER SYSTEMS

GUSTAVO REVEL, DIEGO M. ALONSO, AND JORGE L. MOIOLA

Abstract. In this paper, several nonlinear phenomena found in the study
of power system networks are described in the context of bifurcation theory.
Toward this end, a widely studied 3-bus power system model is considered.
The mechanisms leading to static and dynamic bifurcations of equilibria as
well as a cascade of period doubling bifurcations of periodic orbits are in-
vestigated. It is shown that the cascade verifies the Feigenbaum’s universal
theory. Finally, a two parameter bifurcation analysis reveals the presence of
a Bogdanov-Takens codimension-two bifurcation acting as an organizing cen-
ter for the dynamics. In addition, evidence on the existence of a complex
global phenomena involving homoclinic orbits and a period doubling cascade
is included.

1. Introduction

Power systems blackouts have received a great attention in the last few years,
due to the increasing amount of incidents occurred in many countries around the
world (see for example [17, 20, 3, 27] and references therein). For different reasons
many systems are forced to operate near to their stability limits and thus they are
vulnerable to perturbations of the operating conditions. When these limits are ex-
ceeded, the system can exhibit undesired transient responses with the impossibility
to retain a stable voltage profile. This phenomenon is known as voltage collapse.
Factors that influence it are increments in the load consumption that reach the
limits of the network or the generation capacity, actions of badly tuned controllers,
tripping of lines and generators, among others [6].

Power system networks are one of the more complex and difficult systems to
model. The first problem is the size, just imagine a large-scale network composed
by hundreds of generators connected by thousands of transmission lines and buses,
along with probably hundreds of load centers, as it is easy to find in almost every
country. A second problem is its complex nature. Physical variables with very
different time scales (the electrical variables are sometimes extremely faster than
the mechanical states of the generators), devices modelled by continuous dynamics
(generators, loads, etc.) combined with discrete events (faults, controllers, etc.),
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algebraic restrictions (network constraints, operating conditions, etc), are some of
the main features revealing the complexity of the system. Therefore, to deal with
a tractable model it is necessary to make simplifications such as replacing a group
of generators, lines and/or loads for a single device with an equivalent behavior, or
neglecting fast dynamics, etc. By far, the usual approach to model a power system
is using a differential-algebraic set of equations (DAE model) of the form [13, 23]

ẋ = f (x, y; λ) ,

0 = g (x, y; λ) ,

where f : Rn×m×p → Rn, g : Rn×m×p → Rm, x ∈ Rn represents the differential
or dynamical state variables, y ∈ Rm represents the algebraic state variables, and
λ ∈ Rp is a vector of real parameters. The differential variables include the me-
chanical states of the generators (swing equations), the electrical states of the rotor,
the excitation and governor systems (voltage and frequency controls, respectively)
and the dynamical states of the load. On the other hand, the algebraic states are
mainly determined by the transmission network and algebraic states of the gener-
ators stators and loads∗. It is easy to obtain a high dimensional DAE model from
a real power system. For example, a widely studied system corresponding to the
Western System Coordinating Council (WSCC) composed by three machines and
nine buses [2, 19, 23], is modelled with 45 equations, 21 differential and 24 algebraic.
The total number of equations might vary according to the detail used when mod-
elling generators and loads. A more complete model results from considering an
hybrid system which is described by a set of differential-algebraic-difference (DAD)
equations [11], to accurately include faults and the discrete nature of some compo-
nents of the system. Nevertheless, it is important to notice that the complexity of
the model depends on the problem under study.

In addition, power systems are highly nonlinear and its dynamical behavior
may change qualitatively when parameters are varied. For example, after a load
increment a stable operating point may become unstable and oscillations arise.
This behavior can be locally associated to a Hopf bifurcation and, in general,
bifurcation theory can be applied to understand mechanisms leading to nonlinear
phenomena in these systems. The idea underlying a bifurcation analysis is to
investigate qualitative changes in the system dynamics (e.g. stability loss, birth or
death of oscillations, passage from periodic to chaotic solutions or viceversa, etc.)
under slow variations of distinctive system parameters. In this regard, [1] and [15]
present results in the study of steady state stability of power systems considering
dynamic (Hopf) and static (saddle-node) bifurcations, respectively. Then, Dobson
and Chiang [5] have introduced a simple 3-bus power system model showing that
the interaction between the load and generator causes a saddle-node bifurcation. As

∗The algebraic states arise from neglecting the dynamics of lines (instantaneous power trans-
ference) and other devices. Although it is unusual, specially for large systems, the fast dynamics
can be included and thus the system can be modelled by a set of ordinary-differential equations
(ODE) [22]. In refined studies, the differential equations representing the transmission lines can
be replaced by a set of partial-differential equations (PDE), since the impedance is distributed
along the line [12].
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Figure 1. Schematic diagram of the 3-bus electric power system model.

a consequence the stable operating point disappears if the reactive power demand is
increased and then the voltage on the load suddenly drops to zero (voltage collapse).
This simple model has been widely studied using different sets of parameter values
(e.g. [29, 26, 16, 4]). For example, Wang et al. [29] have shown that this system
can develop a voltage collapse following a cascade of period doubling bifurcations.
Later, Budd and Wilson [4] have found a Bogdanov-Takens bifurcation point when
considering two parameter variations.

In this paper, the 3-bus power system model is revisited. An overview of bifurca-
tions when varying one and two parameters is presented. It is shown that in a one
parameter bifurcation analysis, saddle-node and Hopf bifurcations of equilibria are
the mechanisms by means an operating point can disappear or become unstable,
respectively. In addition, the periodic orbit born at the Hopf bifurcation under-
goes a cascade of period doubling bifurcations leading to a chaotic attractor. It is
shown that the cascade follows the theory proposed by Feigenbaum [8, 9]. When
considering variations of two parameters, a Bogdanov-Takens codimension two bi-
furcation point is detected for positive values of the active and reactive power of
the load. Even though the unfolding of this bifurcation seems not to affect a priori

the operating point of the system, the appearance of additional global phenomena
can influence the behavior over regions of practical importance.

This paper is organized as follows. In section 2 the model of the power system
is described. One and two parameter bifurcation analysis are developed in sections
3 and 4, respectively. Finally, in section 5 some concluding remarks are presented.

2. Mathematical model of a 3-bus electric power system

The 3-bus power system model introduced in [5] and shown in Fig. 1, consists of
an infinite bus on the left, a load bus on the center and a generator bus on the right.
Y0∠(−θ0−π/2) and Ym∠(−θm−π/2) are the admittances of the transmission lines.

The concept of an infinite bus refers to a particular node of the system with
enough capacity to absorb any mismatch in the power balance equations. Thus,
it can be considered as a fictitious generator with constant voltage magnitude E0

and phase δ0 (usually E0 = 1 and δ0 = 0). This approach is valid specially when
working with a small subsystem connected to a large-scale power grid. On the
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other hand, the generator has constant voltage magnitude Em but the angle δm

varies according to the so-called swing equation

Mδ̈m + dmδ̇m = Pm − Pe, (2.1)

where M is the inertia of the rotor, dm is the damping coefficient, Pm is the
mechanical power supplied to the generator and Pe is the electric power supplied
by the generator to the network (including the loss in Ym) given by

Pe = −EmYm[Em sin(θm) + V sin(δ − δm + θm)]. (2.2)

Replacing (2.2) in (2.1), the dynamics of the generator is reproduced by the classical

model of a voltage generator (also known as constant voltage behind reactance [24])

δ̇m = ω (2.3)

ω̇ =
1

M

[
−dmω + Pm + E2

mYm sin(θm) + EmV Ym sin(δ − δm + θm)
]
.(2.4)

The load bus, with voltage magnitude V and phase δ, consists of an induction
motor, a generic load P-Q and a capacitor C. The dynamics of this part is derived
from a power balance at the bus. Considering an empirical model for the induction
motor [28] and a static load P-Q, the power consumption results

Pload = P0 + kpw δ̇ + kpv(V + T V̇ )
︸ ︷︷ ︸

Pmotor

+P1,

Qload = Q0 + kqw δ̇ + kqvV + kqv2
V 2

︸ ︷︷ ︸

Qmotor

+Q1,

where T , kpw, kpv, kqw , kqv and kqv2
are constants of the motor, P0, Q0 and P1,

Q1 are the static active and reactive power drained by the motor and by the load
P-Q, respectively. In terms of bus voltages and lines admittances, the active and
reactive power supplied to the load are

P (δm, δ, V ) = −E
′

0Y
′

0 V sin(δ + θ
′

0) − EmYmV sin(δ − δm + θm)

+V 2
[

Y
′

0 sin(θ
′

0) + Ym sin(θm)
]

, (2.5)

Q (δm, δ, V ) = E
′

0Y
′

0 V cos(δ + θ
′

0) + EmYmV cos(δ − δm + θm)

−V 2
[

Y
′

0 cos(θ
′

0) + Ym cos(θm)
]

, (2.6)

where E
′

0, Y
′

0 and θ
′

0 are obtained from a Thevenin equivalent of the circuit towards
the infinite bus including the capacitor C, and their expressions are

E
′

0 =
E0

Γ
, Y

′

0 = Y0Γ, θ
′

0 = θ0 + tan−1

(
CY −1

0 sin (θ0)

1 − CY −1
0 cos (θ0)

)

,

with Γ =
√

1 + C2Y −2
0 − 2CY −1

0 cos (θ0).
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Then the balance between the supplied power (P, Q) and the drained power
(Pload, Qload) at the load bus results in

P (δm, δ, V ) = P0 + kpw δ̇ + kpv(V + T V̇ ) + P1, (2.7)

Q (δm, δ, V ) = Q0 + kqw δ̇ + kqvV + kqv2
V 2 + Q1. (2.8)

From (2.8)

δ̇ =
1

kqw

[
−kqv2

V 2 − kqvV − Q0 − Q1 + Q (δm, δ, V )
]
. (2.9)

Substituting (2.9) into (2.7) and solving for V̇ , results

V̇ =
1

Tkqwkpv

{
kpwkqv2

V 2 + (kpwkqv − kqwkpv)V (2.10)

+ kqw [P (δm, δ, V ) − P0 − P1] − kpw[Q (δm, δ, V ) − Q0 − Q1]} .

Equations (2.3–2.4) and (2.9–2.10) with P (·) and Q (·) given by (2.5) and (2.6),
respectively, describe the dynamics of the 3-bus system model in terms of the state
variables δm, ω, δ, and V . The free parameters used in the bifurcation analysis
are Q1 and P1, i.e. the reactive and active power drained by the static P-Q load.
Therefore the model has the form

ẋ = f(x, λ) (2.11)

where x = [δm, ω, δ, V ]T is the state vector and λ = [Q1, P1]
T is the parameter

vector. The values of the fixed parameters used in the following numerical study
are obtained from [29]: M = 0.01464, C = 3.5, Em = 1.05, Y0 = 3.33, θ0 = θm = 0,
kpw = 0.4, kpv = 0.3, kqw = −0.03, kqv = −2.8, kqv2

= 2.1, T = 8.5, P0 = 0.6,
Q0 = 1.3, E0 = 1, Ym = 5.0, Pm = 1.0 and dm = 0.05. All the constants are
normalized according to a given basis (“per-unit” representation), except for the
angles which are given in degrees.

3. One parameter bifurcation analysis

Let us denote the 3-bus power system operation point as x∗ = [δ∗m, ω∗, δ∗, V ∗]T ,
which is normally a stable equilibrium of (2.11) for some λ, i.e. f(x∗, λ) = 0. The
location of x∗ changes as the parameter vector λ varies. In addition, the qualitative
dynamical behavior in the neighborhood of x∗, may change at particular values of
λ, say λ = λ∗. At these points, system (2.11) undergoes local bifurcations and the
Jacobian matrix

J =
∂f

∂x
(x∗, λ∗) (3.1)

becomes singular. Considering variations of only one parameter and assuming
that some nondegeneracy conditions hold, the equilibrium point x∗ exhibits a
codimension-one bifurcation when a single eigenvalue of (3.1) crosses the imaginary
axis at the origin or when a pair of eigenvalues cross it with nonzero imaginary part.
In the first case, one of the associated mechanisms is the saddle-node bifurcation,
where the equilibrium point (stable) disappears by coalescing with another equilib-
rium point (unstable). In the second case, the mechanism is associated to a Hopf
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Figure 2. Bifurcation diagram varying Q1 with P1 = 0.

bifurcation. The equilibrium changes the stability and a limit cycle (oscillation) is
created in its neighborhood. Further details on the analysis of different bifurcations
can be seen, for example in [10] and [14].

In the following one parameter bifurcation analysis, the load reactive power Q1

is the free parameter while the active power is fixed at P1 = 0. The analysis is
performed numerically with the continuation package AUTO [7]. In this setting
the equilibrium curve is computed as the main bifurcation parameter is varied and,
simultaneously, bifurcation conditions are checked. Figure 2 shows the resulting
bifurcation diagram. The curve is denoted as a solid line when the equilibrium
is stable and dashed when it is unstable. The value of the state variable V at
equilibrium is shown in the ordinate axis. In addition, the minimum value of the
amplitude of the periodic orbit born at the Hopf bifurcation is plotted. Filled
circles mean stable periodic orbits and empty circles denote unstable ones.

Beginning from the left in Fig. 2, there are two equilibrium points, one stable
(where the system may operate) and the other unstable. The stable one becomes
unstable at a supercritical Hopf bifurcation (H−) for Q1 = 2.9802182780 lead-
ing to the appearance of a stable limit cycle. For increasing values of Q1, both
equilibria approach each other and coalesce in a saddle-node bifurcation (SN1) for
Q1 = 3.0257810109. If the reactive power of the load Q1 is increased beyond this
value, the system does not have an operating point, and voltage collapse occurs.

Rev. Un. Mat. Argentina, Vol 49-1
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Figure 3. Detailed view of the sequence of period doubling bifurcations.

Nevertheless, voltage collapse may be found below this point due to a more complex
phenomenon [29] described next.

The cycle born at the Hopf bifurcation (H−) undergoes a cascade of period
doubling bifurcations, i.e. the period of the orbit is doubled repeatedly. This sin-
gularity can not be detected from a local analysis around the equilibrium point.
Nevertheless, local bifurcations of limit cycles can be detected analyzing the eigen-
values of the associated Poincaré map. When a single eigenvalue crosses the unit
circle through 1 or −1, a saddle-node or a period doubling bifurcation of limit cy-
cles arises, respectively. When a pair of eigenvalues cross the unit circle at e±j2π/k

with k 6= 0, 1, ...4 †, the cycle evidences a Neimark-Sacker or secondary Hopf bifur-
cation, leading to quasiperiodic motions. In the 3-bus power system under study,
the first period doubling bifurcation (PD1) occurs at Q1 = 2.9889650564. At this
point, a stable period-two cycle is created, coexisting with the original period-one
cycle, now unstable. This cycle becomes unstable at PD2 and a period-four cycle
arises. The beginning of the cascade is shown in Fig. 3 which is the blow-up of the
rectangle of Fig. 2 (the corresponding values of Q1 can be obtained from Table 1).
This process continues for increasing values of Q1 and leads to a chaotic attractor.
A projection of this attractor for Q1 = 2.989790 is depicted in Fig. 4.

†This condition avoids more complex scenarios known as strong resonances (see, for example
[14], for details on this topic).
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8 G. REVEL, D. M. ALONSO AND J. L. MOIOLA

Table 1. Period doubling bifurcations.

Bifurcation Q1

PD1 2.9889650564
PD2 2.9894727221
PD3 2.9895623607
PD4 2.9895809828
PD5 2.9895849451
PD6 2.9895857918
PD7 2.9895859732
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Figure 4. Chaotic attractor for Q1 = 2.989790.

The attractor, and the associated unstable orbits, collide with the saddle equi-
librium point for Q1 ≃ 2.996 and they are destroyed due to boundary crisis bifur-
cations. Therefore when the chaotic attractor coalesces, the system does not have
any stable attractor and the voltage collapse occurs, more precisely after a long
chaotic transient the voltage drops to zero suddenly.

3.1. Analysis of the period doubling route to chaos. For unimodal maps, the
values of the parameter where the period doubling bifurcations occur are related
by a universal constant due to M. J. Feigenbaum [8, 9] given by:

δF = lim
n→∞

rn+1 − rn

rn+2 − rn+1

= 4.6692016091..., (3.2)

Rev. Un. Mat. Argentina, Vol 49-1
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Figure 5. Unimodal Lorenz’s map for δ̄m.

where rj are the parameter values corresponding to the period doubling bifurca-
tions. These results may be approximately applied to ordinary differential equa-
tions if the associated Lorenz’s map is unimodal [25].

Extending this idea to the power system model, the Lorenz’s map is obtained
numerically by plotting the successive local maxima of the state variable δm when
the system is in chaotic regime. The plot, shown in Fig. 5, is very close to a one
dimensional curve and can be approximated by an unimodal map. Then, successive
approximations to Feigenbaum’s universal constant (for n finite) can be computed
using

δFn =
rn+1 − rn

rn+2 − rn+1

and the values of Q1 given in Table 1. The resulting approximations are given
in Table 2. Notice that the estimation approaches δF = 4.6692016091... as n is
increased. Thus, knowing the values of Q1 for the first period doubling bifurcations
(i.e. PD1, PD2, PD3, etc.) the occurrence of the remaining bifurcation points can
be approximately predicted using δF . For example, PD8 can be predicted using
δF , PD6 and PD7 from Table 1, the result is PD8 ≃ 2.9895860121. Although from
a practical point of view this is not important, the parameter value corresponding
to the chaotic regime can be obtained approximately by applying recursively the
relationship, resulting Q1 ≃ 2.9898860226.
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Table 2. Approximated values of Feigenbaum’s universal constant.

n δFn

1 5.663471986396961
2 4.813560232131420
3 4.699820811612138
4 4.679697647450078
5 4.667585450683690

4. Two parameter bifurcation analysis

Suppose that an equilibrium point or a limit cycle of system (2.11) undergoes
a bifurcation for λ = λ∗ when variations of one parameter are considered. Then,
varying a second parameter simultaneously, there exists a curve in the parameter
plane along which this bifurcation persists. At isolated points on this curve of
codimension-one bifurcations, system (2.11) can exhibit codimension-two bifurca-
tions. This situation corresponds to an additional linear degeneracy, either in the
Jacobian matrix for equilibrium points or in the Poincaré map for cycles.

When considering simultaneous variations of Q1 and P1 a double linear de-
generation condition is detected. This condition corresponds to the double-zero or
Bogdanov-Takens codimension-two bifurcation and the Jacobian (3.1) presents two
eigenvalues at zero. The normal form of this bifurcation is given by

ẋ = y + O
(

|x, y|
3
)

,

ẏ = µ1 + µ2x + x2 + sxy + O
(

|x, y|3
)

,

where µ1 and µ2 are the main bifurcation parameters and s = ±1. The unfolding
of this bifurcation for s = 1 is shown in Fig. 6 (the case s = −1 is very similar
and can be seen in [14]). In region 1 there are no equilibria and crossing the curve
SN1 towards region 2, two unstable equilibria are created due to a saddle-node
bifurcation. Then the unstable node undergoes a subcritical Hopf bifurcation at
the curve H+ and becomes stable surrounded by an unstable limit cycle in region 3.
This cycle is destroyed at the homoclinic bifurcation curve Hom. The stable node
and unstable saddle equilibria of region 4 collapse at the saddle-node bifurcation
curve SN2.

This singularity has been reported in [4] for the 3-bus model but for a different
set of parameters. Notice that in [4] the Bogdanov-Takens bifurcation occurs for a
negative value of P1. This point a priori seems to not have physical importance,
but the emanating branches play a very important role in the system behavior for
positive values of active power. In our investigation, the Bogdanov-Takens point is
detected for positive values of P1 (BT point at Q1 = 3.030710 and P1 = 0.1524893)
but the bifurcation curves associated to the unfolding evolve toward negative values
of P1 as shown in Fig. 7.
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Figure 6. Unfolding of the Bogdanov-Takens bifurcation.

Let us describe in detail the bifurcation diagram of Fig. 7. The curves associated
to the Bogdanov-Takens singularity are: the two branches of static saddle-node bi-
furcations (SN1 and SN2), the subcritical Hopf bifurcation (H+) and the homoclinic
bifurcation (Hom). These curves are shown in the expanded view of the rectangle
of Fig. 7 and correspond to those predicted in the unfolding of Fig. 6. The curves
PD1 and H− are not directly related to this unfolding and deserve a particular
description. The subcritical Hopf bifurcation curve emanating from the BT singu-
larity becomes supercritical (H−) at a generalized Hopf bifurcation. A cyclic fold
curve arises at this codimension-two point (for simplicity it is not included in the
diagram since it coalesces almost immediately with the homoclinic curve). It is
important to mention that the generalized Hopf point occurs near the intersection
of Hopf and homoclinic curves and the continuation task is very difficult to carry
out in the neighborhood of this point. Nevertheless, partial numerical results seem
to indicate that there exists a point on the homoclinic curve (Hom) where global
complex phenomenon arises. This phenomenon requires the elements found around
it: a homoclinic curve, a cyclic fold curve and a period doubling cascade. Thus,
it could explain the collapse (or birth) of the period doubling bifurcation curve
(PD1) on the homoclinic curve. Remember that PD1 is the first period doubling
bifurcation in the cascade. Moreover, it could predict the collapse (or birth) of
the period doubling cascade (see the mechanism in [18] and references therein).
The analysis of this point is beyond the scope of this paper but, from a practical
point of view, it is important since it is an organizing center of global dynamics
that may affect operating regions. The dynamical phenomena displayed on Figs.
2 and 3 correspond to that obtained when varying Q1 considering P1 = 0, i.e. a
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Figure 7. Two parameter bifurcation diagram.

horizontal cross-section at P1 = 0 in Fig. 7. The period doubling curves associated
to the cascade are not shown in this figure but they are located within the region
enclosed by the locus of PD1 and that of Hom. Additional bifurcation phenomena
on a larger region of the parameter plane, as well as vertical cross-sections (fixing
Q1 and varying P1) can be consulted in [21].

5. Conclusions

In this paper an overview of representative one and two parameter bifurcation
diagrams for a 3-bus power system model has been presented. The one parameter
analysis has been performed varying the reactive power of the load Q1 with the
active power fixed at P1 = 0. Saddle-node, Hopf and period doubling bifurcations
have been detected. It has been shown that the cascade of period doubling bifurca-
tions follows the Feigenbaum’s theory and the value of Q1 where the attractor exists
has been predicted using Feigenbaum’s constant. A two parameter bifurcation di-
agram has been obtained varying Q1 and P1. A Bogdanov-Takens bifurcation for
positive values of both parameters has been detected. In addition, evidence on the
existence of an organizing center of global dynamics involving interactions between
period doubling bifurcations and homoclinic orbits is discussed. Although the an-
alyzed model is a simplified version of a real system, the mechanisms leading to
voltage collapse can be used to alert against its occurrence in higher dimensional
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models of power systems. The existence of global nonlinear phenomena restricting
the basin of attraction of the operating point can also be expected.
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29. H. O. Wang, E. H. Abed, and A. M. Hamdan, Bifurcations, chaos, and crises in voltage
collapse of a model power system, IEEE Trans. Circuits Systems I 41 (1994), no. 3, 294–302.
1, 2, 3

Gustavo Revel

Instituto de Investigaciones en Ingenieŕıa Eléctrica (UNS–CONICET)
Depto. de Ing. Eléctrica y de Computadoras,
Universidad Nacional del Sur,
Avda. Alem 1253, B8000CPB
Bah́ıa Blanca, Argentina.
grevel@uns.edu.ar

Diego M. Alonso
Instituto de Investigaciones en Ingenieŕıa Eléctrica (UNS–CONICET)
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