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THE PROBLEM OF ENTANGLEMENT OF QUANTUM STATES

G.A. RAGGIO

Abstract. We give a brief and incomplete survey of the problem of entan-
glement of states of composite quantum systems.

1. Quantum mechanics, 1930’s

A quantum system is kinematically specified by a complex Hilbert space H
(there are hardly cases where a separable space will not do). The physical “ob-
servables” are identified with linear operators on H. Usually the most interesting
physical observables for continuous systems are given by unbounded operators; but
one avoids this problem by exponentiation and works in B(H) the bounded linear
operators on H. Now B(H) is a C∗-algebra and a von Neumann algebra. In the
1960’s - 1980’s there were serious attempts (all of them anticipated by J. von Neu-
mann) to do away with the underlying Hilbert space and work directly with the
abstract algebraic structure modeled by C∗-algebras or W ∗-algebras (abstract von
Neumann algebras)[1, 2, 3]. This was particularly fruitful when dealing with sys-
tems of infinitely many degrees of freedom (quantum fields, thermodynamic limits,
etc.). The problem of entanglement which we want to address here can be formu-
lated quite straightforwardly in this algebraic framework of quantum theory. But
we will stick to the quantum mechanics of the 1930’s and keep the Hilbert space.
Mainly because the results which are available concern the finite dimensional case.
The “states” of the quantum system specified by H are associated with the lin-
ear functionals f : B(H) → C which are positive (i.e., f(a) ≥ 0 for all positive
a ∈ B(H)), normalized (i.e., f(1) = 1) and normal (i.e., f(supn{an}) = supnf(an)
for any increasing family of selfadjoint operators {an : n = 1, 2, · · · } which is uni-
formly bounded). It is this normality condition which guarantees that the states
are in one-to-one correspondence with positive trace class operators d of unit trace
(density operators) via the formula B(H) ∋ a 7→ tr(da). This gives an extremely
convenient representation of states and one often confuses the state f as a linear
functional with the associated density operator d for which f(a) = tr(da). States

are automatically continuous, and satisfy f(a∗) = f(a). The complex number f(a)
is interpreted probabilistically as the expected value of the “observable” associated
with the operator a when the system is in the state f . The normalization condi-
tion is thus necessary for the consistency of this interpretation and the normality
condition is seen as a non-commutative version of the σ-additivity of probability
measures.
Clearly states, which we will denote by Σ(H), form a convex set which is closed
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with respect to the metric induced by the usual norm of linear functionals. More-
over, given any countable set {fj} ⊂ Σ(H) and any countable set {λj} ⊂ [0, 1] such
that

∑

j λj = 1, the series
∑

j λjfj converges in the norm of functionals to a state
of H.
In physical jargon (due to H. Weyl!) the extremal points ext(Σ(H)) of Σ(H) are
called pure states. They are given by

f(b) = 〈ψ, bψ〉 , with ψ ∈ H, ‖ψ‖ = 1 ;

here 〈·, ·〉 is the scalar product of H. That is: the associated density operator is an
orthogonal projection of rank one projecting onto some one-dimensional subspace
of H. This orthoprojection is written |ψ〉〈ψ|; and f(b) = tr(|ψ〉〈ψ|b).
The representation theorem mentioned, and the spectral theorem for compact op-
erators shows that the states are the closed convex hull of the pure states; in fact
each state can be written as an infinite convex sum of extreme states:

Σ(H) = co(ext(Σ(H)) = coσ(ext(Σ(H)) .

But the convex decomposition into extremal elements is never unique. Σ(H) is
never a (Choquet-) simplex; quite the opposite is true: there are uncountably
many convex decompositions and you can choose almost freely the “ingredients”
which enter a decomposition. This is a key feature of quantum theory in contradis-
tinction with classical theories whose state spaces are simplices.

Composition, separability and entanglement

If system 1 is described by the Hilbert space H1 and system 2 by H2 then the
composite system “1 ∪ 2” is described by H = H1 ⊗H2, the tensor product of the
subsystem Hilbert spaces. This is the composition rule of quantum theory, and it
is responsible for the most counterintuitive features of the theory. There are no
indications from the real world that this rule is in need of change. I will consider
mostly composition of two systems, but the definitions can be readily extended to
more than two susbsytems. It is important to stress that we are always thinking
of distinguishable (sub-) systems 1 and 2. The case of identical systems (bosons or
fermions) is more involved and the entanglement issues are only partially under-
stood.

One has B(H) = B(H1)⊗ B(H2) although I will not explain what the ⊗ on the
right means, [8]. Given f ∈ Σ(H), define partial states f (j) ∈ Σ(Hj), j = 1, 2, by

f (1)(b) = f(b⊗ 1) , b ∈ B(H1) ,

f (2)(c) = f(1⊗ c) , c ∈ B(H2) .

Given g ∈ Σ(H1) and h ∈ Σ(H2) there is a unique element of Σ(H) written g ⊗ h,
such that

(g ⊗ h)(b⊗ c) = g(b)h(c) ,
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for all b ∈ B(H1) and all c ∈ B(H2). A state f of the composite system is product
if f = f (1) ⊗ f (2); that is, if ∀b ∈ B(H1) and ∀c ∈ B(H2):

f(b⊗ c) = f(b⊗ 1)f(1⊗ c) .

The product states, denoted by Σπ(H), not only do not show any correlation
whatsoever between product-observables but also (for precisely that reason) the
knowledge of the expected values of the observables of subsystem 1 and of the
expected values of the observables of subsystem 2 allows one to construct the state
of the composite system. Since convex sums of states can be interpreted classically
as classical mixtures, the separable states or EPR–correlation free states are defined
as those in the closed convex hull of the product-states:

Σsep(H) = co(Σπ(H)) = coσ(Σπ(H)) .

The states which are not separable are called entangled (verschränkt was the Ger-
man word chosen by Schrödinger after his reaction [4, 5, 6] to the Einstein, Podolsky
and Rosen paper [7]). In [4, 5], written in english, the words of Schrödinger are
the following: ... I would not call that one but rather the characteristic trait of
quantum mechanics, the one that enforces its entire departure from classical lines
of thought. By interaction the two representatives [the quantum states] have become
entangled.

A typical entangled state is a pure state f associated to a one-dimensional sub-
space such that the representative vector ψ in this subspace is not a product vector:
ψ 6= α ⊗ β with α ∈ H1 and β ∈ H2. Entangled states abound (mathematically)
and naturally realized physical states are usually entangled (eigenstates of hamil-
tonians, thermal equilibrium states at low temperatures, etc.).

2. The problem

The problem is then: given a state f of the composite system decide whether f
is separable or entangled. That is: are there states fj ∈ Σ(H1), states gj ∈ Σ(H2)
and weights λj ∈ [0, 1] such that f =

∑

j λj(fj ⊗ gj)? The sum may be an infinite
series, in which case it is automatically convergent with respect to the distance
associated to the norm of continuous functionals. There is no loss of generality if
one restricts to pure states fj and gj .
Via the representation theorem for states, one may rephrase the problem purely
in terms of positive trace-class operators of unit trace on a Hilbert space tensor
product; but the origin and flavor of the problem are then lost.

In the particular case where the given state f is pure, the problem was solved
many years ago by, essentially, Schrödinger [4, 5]. For a modern, direct and beau-
tiful presentation of the problem in this particular case the reader is directed to
section 11-8 of Jauch’s book [9] (a book which can be recommended warmly to any
mathematician interested in learning quantum mechanics). The solution is: f pure
is separable if and only if f (1) (or alternatively, f (2)) is pure. Thus, one has to
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determine one of the partial states and then check for purity which is easily done
in various alternative ways. The simplest is perhaps: take the trace of the square
of the associated density operator; if this number is below 1 the state is not pure,
otherwise it is pure. This extends readily to the tensor product of any number of
Hilbert spaces.

However, when the given state is not pure our knowledge is rather limited. For
H1 = H2 = C2 there is a criterion due to Wootters [10]; for H1 = C2 and H2 = C2

or H2 = C3, the positive partial transpose criterion of Peres and M. Horodecki, P.
Horodecki and R. Horodecki, solves the problem. A recent review is [11]. Gurvits
[12], has proved that when the Hilbert spaces involved are finite dimensional, the
problem is NP-hard in the hierarchy of computational complexity.
I describe the criteria just mentioned.

2.1. Wootters’ Criterion. H1 = H2 = C2. Given f ∈ Σ(H) let d be the associ-
ated density operator, and put

wd :=

√√
d u∗ d u

√
d ,

where u is the operator which for any orthonormal basis {ψ1, ψ2} of H1 has asso-
ciated to it the matrix 





0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0







,

with respect to the orthonormal basis {ψj ⊗ ψk : j, k = 1, 2} of H. d denotes the
complex conjugate of d taking the product basis as real. Let λ1 ≥ λ2 ≥ λ3 ≥ λ4 be
the eigenvalues of wd enumerated non-decreasingly according to their multiplicities.

Theorem 1. f is separable if and only if λ1 ≤ λ2 +λ3 +λ4 (equivalently: 2‖wd‖ ≤
tr(wd)).

2.2. Positive Partial Transpose Criterion. H1 = C
2, H2 = C

2(3). Choose
orthonormal bases for H1 and for H2. Identify the tensor product such that the
matrix associated to a⊗ b in the product orthonormal basis of H is

a⊗ b =

(
a1,1b a1,2b
a2,1b a2,2b

)

.

The general operator in B(H) = M4(6)(C) has the form
(
α β
γ δ

)

, α, β, γ, δ ∈ M2(3)(C) .

Let

T1

(
α β
γ δ

)

:=

(
α γ
β δ

)

.

This is the partial transpose with respect to the first factor (one could proceed just
as well with transposition with respect to the second factor).
Given f ∈ Σ(H), let d be the associated density operator; then
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Theorem 2. f is separable if and only if T1(d) ≥ 0.

For the tensor product of two Hilbert spaces the positivity condition on the
partial transpose is always necessary for separability irrespective of dimensions, as
observed by A. Peres. The proof of sufficiency given by M. Horodecki, P. Horodecki
and R. Horodecki [13], makes heavy use of the classification of positive linear maps
of the 2× 2 complex matrices M2(C) due to E. Størmer and S.L. Woronowicz. For
H1 = C2 and H2 = C4 there are counterexamples (P. Horodecki): T1(d) ≥ 0 but f
is entangled. This happens whenever the dimension of the tensor product Hilbert
space H exceeds 6.

2.3. Some remarks.

• In 1964, some thirty years after the EPR paper, J.S. Bell [14] succeeded
in capturing and quantifying the separability/entanglement issue in an in-
equality involving expectation values (correlation inequality).

Theorem 3. If f ∈ Σsep(H), then

|f (a1 ⊗ b1 − a1 ⊗ b2 + a2 ⊗ b1 + a2 ⊗ b2) |
{ ≤ |f(a1 ⊗ (b1 − b2))| + |f(a2 ⊗ (b1 + b2)| }

≤ 2 ,

for every pair of selfadjoint a1, a2 in the unit ball of B(H1) and every pair
of selfadjoint b1, b2 in the unit ball of B(H2).

The inequality in brackets is just the triangle inequality and valid for
any state. Assume f is a product state, i.e., f = g ⊗ h; then

|f(a1 ⊗ (b1 − b2))| + |f(a2 ⊗ (b1 + b2)|
= |g(a1)| . |h(b1) − h(b2)|

︸ ︷︷ ︸

=:c1

+|g(a2)| . |h(b1) + h(b2)|
︸ ︷︷ ︸

=:c2

= c1|g(a1)| + c2|g(a2)| .
Since c1, c2 ≥ 0, and |g(a1)| , |g(a2)| ≤ 1, we obtain

c1|g(a1)| + c2|g(a2)| ≤ c1 + c2 = |h(b1) − h(b2)| + |h(b1) + h(b2)|
= 2 max{|h(b1)| , |h(b2)|} ≤ 2 .∗

If now f is a convex sum of product states, i.e., f =
∑n

j=1 λj(gj ⊗ hj),
then – using the triangle inequality, the positivity of λj and the relation
∑n

j=1 λj = 1,

|f(a1 ⊗ (b1 − b2))| + |f(a2 ⊗ (b1 + b2)|

≤
n∑

j=1

λj {|(gj ⊗ hj)(a1 ⊗ (b1 − b2))| + |(gj ⊗ hj)(a2 ⊗ (b1 + b2)|}

∗The observant reader will notice that the validity of |h(b1) − h(b2)| + |h(b1) + h(b2)| ≤

2max{|h(b1)| , |h(b2)|} depends crucially on the assumption that b1 and b2 are selfadjoint so that
h(b1) and h(b2) are real numbers. For complex z1 and z2 in the unit disc |z1 − z2| + |z1 + z2| ≤
2max{|z1|, |z2|} is not true in general (z1 = 1 , z2 = i).
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≤
n∑

j=1

λj . 2 = 2 .

Finally, if f = limα fα is a limit of states fα which are convex sums of
product states, in a topology which makes expectation values continuous,
then the inequality persists.

For many years after 1964, “entanglement” was informally identified
with “violation of Bell’s inequality”.

• The next huge leap forward was taken by R.F. Werner in 1989, [15]. For
H1 = H2 = Cm, m = 2, 3, · · · , he succeeded in constructing a family of
entangled states which satisfy the inequality of Theorem 3 (or any other
such correlation inequality which is necessary for separability). He thus
showed that Bell-type correlation inequalities could not decide the issue.
Werner does this by constructing a so-called “local hidden-variable model”
for his states. In the present case of operators with discrete spectrum
(denoted by σ), this means: Given a state f de B(Cm) ⊗ B(Cm),

– Find a measurable space (Ω,Σ, µ)
– For each a = a∗ ∈ B(Cm) find a function Φa : σ(a)×Ω → R such that

Φa(x, ω) ≥ 0, µ a.e. for every x ∈ σ(a) and
∑

x∈σ(a)

Φa(x, ω) = 1 , (µ a.e.)

– For each b = b∗ ∈ B(Cm) find a function Ψb : σ(b)×Ω → R such that
Ψb(x, ω) ≥ 0, µ a.e. for every x ∈ σ(b) and

∑

x∈σ(b)

Ψb(x, ω) = 1 , (µ a.e.)

– ∫

Ω

dµ(ω)Φa(x, ω)Ψb(y, ω) = f(Px ⊗Qy) ,

where Px ∈ B(Cm) is the spectral orthoprojector of a associated to the
eigenvalue x and Qy ∈ B(Cm) that of b associated to the eigenvalue
y.

The qualifier “local” of the hidden-variable model is expressed by the fact
that Φ and Ψ are independent. The correlation inequalities à la Bell are
consequences of the integral formula: on the left-hand side we have the
expectation of a product with respect to a probability measure.

• Consider the following simple separability/entanglement criterion used by
R.F. Werner in his seminal paper just described. If H1 = H2 = K, let V
be the continuous linear extension of (the flip):

V (ψ ⊗ φ) := φ⊗ ψ , ψ, φ ∈ K
Consider the pure product state associated to ψ ⊗ φ, ‖ψ‖ = ‖φ‖ = 1,
that is B(H) ∋ b 7→ 〈ψ ⊗ φ, b(ψ ⊗ φ)〉H. Then, 〈ψ ⊗ φ, V (ψ ⊗ φ)〉H =
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〈ψ ⊗ φ, φ ⊗ ψ〉H = |〈ψ, φ〉K|2 ≥ 0. Then, if f ∈ Σsep(H), f is a limit of
convex sums of pure product states, and thus:

f ∈ Σsep(K ⊗K) =⇒ f(V ) ≥ 0 ;

f(V ) < 0 =⇒ f is entangled .

However, there are abundant entangled states f with f(V ) ≥ 0. V gives
a simple example of a so-called entanglement witness. It is an instance of
the Hahn-Banach separation theorem for convex sets: given a closed con-
vex set (e.g., the separable states) a point not in the set can be separated
by a hyperplane.
Other, different, criteria have been established (more along the non–geomet-
ric lines of the positive partial transpose criterion; see 2.2.) which consti-
tute necessary conditions for separability.
Among these, the range criterion [16] asserts that if the state f is separa-
ble, then there are product vectors {ψj ⊗ φj} spanning the range of the

density operator d associated to f and such that {ψj ⊗ φj} spans that of
the partial transpose T1(d). This criterion is able to detect entanglement
of states with positive partial transpose.

Another class of necessary conditions for separability arises from certain
maps which are contractive with respect to the trace-norm ‖ · ‖1. Suppose
the linear map Λ mapping B(H) into itself, satisfies ‖Λ(|ψ〉〈ψ|⊗|φ〉〈φ|)‖1 ≤
1 for all unit vectors ψ ∈ H1 and φ ∈ H2. Then if f is separable and d is
the associated density operator, one has that ‖Λ(d)‖1 ≤ 1. An example of
such a map is the realignment or reshuffling map R for the case H1 = H2,
[17], defined by matrix elements with respect to a product basis {ψj ⊗φµ}
by:

〈ψj ⊗ φµ, R(a)(ψk ⊗ φν〉 = 〈ψj ⊗ ψk, a(φν ⊗ φµ〉 .
For twenty years now research on the problem has been going strong

fueled mainly by the idea that entangled quantum states can be used as
carriers of information, and that these q-bits combined to “quantum com-
puters” can overcome some of the limitations of “classical computers”. A
very good review of the subject of “quantum vs. classical computation” is
[18].
Although enormous progress has been made in understanding the subtleties
of entanglement the basic problem of deciding whether or not a given state
is or isn’t entangled remains open.

• When considering entanglement with respect to more than two subsys-
tems, all the possible bipartite entanglement information for a given state
is generically useless. A concrete example for H = H1 ⊗ H2 ⊗ H3 with
H1 = H2 = H3 = C2 is given in [19]. For unitary vectors α, β ∈ C2,

with α⊥β, let γ± = α±β√
2

. Let p be the orthoprojector onto the subspace

spanned by the four pairwise orthogonal vectors: α⊗ α⊗ α, β ⊗ γ− ⊗ γ+,
γ+ ⊗ β ⊗ γ−, γ− ⊗ γ+ ⊗ β. Now q = (1− p)/4 is a density operator acting
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on H; the associated state is not separable but it is, nevertheless, separable
for each of the three possible bipartitions of the system:

H1 ⊗H2
︸ ︷︷ ︸

K1

⊗H3 , H1 ⊗H2 ⊗H3
︸ ︷︷ ︸

K2

, H1 ⊗H3
︸ ︷︷ ︸

K1

⊗H2 .
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