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UNIÓN MATEMÁTICA ARGENTINA
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FINITE ELEMENT APPROXIMATION OF THE VIBRATION

PROBLEM FOR A TIMOSHENKO CURVED ROD

E. HERNÁNDEZ ∗, E. OTÁROLA †, R. RODRÍGUEZ ‡, AND F. SANHUEZA §

Abstract. The aim of this paper is to analyze a mixed finite element method
for computing the vibration modes of a Timoshenko curved rod with arbitrary
geometry. Optimal order error estimates are proved for displacements and
rotations of the vibration modes, as well as a double order of convergence for
the vibration frequencies. These estimates are essentially independent of the
thickness of the rod, which leads to the conclusion that the method is locking
free. A numerical test is reported in order to assess the performance of the
method.

1. Introduction

It is very well known that standard finite elements applied to models of thin
structures, like beams, rods, plates and shells, are subject to the so-called lock-
ing phenomenon. This means that they produce very unsatisfactory results when
the thickness of the structure is small with respect to the other dimensions of the
structure (see for instance [4]). From the point of view of the numerical analysis,
this phenomenon usually reveals itself in that the a priori error estimates for these
methods depend on the thickness of the structure in such a way that they degener-
ate when this parameter becomes small. To avoid locking, special methods based
on reduced integration or mixed formulations have been devised and are typically
used to date (see, for instance, [5]).

Very likely, the first mathematical piece of work dealing with numerical locking
and how to avoid it is the paper by Arnold [1], where a thorough analysis for the
Timoshenko beam bending model is developed. In that paper, it is proved that
locking arises because of the shear terms and a locking-free method based on a
mixed formulation is introduced and analyzed. It is also shown that this mixed
method is equivalent to use a reduced-order scheme for the integration of the shear
terms in the primal formulation.

Subsequently, several methods to avoid locking on different models of circular
arches were developed by Kikuchi [12], Loula et al. [14] and Reddy and Volpi
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[15]. The analysis of the latter was extended by Arunakirinathar and Reddy in
[2] to Timoshenko rods of rather arbitrary geometry. An alternative approach to
deal with this same kind of rods was developed and analyzed by Chapelle in [6],
where a numerical method based on standard beam finite elements was used to
approximate the rod.

All the above references deal only with load problems. The literature devoted
to the dynamic analysis of rods is less rich. There exist a few papers introducing
finite element methods and assessing their performance by means of numerical
experiments (see [10, 13] and references therein). Papers dealing with the numerical
analysis of the eigenvalue problems arising from the computation of the vibration
modes for thin structures are much less frequent (among them we mention [7,
8], where MITC methods for computing bending vibration modes of plates were
analyzed). One reason for this is that the extension of mathematical results from
load to vibration problems is not quite straightforward for mixed methods.

In this paper we adapt to the vibration problem the mixed finite element method
proposed and analyzed by Arunakirinathar and Reddy in [2] for the load problem
for elastic curved rods. With this purpose, we settle the corresponding spectral
problem by including the mass terms arising from displacement and rotational
inertia in the model, as proposed in [10]. Our assumptions on the rods are slightly
weaker than those in [2]. On the one hand we allow for non-constant geometric and
physical coefficients varying smoothly along the rod. On the other hand, we do
not assume that the Frenet basis associated with the line of cross-section centroids
is a set of principal axes. We prove that the resulting method yield optimal order
approximation of displacements and rotations of the vibration modes, as well as a
double order of convergence for the vibration frequencies. Under mild assumptions,
we also prove that the error estimates do not degenerate as the thickness becomes
small, which allow us to conclude that the method is locking free.

The outline of the paper is as follows. In Sect. 2, we introduce the basic geometric
and physical assumptions to settle the vibration problem for a Timoshenko rod of
arbitrary geometry. The resulting spectral problem is shown to be well posed. Its
eigenvalues and eigenfunctions are proved to converge to the corresponding ones
of the limit problem as the thickness of the rod goes to zero, which corresponds
to a Bernoulli-like rod model. The finite element discretization with piecewise
polynomials of arbitrary degree is introduced and analyzed in Sect. 3. Optimal
orders of convergence are settled for the eigenfunctions, as well as a double order
for the eigenvalues and, whence, for the vibration frequencies. All these error
estimates are proved to be independent of the thickness of the rod, which allow us
to conclude that the method is locking-free. In Sect. 4, we report a numerical test,
which allows assessing the performance of the lowest-degree method.

2. The vibration problem for an elastic rod of arbitrary geometry

A curved rod in undeformed reference state is described by means of a smooth
three-dimensional curve, the line of centroids, which passes through the centroids
of cross-sections of the rod. These cross-sections are initially plane and normal to
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FEM FOR THE VIBRATION PROBLEM OF A TIMOSHENKO ROD 17

the line of centroids. The curve is parametrized by its arc length s ∈ I := [0, L], L
being the total length of the curve.

We recall some basic concepts and definitions; for further details see [2], for
instance. We use standard notation for Sobolev spaces and norms.

The basis in which the equations are formulated is the Frenet basis consisting
of t, n and b, which are the tangential, normal and binormal vectors of the curve,
respectively. These vectors change smoothly from point to point and form an
orthogonal basis of R3 at each point.

Let S denote a cross-section of the rod. We denote by (η, ζ) the coordinates in
the coordinate system {n, b} of the plane containing S (see Fig. 2.1).

η

ζ
ηn + ζb

t

b

n

S

Fig. 2.1. Cross-section. Coordinate system.

The geometric properties of the cross-section are determined by the following
parameters (recall that the first moments of area,

∫
S η dη dζ and

∫
S ζ dη dζ, vanish,

because the center of coordinates is the centroid of S):

• the area of S: A :=
∫

S
dη dζ;

• the second moments of area with respect to the axis n and b: In :=∫
S ζ2 dη dζ and Ib :=

∫
S η2 dη dζ, respectively;

• the polar moment of area: J :=
∫

S

(
η2 + ζ2

)
dη dζ = In + Ib;

• Inb :=
∫

S ηζ dη dζ.

These parameters are not necessarily constant, but they are assumed to vary
smoothly along the rod. For a non-degenerate rod, A is bounded above and below
far from zero. Consequently, the same happens for the area moments, In, Ib and
J .

Remark 2.1. For any planar set S, there exists an orthogonal coordinate system,
named the set of principal axes, such that Inb vanishes when computed in these
coordinates. For particularly symmetric geometries of S, for instance when the
cross-section of the rod is a circle or a square, Inb vanishes in any orthogonal coor-
dinate system. However, in general, there is no reason for n and b to be principal
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axes, so that Inb does not necessarily vanish. In any case, it is straightforward to
prove that the matrix (

In −Inb
−Inb Ib

)

is always positive definite.

Vector fields defined on the line of centroids will be always written in the Frenet
basis:

v = v1t+ v2n+ v3b, with v1, v2, v3 : I −→ R.

We emphasize that v1, v2 and v3 are not the components of v in a fixed basis of R3,
but in the Frenet basis {t,n, b}, which changes from point to point of the curve.

Since t, n and b are smooth functions of the arc-length parameter s, we have
that

v′ = v′1t+ v′2n+ v′3b+ v1t
′ + v2n

′ + v3b
′.

If we denote

v̇ := v′1t+ v′2n+ v′3b, (2.1)

then, by using the Frenet-Serret formulas (see, for instance, [2]), there holds

v′ = v̇ + Γtv, with Γ(s) :=




0 κ(s) 0

−κ(s) 0 τ(s)
0 −τ(s) 0



 ,

where κ and τ are the curvature and the torsion of the rod, which are smooth
functions of s, too. Therefore, v = v1t + v2n + v3b ∈ H1(I)3 if and only if
vi ∈ L2(I) and v̇i ∈ L2(I), i = 1, 2, 3.

Since we will confine our attention to elastic rods clamped at both ends, we
proceed as in [2] and consider

V :=
{
v ∈ L2(I)3 : v̇ ∈ L2(I)3 and v(0) = v(L) = 0

}
,

endowed with its natural norm

‖v‖1 :=

[∫ L

0

(
|v|2 + |v̇|2

)
ds

]1/2

;

namely, V is the space of vector fields defined on the line of centroids such that
their components in the Frenet basis are in H1

0(I).
We will systematically use in what follows the total derivative v′ = v̇+Γtv. Since

t, n and b are assumed to be smooth functions, ‖v′‖0 is a norm on V equivalent
to ‖·‖1 (see [2, Theorem 3.1]). This is the reason why we denote ‖·‖1 the norm of
V . However, the total derivative v′ should be distinguished from the vector v̇ of
derivatives of the components of v in the Frenet basis, as defined by (2.1).

The kinematic hypotheses of Timoshenko are used for the problem formulation.
The deformation of the rod is described by the displacement of the line of centroids,
u ∈ R3, and the rotation of the cross-sections, θ ∈ R3. The physical properties of
the rod are determined by the elastic and the shear moduli E and G, respectively,
the shear correcting factors k1 and k2, and the volumetric density ρ, all strictly
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positive coefficients. These coefficients are not necessarily constant; they are al-
lowed to vary along the rod, but they are also assumed to be smooth functions of
the arc-length s.

We consider the problem of computing the free vibration modes of an elastic
rod clamped at both ends. The variational formulation of this problem consists in
finding non-trivial (u,θ) ∈ W := V × V and ω > 0 such that

∫ L

0

Eθ′ · ψ′ ds +

∫ L

0

D (u′ − θ × t) · (v′ −ψ × t) ds

= ω2

(∫ L

0

ρAu · v ds +

∫ L

0

ρJθ ·ψ ds

)
∀ (v,ψ) ∈ W , (2.2)

where ω is the vibration frequency and u and θ are the amplitudes of the displace-
ments and the rotations, respectively (see [10]). The coefficients D, E and J are
3 × 3 matrices, which in the Frenet basis are written as follows:

D :=




EA 0 0
0 k1GA 0
0 0 k2GA



 ,

E :=




GJ 0 0
0 EIn −EInb
0 −EInb EIb



 and J :=




J 0 0
0 In −Inb
0 −Inb Ib



 .

In [10], as in most references ([2, 6]), the Frenet basis is assumed to be a set of
principal axes, so that Inb = 0 and the three matrices above are diagonal. We do
not make this assumption in this paper.

Remark 2.2. The vibration problem above can be formally obtained from the three-
dimensional linear elasticity equations as follows: According to the Timoshenko
hypotheses, the admissible displacements at each point ηn+ ζb ∈ S (see Fig. 2.1)
are of the form u + θ × (ηn+ ζb), with u, θ, n and b being functions of the
arc-length coordinate s. Test and trial displacements of this form are taken in the
variational formulation of the linear elasticity equations for the vibration problem
of the three-dimensional rod. By integrating over the cross-sections and multiplying
the shear terms by correcting factors k1 and k2, one arrives at problem (2.2).

It is well known that standard finite element methods applied to equations like
(2.2) are subject to numerical locking: they lead to unacceptably poor results for
very thin structures, unless the mesh-size is excessively small (see, for instance,
[1]). This phenomenon is due to the different scales, with respect to the thickness
of the rod, of the two terms on the left-hand side of this equation. An adequate
framework for the mathematical analysis of locking is obtained by rescaling the
equations in order to obtain a family of problems with a well-posed limit as the
thickness becomes infinitely small.
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With this purpose, we introduce the following non-dimensional parameter, char-
acteristic of the thickness of the rod:

d2 :=
1

L

∫ L

0

J

AL2
ds.

By defining

λ :=
ω2ρ

d2
, D̂ :=

1

d2
D, Ê :=

1

d4
E, Ĵ :=

1

d4
J and Â :=

A

d2
,

Problem (2.2) can be equivalently written as follows:
Problem P: Find non-trivial (u,θ) ∈ W and λ ∈ R such that
∫ L

0

Êθ′ ·ψ′ ds +
1

d2

∫ L

0

D̂ (u′ − θ × t) · (v′ −ψ × t) ds

= λ

(∫ L

0

Âu · v ds + d2

∫ L

0

Ĵθ · ψ ds

)
∀ (v,ψ) ∈ W .

The values of interest of d are obviously bounded above, so we restrict our

attention to d ∈ (0, dmax]. The coefficients of the matrices D̂, Ê and Ĵ, as well as

Â, are assumed to be functions of s which do not vary with d. This corresponds
to considering a family of problems where the size of the cross-sections at all point
of the line of centroids are uniformly scaled by d, while their shapes as well as the
geometry of the curve and the material properties remain fixed.

Remark 2.3. Matrices D̂, Ê and Ĵ are positive definite for all s ∈ I, the last two
because of Remark 2.1. Moreover, since all the coefficients are continuous functions
of s, the eigenvalues of each of these matrices are uniformly bounded below away
from zero for all s ∈ I.
Remark 2.4. The eigenvalues λ of Problem P are strictly positive, because of
the symmetry and the positiveness of the bilinear forms on its left and right-hand
sides. The positiveness of the latter is a straightforward consequence of Remark 2.3,
whereas that of the former follows from the ellipticity of this bilinear form in W .
This can be proved by using Remark 2.3 again and proceeding as in the proof of [2,
Lemma 3.4 (a)], where the same result appears for particular constant coefficients
(see also [6, Proposition 1]).

We introduce the scaled shear stress γ := 1
d2 D̂ (u′ − θ × t) to rewrite Problem P

as follows:(
Êθ′,ψ′

)
+ (γ,v′ −ψ × t) = λ

[(
Âu,v

)
+ d2

(
Ĵθ,ψ

)]
∀ (v,ψ) ∈ W ,

γ =
1

d2
D̂ (u′ − θ × t) ,

where (·, ·) denotes the L2(I)3 inner product.
To analyze the approximation of this problem, we introduce the operator

T : L2(I)3 × L2(I)3 −→ L2(I)3 × L2(I)3,
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defined by T (f ,φ) := (u,θ), where (u,θ) ∈ W is the solution of the associated
load problem:

(
Êθ′,ψ′

)
+ (γ,v′ −ψ × t) =

(
Âf ,v

)
+ d2

(
Ĵφ,ψ

)
∀ (v,ψ) ∈ W , (2.3)

γ =
1

d2
D̂ (u′ − θ × t) . (2.4)

The existence and uniqueness of the solution of this problem was analyzed in [2,
Theorem 3.3] in case of particular constant coefficients and in [6, Proposition 2] for
another equivalent formulation. Taking into account that (2.4) can be equivalently
written as follows:

(u′ − θ × t, q) − d2
(
D̂

−1γ, q
)

= 0 ∀q ∈ Q := L2(I)3,

we note that the load problem falls in the framework of the mixed formulations
considered in [5]. In this reference, the results from [1] are extended to cover this
kind of problems. In particular, according to [5, Theorem II.1.2], to prove the well
posedness it is enough to verify the classical properties of mixed problems:

i) ellipticity in the kernel : ∃α > 0 such that
(

Êψ′,ψ′
)
≥ α

(
‖v‖2

1 + ‖ψ‖2
1

)
∀(v,ψ) ∈ W0,

where W0 := {(v,ψ) ∈ W : v′ −ψ × t = 0 in I} ;
ii) inf-sup condition: ∃β > 0 such that

sup
(0,0) 6=(v,ψ)∈W

(q,v′ −ψ × t)
‖v‖1 + ‖ψ‖1

≥ β ‖q‖0 ∀q ∈ Q.

Property (i) has been proved in [2, Lemma 3.6] for Ê being the identity matrix. The

extension to Ê positive definite uniformly in s is quite straightforward. Property (ii)
has been proved in [2, Lemma 3.7]. An alternative simpler proof of an equivalent
inf-sup condition appears in [6, Proposition 2].

Therefore, according to [5, Theorem II.1.2], problem (2.3)–(2.4) has a unique
solution (u,θ,γ) ∈ W × Q and this solution satisfies

‖u‖1 + ‖θ‖1 + ‖γ‖0 ≤ C
(
‖f‖0 + d2 ‖φ‖0

)
.

Here and thereafter, C denotes a strictly positive constant, not necessarily the same
at each occurrence, but always independent of d and of the mesh-size h, which will
be introduced in the next section.

Because of the estimate above and the compact embedding H1(I) →֒ L2(I),
the operator T is compact. Moreover, by substituting (2.4) into (2.3), from the
symmetry of the resulting bilinear forms, it is immediate to show that T is self-
adjoint with respect to the ‘weighted’ L2(I)3 × L2(I)3 inner product in the right-
hand side of (2.3). Therefore, apart of µ = 0, the spectrum of T consists of a
sequence of finite-multiplicity real eigenvalues converging to zero, all with ascent
1.
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Note that λ is a non-zero eigenvalue of Problem P if and only if µ := 1/λ is a non-
zero eigenvalue of T , with the same multiplicity and corresponding eigenfunctions.
Recall that these eigenvalues are strictly positive (cf. Remark 2.4).

Next, we define T0 by means of the limit problem of (2.3)–(2.4) as d → 0:

T0 : L2(I)3 × L2(I)3 −→ L2(I)3 × L2(I)3,

where T0 (f ,φ) := (u0,θ0) ∈ W is such that there exists γ0 ∈ Q satisfying:
(
Êθ′0,ψ

′
)

+ (γ0,v
′ −ψ × t) =

(
Âf ,v

)
∀ (v,ψ) ∈ W ,

u′
0 − θ0 × t = 0.

The above mentioned existence and uniqueness results from [2, Theorem 3.3] and
[6, Proposition 2] covers this problem as well, in case of constant coefficients. As
stated above, the proofs can be readily extended to our case.

It is proved in [9] that Tt converge in norm to T0. The next theorem follows
from this fact and classical results from spectral perturbation theory (see [11]):

Lemma 2.1. Let µ0 > 0 be an eigenvalue of T0 of multiplicity m. Let D be any disc
in the complex plane centered at µ0 and containing no other element of the spectrum
of T0. Then, for d small enough, D contains exactly m eigenvalues of T (repeated
according to their respective multiplicities). Consequently, each eigenvalue µ0 > 0
of T0 is a limit of eigenvalues µ of T , as d goes to zero.

Moreover, for any compact subset K of the complex plane not intersecting the
spectrum of T0, there exists dK > 0 such that for all d < dK , K does not intersect
the spectrum of T , either.

3. Finite elements discretization

Two different finite element discretizations of the load problem for Timoshenko
curved rods have been analyzed in [2] and [6]. The two methods differ in the
variables being discretized: the components of vector fields v in the Frenet basis,
v1, v2 and v3, are discretized by piecewise polynomial continuous functions in [2];
instead, in [6], the discretized variable is the vector field v = v1t+ v2n+ v3b. We
follow the approach in [2].

Consider a family {Th} of partitions of the interval I, Th : 0 = s0 < s1 < · · · <
sn = L, with mesh-size h := maxj=1,...,n (sj − sj−1). We define the following finite
element subspaces of V and Q, respectively:

Vh :=
{
v ∈ V : vi|[sj−1,sj ] ∈ Pr, j = 1, . . . , n, i = 1, 2, 3

}
,

Qh :=
{
q ∈ Q : qi|[sj−1,sj ] ∈ Pr−1, j = 1, . . . , n, i = 1, 2, 3

}
,

where vi, i = 1, 2, 3, are the components of v in the Frenet basis, Pk are the spaces
of polynomials of degree lower or equal to k, and r ≥ 1.

Let Wh := Vh × Vh. The following is the discrete vibration problem in mixed
form:
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Problem Ph: Find non-trivial (uh,θh,γh) ∈ Wh ×Qh and λh ∈ R such that:
(
Êθ′h,ψ′

h

)
+ (γh,v′h −ψh × t) = λh

[(
Âuh,vh

)
+ d2

(
Ĵθh,ψh

)]

∀ (vh,ψh) ∈ Wh,

(u′
h − θh × t, qh) − d2

(
D̂

−1γh, qh

)
= 0 ∀qh ∈ Qh.

In the same manner as in the continuous case, we introduce the operator

Th : L2(I)3 × L2(I)3 −→ L2(I)3 × L2(I)3,

defined by Th (f ,φ) := (uh,θh), where (uh,θh,γh) ∈ Wh × Qh is the solution of
the associated discrete load problem:

(
Êθ′h,ψ′

h

)
+ (γh,v′h − θh × t) =

(
Âf ,vh

)
+ d2

(
Ĵφ,ψh

)

∀ (vh,ψh) ∈ Wh, (3.1)

(u′
h − θh × t, qh) − d2

(
D̂

−1γh, qh

)
= 0 ∀qh ∈ Qh. (3.2)

Problem (3.1)–(3.2) falls in the framework of the discrete mixed formulations
considered in [5, Section II.2.4]. In order to apply Proposition II.2.11 from this
reference to conclude well-posedness of this discrete problem and error estimates,
it is enough to verify the following classical properties, for h small enough:

i) ellipticity in the discrete kernel : ∃α∗ > 0, independent of h, such that
(

Êψ′
h,ψ′

h

)
≥ α∗

(
‖vh‖2

1 + ‖ψh‖2
1

)
∀(vh,ψh) ∈ W0h,

where W0h := {(vh,ψh) ∈ Wh : (qh,v′h −ψh × t) = 0 ∀qh ∈ Qh} ;
ii) discrete inf-sup condition: ∃β∗ > 0, independent of h, such that

sup
(0,0) 6=(vh,ψh)∈Wh

(qh,v′h −ψh × t)
‖vh‖1 + ‖ψh‖1

≥ β∗ ‖qh‖0 ∀qh ∈ Qh.

Property (i) has been proved in [2, Lemma 4.2] for Ê being the identity matrix and

h > 0 sufficiently small. The extension to Ê positive definite uniformly in s is quite
straightforward. Property (ii) has been proved in [2, Lemma 4.3]. An alternative
simpler proof of this condition can be found in [9, Lemma 6.2].

On the other hand, (3.4) is obtained by adapting to our case the duality argu-
ment used to prove [6, Theorem 2]. Therefore, the following theorem follows:

Theorem 3.1. For sufficiently small h > 0, problem (3.1)–(3.2) has a unique
solution (uh,θh,γh) ∈ Wh × Qh. This solution satisfies

‖uh‖1 + ‖θh‖1 + ‖γh‖0 ≤ C
(
‖f‖0 + d2 ‖φ‖0

)
,

where C > 0 is independent of h and d.

Rev. Un. Mat. Argentina, Vol 49-1
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Let (u,θ,γ) ∈ W × Q be the solution of (2.3)–(2.4). If f ,φ ∈ Hk−1 (I)
3
,

1 ≤ k ≤ r, then

‖u− uh‖1 + ‖θ − θh‖1 + ‖γ − γh‖0 ≤ Chk
(
‖f‖k−1 + d2 ‖φ‖k−1

)
, (3.3)

‖u− uh‖0 + ‖θ − θh‖0 ≤ Chk+1
(
‖f‖k−1 + d2 ‖φ‖k−1

)
, (3.4)

with C > 0 independent of h and d.

By adding (3.1) and (3.2), from the symmetry of the resulting bilinear forms, it
is immediate to show that Th is self-adjoint with respect to the ‘weighted’ L2(I)3×
L2(I)3 inner product in the right-hand side of (3.1). Therefore, apart of µh = 0,
the spectrum of Th consists of a finite number of finite-multiplicity real eigenvalues
with ascent 1.

Once more the spectrum of the operator Th is related with the eigenvalues
of the spectral problem Ph: λh is a non-zero eigenvalue of this problem if and
only if µh := 1/λh is a non-zero eigenvalue of Th, with the same multiplicity
and corresponding eigenfunctions. It is simple to prove that these eigenvalues
are strictly positive. Moreover, the eigenvalues cannot vanish. In fact, according

to the expression above, since Ê and D̂ are positive definite (see Remark 2.3),
λh = 0 implies γh = 0. Then, the second equation of Problem Ph implies that
(uh,θh) ∈ W0h and, hence, uh and θh vanish because of property (i).

Our aim is to use the spectral theory for compact operators (see [3], for instance)
to prove convergence of the eigenvalues and eigenfunctions of Th towards those of
T . However, some further considerations will be needed to show that the error
estimates do not deteriorate as d becomes small. With this purpose, we will use
the following result:

‖(T − Th)(f ,φ)‖1 ≤ Ch
(
‖f‖0 + d2 ‖φ‖0

)
,

which follows from (3.3) with k = 1. As a consequence of this estimate, Th converges
in norm to T as h goes to zero. Hence, standard results of spectral approximation
(see for instance [11]) show that if µ is an eigenvalue of T with multiplicity m, then

exactly m eigenvalues µ
(1)
h , . . . , µ

(m)
h of Th (repeated according to their respective

multiplicities) converge to µ.
The estimate above can be improved when the source term is an eigenfunction

(u,θ) of T . Indeed, in such a case, for all k ≥ 2 and d sufficiently small,

‖u‖k + ‖θ‖k + ‖γ‖k−1 ≤ C
(
‖u‖0 + d2 ‖θ‖0

)
,

with C depending on k and on the eigenvalue of T associated with (u,θ). Note
that in principle the constant C should depend also on d, because the eigenvalue
does it. However, according to Lemma 2.1, for d sufficiently small we can choose
C independent of d. Hence, from (3.3)–(3.4) with k = r, we obtain:

‖(T − Th) (u,θ)‖1 ≤ Chr ‖(u,θ)‖1 , (3.5)

‖(T − Th) (u,θ)‖0 ≤ Chr+1 ‖(u,θ)‖0 . (3.6)
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We remind the definition of the gap or symmetric distance δ̂k between closed
subspaces Y and Z of W in norm ‖·‖k, k = 0, 1:

δ̂k(Y , Z) := max {δk(Y , Z), δk(Z , Y)} ,

with

δk(Y , Z) := sup
(v,ψ)∈Y

‖(v,ψ)‖k=1

[
inf

(bv,bψ)∈Z

∥∥∥(v − v̂,ψ − ψ̂)
∥∥∥

k

]
.

For the sake of simplicity we state our results for eigenvalues of T converging to
a simple eigenvalue of T0 as d → 0. The following theorem yields d-independent
error estimates for the approximate eigenvalues and eigenfunctions. Its proof is a
consequence of (3.5)–(3.6), [3, Theorem 7.1 and 7.2] and Lemma 2.1.

Theorem 3.2. Let µ be an eigenvalue of T converging to a simple eigenvalue µ0

of T0 as d tends to zero, Let µh be the eigenvalue of Th that converges to µ as h
tends to zero. Let E and Eh be the corresponding eigenspaces. Then, for d and h
small enough,

δ̂1(E, Eh) ≤ Chr,

δ̂0(E, Eh) ≤ Chr+1,

with C > 0 independent of d and h.

This theorem yields optimal order error estimates for the approximate eigenfunc-
tions in norms ‖·‖1 and ‖·‖0. An optimal double order holds for the approximate
eigenvalues. In fact, the following theorem has been proved in [9, Theorem 3.4] by
adapting to our problem a standard argument for variationally posed eigenvalue
problems (see [3, Lemma 9.1], for instance).

Theorem 3.3. Let λ = 1
µ and λh = 1

µh
, with µ and µh as in Theorem 3.2. Then,

for d and h small enough,
|λ − λh| ≤ Ch2r,

with C > 0 independent of d and h.

4. Numerical results

We report in this section the results of a numerical test computed with a matlab

code implementing the finite element method described above. We have used the
lowest possible order: r = 1; namely, piecewise linear continuous elements for
the displacements uh and the rotations θh, and piecewise constant discontinuous
elements for the shear stresses γh.

We have computed the vibration modes with lowest frequencies ωh :=
√

λh for
a helical rod. We have considered a helix with five turns, clamped at both ends.
The equation of the helix centroids line parametrized by its arc-length is as follows:

r (s) =
(
A cos

s

n
, A sin

s

n
, C

s

n

)
, with n =

√
A2 + C2; (4.1)

the curvature is κ = A/n2, the torsion τ = C/n2, and the length of the eight-turns
helix is L = 5 × 2πn. We have taken A = 100 cm, C = 25/π cm and a square of
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side-length b = 20 cm as the cross section of the rod. Thus, the thickness parameter
is in this case d = 0.0026. Figure 4.1 shows the undeformed helix.

Fig. 4.1. Undeformed helical rod.

We have computed the lowest vibration frequencies ωh
1 < ωh

2 < ωh
3 < · · · by

using uniform meshes of N elements, with different values of N . We have used the
following physical parameters, which correspond to steel:

• elastic moduli: E = 2.1 × 106 kgf/cm2 (1 kgf = 980 kg cm/s2);
• Poisson coefficient: ν = 0.3;
• density: ρ = 7.85 × 10−3 kg/cm3;
• correction factors: k1 = k2 = 1.

Since no analytical solution is available for this rod, we have estimated the order
of convergence by means of a least squares fitting. Table 4.1 shows the lowest
vibration frequencies computed on successively refined meshes. It also includes the
computed orders of convergence and extrapolated ‘exact’ vibration frequencies ωex.

Table 4.1. Angular vibration frequencies of a helical rod.

Mode N = 320 N = 640 N = 1280 N = 2560 order ωex

ωh
1 25.3542 25.3437 25.3411 25.3404 2.00 25.3402

ωh
2 28.9205 28.9120 28.9097 28.9091 1.90 28.9089

ωh
3 34.7945 34.6718 34.6406 34.6328 1.98 34.6301

To help identifying the different modes, we report three-dimensional plots of the
deformed rods. With this purpose, we have used modulef to create an auxiliary
hexahedral mesh of the actual three-dimensional rod and the displacements at each
node of this auxiliary mesh have been computed from uh and θh as described in
Remark 2.2. The resulting deformed rods have been plotted with modulef, too.
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Figure 4.2 show the lowest-frequency vibration modes. The first one is a typical
spring mode, the second one is an extensional mode, and the third one is a kind of
‘phone rope’ vibration mode.

Fig. 4.2. Helical rod. Vibration mode of frequency ω1 (left), ω2

(center) and ω3 (right).
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Universidad Técnica Federico Santa Maŕıa,
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