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A DESCRIPTION OF HEREDITARY SKEW GROUP ALGEBRAS

OF DYNKIN AND EUCLIDEAN TYPE

OLGA FUNES

Abstract. In this work we study the skew group algebra Λ[G] when G is a
finite group acting on Λ whose order is invertible in Λ. Here, we assume that
Λ is a finite-dimensional algebra over an algebraically closed field k. The aim
is to describe all possible actions of a finite abelian group on an hereditary
algebra of finite or tame representation type, to give a description of the
resulting skew group algebra for each action and finally to determinate their
representation type.

1. Introduction

In this work we assume that Λ is a finite-dimensional algebra over an alge-
braically closed field k. Let G a finite group acting on Λ. The skew group algebra
Λ[G] is the free left Λ-module with basis all the elements in G and multiplication
given by (λg)(µh) = λg(µ)gh for all λ, µ in Λ, g, h in G. We study the skew group
algebra Λ[G] when G is a finite group acting on Λ whose order is invertible in Λ.

There is an extensive literature about skew group algebras Λ[G] and crossed
product algebras Λ ∗γ G, and their relationship with the ring ΛG, given by ele-
ments in Λ that are fixed by G. It is of interest to study which properties of Λ
are inherited by Λ[G], Λ ∗γ G or ΛG. Some of these ideas are rooted in trying to
develop a Galois Theory for non-commutative rings. See [1, 3, 7, 9, 10, 11, 14, 13]
for more details.

It is of interest to find ways to describe Λ[G] in terms of Λ because the algebras
Λ and Λ[G] have many properties in common which are of interest in the represen-
tation theory of finite-dimensional algebras, like finite representation type, being
hereditary, being an Auslander algebra, being Nakayama, see [2, 16] for more de-
tails. However, we must observe that there are properties which are not preserved
by this construction, like being a connected algebra, so we are dealing with essen-
tially different algebras.

It is well known [6] that a connected hereditary algebra is of finite representation
type if and only if the underlying graph of its quiver is one of the Dynkin diagrams
An (n ≥ 1), Dn (n ≥ 4), E6, E7 or E8; some years later it was shown that a
a connected hereditary algebra is of tame representation type if and only if the
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underlying graph of its quiver is one of the euclidean diagrams Ãn (n ≥ 1), D̃n

(n ≥ 4), Ẽ6, Ẽ7 or Ẽ8, see [4, 12, 17].
The aim of this paper is to describe all possible actions of a finite abelian group

on an hereditary algebra of finite or tame representation type, to give a description
of the resulting skew group algebra for each action and finally to determinate their
representation type.

Then, in order to classify the finite and tame representation type hereditary
skew group algebras, it suffices to study the group actions on the Dynkin and the
euclidean quivers. In order to do this description, we start by considering a short
exact sequence of groups 1 → H → G → T → 1. We can express Λ[G] in terms
of the skew group algebra Λ[H ][T ] or the crossed product algebra Λ[H ] ∗γ T . In
this context, we describe when Λ[G] is isomorphic to Λ[H ][T ], for G a finite group
whose order is invertible in Λ. In section 2 we provide an introduction to the
subject, that is, the definition of skew group algebra and crossed product algebra.
Finally, in section 3 we consider hereditary algebras of finite representation type
and in section 4 we consider hereditary algebras of tame type. In each one of these
cases, that is, when the associated quiver is An (n ≥ 1), Dn (n ≥ 4), E6, E7, E8,

Ãn (n ≥ 2), D̃n (n ≥ 4), Ẽ6, Ẽ7 or Ẽ8, we get a connection between Λ[G] and the
crossed product algebra Λ[H ]∗G/H with a complete description of all the possible
groups G/H appearing in each case, where H is the subgroup of G consisting on all
the elements acting trivially on a complete set of primitive orthogonal idempotents
of the algebra Λ. As a consequence of all these results, we get that if H acts
trivially on Λ then the crossed product algebras obtained in each description are

skew group algebras. Finally, the case Ã1 is considered at the end of section 4.

2. Skew group algebras

This section consists of the preliminaries necessary for the proof of the main
results.

Let Λ be a finite-dimensional k-algebra and G a finite group acting on Λ. The
skew group algebra Λ[G] is the free left Λ-module with basis all the elements in G
and multiplication given by (λg)(µh) = λg(µ)gh for all λ, µ in Λ, g, h in G. Clearly
Λ[G] is a finite-dimensional k-algebra. If we identify each g in G with 1Λg in Λ[G]
and each λ in Λ with λ1G in Λ[G], we have that G is the group of units of Λ[G]
and Λ is a k-subalgebra of Λ[G].

Let Λ be a basic finite-dimensional algebra (associative with unity) over an
algebraically closed field. A quiver Q = (Q0, Q1, s, t) is a quadruple consisting
of two sets Q0 (whose elements are called points, or vertices ) and Q1 (whose
elements are called arrows), and two maps s, t : Q1 → Q0 which associate to each
arrow α ∈ Q1 its source s(α) ∈ Qo and its target t(α) ∈ Q0 . An arrow α ∈ Q1

of source a = s(α) and target b = t(α) is usually denoted by α : a → b. A quiver
Q = (Q0, Q1, s, t) is usually denoted briefly by Q = (Q0, Q1) or even simply by Q.
Thus, a quiver is nothing but an oriented graph without any restriction as to the
number of arrows between two points, to the existence of loops or oriented cycles.
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We write a path α in Q as a composition of consecutive arrows α = α1 · · ·αr

where s(αi) = t(αi+1) for all i = 1, · · · , r−1, and we set t(α) = t(α1), s(α) = s(αr).
The path algebra kQ is the k-vector space with basis all the paths in Q, including
trivial paths ex of length zero, one for each vertex x ∈ Q0. The multiplication of
two basis elements is the composition of paths if they are composable, and zero
otherwise. A relation from x to y is a linear combination ρ =

∑r
i=1 λiui such that,

for each 1 ≤ i ≤ r, λi is a non-zero scalar and ui a path of length at least two from
x to y. A set of relations on Q generates an ideal I, said to be admissible, in the
path algebra kQ of Q.

It is well-known that if Λ is basic there exists a quiver Q and a surjective algebra
morphism v : kQ → Λ whose kernel I is admissible, where Q, the ordinary quiver
of Λ, is defined as follows:

i) If {e1, · · · , en} is a complete set of primitive orthogonal idempotents of
Λ, the vertices of Q are the numbers 1, 2, · · · , n which are taken to be in
bijective correspondence with the idempotents e1, · · · , en;

ii) Given two points a, b ∈ Q0 the arrows α : a→ b are in bijective correspon-
dence with the vectors in a basis of the k-vector space eb

radΛ
rad2Λea.

Thus we have Λ ≃ kQ/I. We refer to [2] for more details.

If G is acting on a basic algebra Λ, we can view Λ as kQ/I in such a way
that the action of G on Λ is induced by an action of G on kQ which leaves I
stable and preserves the natural grading on kQ by the length of paths. Then Λ[G]
is isomorphic to (kQ)[G]/I((kQ)[G]), see [16, Proposition 2.1]. Moreover, if Q
contains no multiple arrows, the action of G on kQ is simple: each g ∈ G permutes
the vertices in Q and maps each arrow α : i → j onto a multiple scalar of the
unique arrow from g(i) to g(j). From now on we assume Λ = kQ/I with the action
of G as described above, Q without double arrows.

Proposition 2.1. Let G be a finite group acting on Λ, let QΛ be the associated
quiver of Λ, QΛ without double arrows, and m = |G|. We consider the action of G
on Q induced by an automorphism of algebras which preserves the length of paths
of Q. Then

i) If g ∈ G, i ∈ Q0, then g(ei) = ej for some j ∈ Q0;
ii) If g ∈ G and α ∈ Q1, then g(α) = λβ for some arrow β ∈ Q1, λ ∈ k. In

particular, if g fixes the starting and ending point of α then g(α) = λα,
with λm = 1;

iii) If ei is a source (sink) then g(ei) is a source (sink);
iv) The cardinal of the set of arrows that start (end) in ei is equal to the

cardinal of the set of arrows that start (end) in g(ei).

Proof. i) Let ei be a primitive idempotent in Λ. Since the action of G pre-
serves the vector space generated by arrows, g(ei) =

∑n
j=1 λjej. More-

over, g(ei) = g(e2i ), then we have that
∑n

j=1 λjej =
∑n

j=1 λ
2
jej, and

hence λ2
j = λj , that is, λj = 0, 1. On the other hand, suppose g(ei) =
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e1 + e2 +
∑n

j=3 λjej. Then

ei = g−1(e1 + e2 +

n∑

j=3

λjej) = g−1(e1) + g−1(e2) + g−1(

n∑

j=3

λjej).

But this is a contradiction because ei es primitive. Then g(ei) = ej for
some j.

ii) If α ∈ Q1, g(α) =
∑
λlαl with αl ∈ Q1, λl ∈ k. Moreover if α = eiαej then

g(α) = g(ei)g(α)g(ej) =
∑
λlβ, for some arrow β : g(ej) → g(ei), because

Q has no double arrows. Then g(α) = λβ.
iii) Let ei be an idempotent of Λ. Suppose that ei is a source and g(ei) is

not. Then, there exists an arrow β such that t(β) = g(ei), that is, there
exists an index r such that β : g(er) → g(ei) ∈ Q1. Since the action of
G on Q is induced by an automorphism of algebras which preserves the
length of paths, there exists an arrow α such that g(α) = β. Then we have
β = g(ei)βg(er) = g(ei)g(α)g(er) = g(eiαer) = 0 because ei is a source.
This contradiction arises from the assumption that g(ei) is not a source.
Similarly we prove that if ej is a sink then g(ej) is a sink.

iv) Let Fei
= {α ∈ Q1 : s(α) = ei} and Vei

be the k-vector space with basis
Fei

. If g ∈ G, by ii) we know that the automorphism g : Λ → Λ induces
an isomorphism g : Vei

→ Vg(ei). Then the cardinal of Fei
and Fg(ei) are

equal.
�

2.1. Crossed product algebra Λ[H ] ∗γ T . The purpose of this section is to
present the crossed product algebras in order to study when Λ[G] is isomorphic to
Λ[H ][T ] where 1 → H → G→ T → 1 is a short exact sequence of groups. We start
with the definition of crossed product algebras and prove, for completeness, Theo-
rem 2.2 that connects the skew group algebras with the crossed product algebras.
See [16] for more details.

Let Λ be a ring, G a finite group acting on Λ, U(Λ) the units of Λ and γ :
G×G→ U(Λ), a map satisfying

(1) γ(g, g′)γ(gg′, g′′) = g(γ(g′, g′′))γ(g, g′g′′) for g,g′,g′′ ∈ G;
(2) γ(e, g) = 1 = γ(g, e) for g ∈ G, e the identity element of G;
(3) γ(g, g′)(gg′)(λ) = g(g′(λ))γ(g, g′) for g, g′ ∈ G, λ ∈ Λ.

Then the corresponding crossed product algebra Λ∗γG has elements
∑

gi∈G λigi;

λi ∈ Λ. Addition is componentwise, and multiplication is given by gλ = g(λ)g and
g1 g2 = γ(g1, g2)g1g2.

Let G be a group and 1 → H → G → T → 1 be a short exact sequence of
groups. Let G = Hx1 ∪ Hx2 ∪ · · · ∪ Hxt be a disjoint union of lateral classes.
Then T = {x1, · · · , xt} where xi = Hxi, x1 = 1.

Theorem 2.2. If 1 → H → G→ T → 1 is a short exact sequence of groups, then

Λ[G] ≃ Λ[H ] ∗γ T
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where the action of H on Λ is induced by the action of G, the action of T on Λ[H ]
is defined by

xj(λh) = xj(λ) xjhx
−1
j ,

and γ : T × T → U(Λ[H ]) is defined by γ(xi, xj) = xixjx
−1
r , with xixj = xr.

Proof. We consider the action of H on Λ induced by the action of G and the action
of T on Λ[H ] given by xj(λh) = xj(λ) xjhx

−1
j . We claim that the action is well

defined since H is a normal subgroup of G. If xi,xj ∈ G then xixj ∈ Hxr for some
r, that is xixj = xr. Let γ : T × T → U(Λ[H ]) be defined by

γ(xi, xj) = xixjx
−1
r .

A direct computation shows that γ is a crossed product. Now let us see that the
map Φ : Λ[G] −→ Λ[H ] ∗γ T given by

∑

i,j

λijhixj 7−→
t∑

j=1

(

m

t∑

i=1

λijhi)xj

is an isomorphism of k-algebras, where m = |G| . Clearly Φ is a morphism of
k-vector spaces. If xjxs = xr, then

Φ(λhixj . λ
′htxs) = Φ(λ (hixj)(λ

′) hixjhtxs) (1)

= Φ(λ (hixj)(λ
′) hixjhtx

−1
j xjxsx

−1
r xr) (2)

= λ (hixj)(λ
′) hixjhtx

−1
j xjxsx

−1
r xr (3)

because H is a normal subgroup of G. On the other hand we have

Φ(λhixj) . Φ(λ′htxs) = λhixj . λ
′htxs (4)

= λhi xj(λ
′ht) γ(xj , xs)xjxs (5)

= λhi xj(λ
′) xjhtx

−1
j xjxsx

−1
r xr (6)

= λ hi(xj(λ
′)) hixjhtx

−1
j xjxsx

−1
r xr (7)

and (3) agrees with (7). Furthermore it is clear that Φ is bijective, hence we get
Λ[G] ≃ Λ[H ] ∗γ T . �

Corollary 2.3. If 1 → H → G
π
→ T → 1 is a short exact sequence of groups

that splits on the right, then Λ[G] = Λ[H ][T ].

Proof. We only have to prove that the map γ defined in the theorem above is such
that γ(u, v) = 1 for any u, v ∈ T where γ(xi, xj) = xixjx

−1
r , with xixj ∈ Hxr

for some r. If the sequence 1 → H → G
π
→ T → 1 splits on the right, there exists

a map δ : T → G such that π ◦ δ = 1T . Let xr = π(xr). Since xr = (π ◦ δ)(xr),

then δ(xr) = xr and hence we assume that xr := δ(xr). Since δ is a morphism
of groups, xixj = δ(xi)δ(xj) = δ(xixj) = δ(xixj) = δ(xr) = xr and therefore
γ(xi, xj) = xixjx

−1
r = 1. Now it is clear that Λ[G] = Λ[H ][T ]. �
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Corollary 2.4. If G = H × T or G = H ⋉ T then Λ[G] = Λ[H ][T ].

It is clear that the map γ : T ×T → U(Z(Λ)) which defines a crossed product is
by definition a cocycle with respect to group cohomology, see [8] for more details.
We shall prove that if the cocycle γ is a coboundary, then we have Λ ∗γ T ≃ Λ[T ].

Proposition 2.5. [16, Lemma 5.6] Let δ : T → U(Z(Λ)) be a map, δ(1) = 1, and
let γ : T × T → U(Λ) be given by

γ(g, h) = g(δ(h)) δ(gh)−1 δ(g).

Then Λ ∗γ T ≃ Λ[T ].

Proof. A direct computation shows that γ defines a crossed product. Let Ψ :
Λ ∗γ T −→ Λ[T ] be defined by Ψ(λt) = λδ(t)t. Then Ψ is a morphism of algebras
because

Ψ
(
λt.λ′t

′
)

= Ψ
(
λt(λ′) γ(t, t′) tt′

)

= Ψ
(
λt(λ′) t(δ(t′)) δ(tt′)−1 δ(t) tt′

)

= λt(λ′) t(δ(t′)) δ(tt′)−1 δ(t) δ(tt′) tt′

= λt(λ′) t(δ(t′)) δ(t) tt′

= λδ(t) t(λ′) t(δ(t′)) tt′

=
(
λδ(t) t

) (
λ′δ(t′) t′

)

= Ψ(λt).Ψ(λ′t′).

Therefore Ψ is an isomorphism and hence Λ ∗γ T ≃ Λ[T ]. �

We say that G acts trivially on an element λ if g(λ) = λ for all g ∈ G. If G is a
finite abelian group of order m acting trivially on Λ with m invertible in Λ, then
Λ[G] ≃

∏m
i=1 Λ. In fact, by Maschke’s theorem we have that k(G) ≃

∏m
i=1 k, see

[14]. Now the map ψ : Λ⊗k k(G) → Λ[G] given by ψ(λ⊗
∑m

i=1 λigi) =
∑m

i=1 λλigi

is an isomorphism of k-algebras.

Proposition 2.6. [16, Proposition 5.8] Let T be a finite cyclic group acting on a
commutative local algebra R with the order of T invertible in R. Then H2(T, U(R)) =
1.

We may infer from the previous proposition that if T is a finite cyclic group
with the order of T is invertible in Λ, and Z(Λ) (the center of Λ) is a local algebra,
Λ ∗γ T ≃ Λ[T ] because any cocycle is a coboundary. In particular, if Λ is a basic
connected algebra without oriented cycles, Z(Λ) = k.

Corollary 2.7. Let G be a finite abelian group acting on a basic connected algebra
Λ where the associated quiver has no oriented cycles, with the order of G invertible
in Λ. Let H be a subgroup of G which acts trivially on Λ, with T = G/H cyclic.
Then Λ[G] ≃ Λ[H ][T ].
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Proof. It follows from Theorem 2.2 that Λ[G] ≃ Λ[H ]∗γ T , and Λ[H ] ≃ Λ×· · ·×Λ
by Maschke’s theorem. Since H is abelian and acts trivially on Λ, γ takes values in
the set of invertible elements of the center of Λ[H ]. But Z(Λ[H ]) ≃ k× · · ·× k and
T is cyclic, so Proposition 2.6 implies that γ is a coboundary. From Proposition
2.5 we may deduce that Λ[G] ≃ Λ[H ][T ]. �

It is known that if G is a finite group of order m acting trivially on the idempo-
tents of Λ and m is invertible in Λ, then G is an abelian group, see [15, Proposition
2.7]. In fact, given g1, g2 ∈ G, gi(α) = ωiα with ωi a m–root of unity. Hence
g1g2(α) = ω1ω2α = g2g1(α), and this equality holds for any arrow α. Moreover,
for every j g1g2(ej) = ej = g2g1(ej). So g1g2 = g2g1.

Finally, we state a result that will be used in the proof of the main theorem in
this work.

Theorem 2.8. [5, Theorem 8]. Let G be a finite abelian group of order m acting
trivially on a complete set of primitive orthogonal idempotents of a simply connected
algebra Λ = kQ/I, Q without double arrows and m invertible in Λ. Then Λ[G] ≃∏m

i=1 Λ.

3. Λ[G] with G an abelian group and Λ an hereditary algebra of

finite representation type

The aim of this section is to describe all possible actions of a finite abelian group
on an hereditary algebra of finite representation type and to give a description of
the skew group algebra for each action.

Gabriel has shown in [6] that a connected hereditary algebra is representation-
finite if and only if the underlying graph of its quiver is one of the Dynkin diagrams
An, Dn (n ≥ 4), E6, E7 or E8, that appear also in Lie theory, where the index
in the Dynkin graph always refers to the number of points in the graph. Then, in
order to classify the representation-finite hereditary skew group algebras, it suffices
to study the group actions on the Dynkin quivers.

An (n ≥ 1) • • • · · · • •..............................................................................................................................................................................

1 2 3 n − 1 n

α1 α2 αn−1

Dn (n ≥ 4)

•

•

• • · · · • •

......................................... .........................................

....................................................................................................................

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
. ...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

1

2

3 4 n − 1 n

α1

α2

α3 αn−1
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Before we present the results, we need some definitions.

Definition 3.1. We say that an quiver of type A2r+1 has symmetric orientation
if it is symmetric with respect to the middle point r + 1.

Definition 3.2. We say that an quiver of type Dn, n > 4, has symmetric orien-
tation if s(α1) = s(α2) = e3 or t(α1) = t(α2) = e3.

Definition 3.3. We say that an quiver of type D4 has

i) symmetric orientation of kind (a) if s(α1) = s(α2) = t(α3) = e3 or
t(α1) = t(α2) = s(α3) = e3; and,

ii) symmetric orientation of kind (b) if s(α1) = s(α2) = s(α3) = e3 or
t(α1) = t(α2) = t(α3) = e3.

Definition 3.4. We say that the quiver Q of type E6 has symmetric orientation
if it is symmetric with respect to the side 3 − 4, that is,

i) s(α1) = e1 and s(α5) = e6, or t(α1) = e1 and t(α5) = e6;
and,

ii) s(α2) = e3 = s(α4), or t(α2) = e3 = t(α4).

Remark 3.5. (i) The quiver A2r+1 is symmetric with respect to the middle
point r + 1 if that point is center of symmetry of the quiver.

(ii) The quiver E6 is symmetric with respect to the side 3−4 if the line obtained
with the points {3, 4} is a symmetry axis of the quiver.

As we have already mentioned, if G is acting trivially on Λ, we have Λ[G] =∏m
t=1 Λ. Hence, from now on, we will assume that G is acting non trivially on Λ.

Let H = {g : g(ei) = ei for all i in Q0}. Clearly H is a normal subgroup of G.
Let T = G/H , then 1 → H → G→ T → 1 is a short exact sequence of groups.
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Theorem 3.6. Let Λ = kQ be an hereditary algebra, with Q of type An (n ≥ 1),
Dn (n ≥ 4), E6, E7 or E8, and G a finite abelian group of order m acting non
trivially on Λ, with m invertible in Λ. Let H = {g : g(ei) = ei for all i in Q0}.

i) If H = G then Λ[G] =
∏m

t=1 Λ;
ii) If H ( G and Λ = kQ with Q of type An then Q is of type A2r+1, with

symmetric orientation, the order of G is even and Λ[G] ≃ (
∏m/2

t=1 Λ) ∗γ

Z/2Z;
iii) If H ( G and Λ = kQ with Q of type Dn, n > 4, then Q has symmetric

orientation, the order of G is even and Λ[G] ≃ (
∏m/2

t=1 Λ) ∗γ Z/2Z;
iv) If H ( G and Λ = kQ with Q of type D4 then

iv.1) Q has symmetric orientation of kind (a), the order of G is even and

Λ[G] ≃ (
∏m/2

t=1 Λ) ∗γ Z/2Z,
or

iv.2) Q has symmetric orientation of kind (b), the order of G is divisible by

2 or 3, and Λ[G] ≃ (
∏m/2

t=1 Λ)∗γ Z/2Z or Λ[G] ≃ (
∏m/3

t=1 Λ)∗γ Z/3Z.
v) If H ( G and Λ = kQ with Q of type E6 then Q has symmetric orientation,

G is a group of even order and Λ[G] ≃ (
∏m/2

t=1 Λ) ∗γ Z/2Z;
vi) If Λ = kQ with Q of type E7 or Q of type E8 then H = G and Λ[G] =∏m

t=1 Λ.

Proof. In order to prove the theorem, we need a precise description of all the
possible actions of G on Λ = kQ, for each type and orientation of Q. We use
Proposition 2.1 to describe all possible actions of G on kQ with Q of type An, Dn,
E6, E7 or E8.

i) See Theorem 2.8.
ii) Let Λ = kQ with Q of type An and let g ∈ G, g 6∈ H . If g(e1) = e1

then g(α1) = ξ1α1. This implies g(e2) = e2 and g(α2) = ξ2α2 with ξ1, ξ2
m-roots of unity. Repeating this procedure we have that g(ei) = ei implies
g(αi) = ξiαi with ξi an m-root of unity, and this for all i = 1, · · · , n − 1.
Hence the action of g is trivial on the idempotents ei of Λ. So g ∈ H , a
contradiction. So g(e1) 6= e1. In this case g(e1) = en and e1, en will have
to be sinks or sources, see Proposition 2.1. This determines the orienta-
tion of α1 and αn−1. Moreover g(α1) = ξ1αn−1. So g(e2) = en−1 and
g(α2) = ξ2αn−2. Inductively, g(ei) = en−i+1 and g(αi) = ξiαn−i, and this
for all i = 1, · · · , n− 1, with ξi ∈ k, ξi 6= 0. If n = 2r is an even number we
have that g(er) = er+1, g(er+1) = er and if αr is the arrow αr : r → r+ 1,
then g(αr) = g(er+1)g(αr)g(er) = erg(αr)er+1 = 0, contradiction. We
also get a contradiction if αr : r + 1 → r. Then if the number of vertices
is an even number, the unique possible action on the set of idempotents is
the trivial one.

Let Q = A2r+1 with g acting non trivially on the set {e1, . . . , en} of
idempotents of Λ. Then g(ei) = e2r+2−i and g(αi) = ξiα2r+1−i, hence
the quiver Q has symmetric orientation. Moreover, g2(ei) = ei for all i,
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so g2 ∈ H . Then G has even order m = 2s and ξs
i ξ

s
2r+1−i = 1, for all

i. Let g′ ∈ T , g′ 6∈ H . Since g′ 6∈ H , g′ does not act trivially on the set
{e1, · · · , en} of idempotents of Λ. By the previous reasoning, the unique
non trivial action is given by g′(ei) = e2r+2−i. Then gg′(ei) = g(e2r+2−i) =
e2r+2−(2r+2−i) = ei. As a consequence gg′ ∈ H , that is gg′ = 1. Then

g′ = (g)
−1

= g because g2 ∈ H , and hence T ≃ Z/2Z. Hence, if the
group G does not act trivially on the set {e1, · · · , en} of idempotents of Λ,
in accordance with the previous analysis we have that m = 2s is an even
number and Q is of type A2r+1 with symmetric orientation. In this case
we have T ≃ Z/2Z. Hence Λ[G] ≃ Λ[H ] ∗γ Z/2Z ≃ (

∏s
t=1 Λ) ∗γ Z/2Z, see

Theorem 2.2 and Theorem 2.8.
iii) Let Λ = kQ with Q of type Dn, n > 4. Assume that the group G is not

acting trivially on the set {e1, · · · , en} of idempotents of Λ. We observe
that all g ∈ G must satisfy g(e3) = e3, see Proposition 2.1. If g 6∈ H then
g(e1) = e2, g(e2) = e1 and g(ei) = ei for all i = 3, · · · , n. This determines
the orientation of the arrows, that is, Q has symmetric orientation, and
g(α1) = ξ1α2, g(α2) = ξ2α1, g(αi) = ξiαi for all i = 3, · · · , n − 1, with
ξ3, · · · , ξn−1 m-roots of unity, ξ1, ξ2 ∈ k non zero. Then g2(ei) = ei for
all i, that is, g2 ∈ H . So G has even order m = 2s and ξs

1ξ
s
2 = 1. Let

g′ ∈ G, g′ 6∈ H . By the previous reasoning, g′ and g act in the unique
possible non trivial way on the complete set of idempotents of Λ. Then
gg′(e1) = g(e2) = e1, gg

′(e2) = g(e1) = e2 and gg′(ei) = ei for all i =

3, · · · , n. Hence gg′ ∈ H , that is gg′ = 1, then g′ = (g)−1 = g because
g2 ∈ H . Hence T ≃ Z/2Z and |G| is an even number.

It follows from the previous analysis that |G| = m = 2s is an even
number and the quiverQ has symmetric orientation. Hence we have Λ[G] ≃
Λ[H ] ∗γ Z/2Z ≃ (

∏s
t=1 Λ) ∗γ Z/2Z.

iv) Let Λ = kQ with Q of type D4.

......................................... .........................................
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•

•

• •

1

2

3 4

Let g ∈ G, g 6∈ H . Necessarily g(e3) = e3, by Proposition 2.1, and all
possible cases are:

i) g1(e1) = e2, g1(e2) = e1, g1(e4) = e4;
ii) g2(e1) = e4, g2(e2) = e2, g2(e4) = e1;
iii) g3(e1) = e1, g3(e2) = e4, g3(e4) = e2;
iv) g4(e1) = e2, g4(e2) = e4, g4(e4) = e1;
v) g5(e1) = e4, g5(e2) = e1, g5(e4) = e2.
In fact g2

1 , g
2
2, g

2
3 ∈ H , g3

4 , g
3
5 ∈ H and g4g5 ∈ H , so g4 = (g5)

−1 in T . On
the other hand, since gigj 6= gjgi for all i, j with i 6= j and 1 ≤ i, j ≤ 4 and
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G is abelian, we have that G cannot contain simultaneously elements acting
as gi, gj for all i, j with i 6= j and 1 ≤ i, j ≤ 4. Consequently T ≃ Z/2Z

or Z/3Z. The cases i), ii) and iii) determine the orientation of the arrows
α1 and α2, that is, Q has symmetric orientation of kind (a) or (b), and the
cases iv) and v) determine the orientation of all the arrows, that is, Q has
symmetric orientation of kind (b).

In accordance with Definition 3.3 and with the previous analysis for Q
of type D4, we have that the quiver Q has symmetric orientation of kind
(a) and m = 2s, or has symmetric orientation of kind (b) and m = 2s or
m = 3s. From Theorem 2.2 and Theorem 2.8 we have that, in the first
case, T ≃ Z/2Z and Λ[G] ≃ Λ[H ] ∗γ Z/2Z ≃ (

∏s
t=1 Λ) ∗γ Z/2Z. In the

second case, the order of G is divisible by 2 or 3, T ≃ Z/2Z or T ≃ Z/3Z,
and Λ[G] ≃ Λ[H ] ∗γ Z/2Z ≃ (

∏s
t=1 Λ) ∗γ Z/2Z or Λ[G] ≃ Λ[H ] ∗γ Z/3Z ≃

(
∏s

t=1 Λ) ∗γ Z/3Z.
v) We need again a precise description of all the possible actions of G on Λ =

kQ with Q of type E6. Let g ∈ G, g 6∈ H . By Proposition 2.1 , g(e3) = e3,
and this implies that g(e4) = e4. On the other hand g(e1) = e1 or e6. If
g(e1) = e1, then g(e2) = e2 and g(e5) = e5. This is a contradiction, because
g 6∈ H . Then g(e1) = e6, and this implies that g(e2) = e5 and g(e6) = e1.
This determines the orientation of the arrows, and we have g(α1) = ξ1α5,
g(α2) = ξ2α4, g(α3) = ξ3α3, g(α5) = ξ5α1 and g(α4) = ξ4α2 with
ξ1, ξ2, ξ4, ξ5 ∈ k non zero and ξ3 an m-root of unity. Since g2(ei) = ei for
all i, then g2 ∈ H . So G has even order m = 2s and ξs

1ξ
s
5 = 1, ξs

2ξ
s
4 = 1.

Let g′ ∈ G be such that g′ 6∈ H . Hence, gg′(ei) = ei for all i. Therefore

gg′ = 1, g2 = 1 and g′
2

= 1 that is, g′ = g, and then T ≃ Z/2Z. Hence, if
the group G does not act trivially on the set {e1, · · · , e6} of idempotents
of Λ, in accordance with the previous analysis, we have that |G| = m = 2s
is an even number, Q has symmetric orientation and T ≃ Z/2Z. Hence
Λ[G] ≃ Λ[H ] ∗γ Z/2Z ≃ (

∏s
t=1 Λ) ∗γ Z/2Z, see Theorem 2.2 and Theorem

2.8.
vi) If we consider the cases Q of type E7 or E8, the unique possible action on

the set of idempotents is the trivial one. Hence G = H and T = 1 and the
result follows from i).

�

Corollary 3.7. Let Λ = kQ be an hereditary algebra, with Q of type An (n ≥ 1),
Dn (n ≥ 4), E6, E7 or E8, and G an abelian group of order m acting on Λ, with
m invertible in Λ. Suppose that G does not act trivially on the set {e1, · · · , en} of
idempotents of Λ and H acts trivially on Λ.

i) If Λ = kQ, with Q of type A2r+1 with symmetric orientation, then Λ[G] ≃
(
∏s

t=1 Λ)[Z/2Z];
ii) If Λ = kQ, with Q of type Dn, n > 4, with symmetric orientation, then

Λ[G] ≃ (
∏s

t=1 Λ)[Z/2Z];
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iii) If Λ = kQ, with Q of type D4 with symmetric orientation of kind (a), then
Λ[G] ≃ (

∏s
t=1 Λ)[Z/2Z];

iv) If Λ = kQ, with Q of type D4 with symmetric orientation of kind (b), then

Λ[G] ≃ (
∏m/2

t=1 Λ)[Z/2Z] or Λ[G] ≃ (
∏m/3

t=1 Λ)[Z/3Z].
v) If Λ = kQ, with Q of type E6 with symmetric orientation, then Λ[G] ≃

(
∏s

t=1 Λ)[Z/2Z].

Proof. It follows from Theorem 3.6 and Corollary 2.7. �

The following Corollary follows easily from [16, (2.3), (2.4)].

Corollary 3.8. Let Λ = kQ be an hereditary algebra, with Q of type An (n ≥ 1),
Dn (n ≥ 4), E6, E7 or E8, and G a cyclic group of order m acting on Λ, with m
invertible in Λ.

(i) Let k be a field such that chark 6= 2, 3. If Λ = kQ is an hereditary al-
gebra with Q of type D4 and G = Z/3Z is acting non trivially on the set
{e1, · · · , e4} of idempotents of Λ, then the skew group algebra Λ[Z/3Z] is
Morita equivalent to an algebra kQ′ with Q′ of type D4. If G = Z/2Z is
acting non trivially on the set {e1, · · · , en} of idempotents of Λ, then the
skew group algebra Λ[Z/2Z] is Morita equivalent to an algebra kQ′ with Q′

of type A5.
(ii) Let k be a field such that chark 6= 2. If Λ = kQ is an hereditary algebra,

with Q of type A2r+1 and G = Z/2Z is acting non trivially on the set
{e1, · · · , e2r+1} of idempotents of Λ, then the skew group algebra Λ[Z/2Z]
is Morita equivalent to an algebra kQ′ with Q′ of type Dr+2 if r ≥ 2 and
of type A3 if r = 1.

(iii) Let k be a field such that chark 6= 2. If Λ = kQ is an hereditary algebra,
with Q of type Dn, n > 4, and G = Z/2Z is acting non trivially on the set
{e1, · · · , en} of idempotents of Λ, then the skew group algebra Λ[Z/2Z] is
Morita equivalent to an algebra kQ′ with Q′ of type A2n−3.

(iv) Let k be a field such that chark 6= 2. If Λ = kQ is an hereditary alge-
bra, with Q of type E6, and G = Z/2Z is acting non trivially on the set
{e1, · · · , en} of idempotents of Λ, then the skew group algebra Λ[Z/2Z] is
Morita equivalent to an algebra kQ′ with Q′ of type E6.

For an example of Corollary 3.8 see [16, (2.3), (2.4)].

4. Λ[G] with G an abelian group and Λ an hereditary algebra of tame

representation type

The aim of this section is to describe all possible actions of a finite abelian group
on an hereditary algebra of tame representation type, to give a description of the
skew group algebra for each action and finally to determinate their representation
type.

It is well known that a connected hereditary algebra is of tame representation
type if and only if the underlying graph of its quiver is one of the euclidean diagrams
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Ãn (n ≥ 1), D̃n (n ≥ 4), Ẽ6, Ẽ7 or Ẽ8 where an euclidean diagram ∆̃n has n+ 1
points. Then, in order to classify the tame representation type hereditary skew
group algebras, it suffices to study the group actions on the euclidean quivers. It

is necessary to clarify that the case Ã1 will be considered separately later on.
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Before we present the results, we need some definitions.
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Definition 4.1. We say that an quiver of type Ãn (n ≥ 2) has

i) symmetric orientation if n = 2r − 1 is odd and the quiver is symmetric
with respect to an axis i−−i+ r,

ii) cyclic orientation of order s if the full subquivers with vertices {j(s− 1) +
1, j(s− 1) + 2, · · · , (j + 1)(s− 1) + 1} are all equal, and s is minimal with
respect to this property (1 < s ≤ n+ 1).

Remark 4.2. Supose you have Ãn with a fixed oritentation. Choose s such that
g(1) = s, for any action g. This set, a non-empty set of the natural numbers, has
a first element and this is the s of the definition.

Definition 4.3. We say that an quiver of type D̃n, n > 4, has

i) symmetric orientation of kind (a) if
t(α1) = t(α2) = e3, or
s(α1) = s(α2) = e3, or
t(αn) = t(αn−1) = en−1, or
s(αn) = s(αn−1) = en−1,

ii) symmetric orientation of kind (b) if n = 2r is even and the quiver is sym-
metric with respect to the middle point r + 1;

Definition 4.4. We say that an quiver of type D̃4 has symmetric orientation of
order t if the number of arrows starting at the vertex 3 is equal to t, for t = 1, 2, 3, 4.

Definition 4.5. We say that an quiver of type Ẽ6 has

i) symmetric orientation of kind (a) if s(α1) = e1, s(α4) = e5, s(α6) = e7 or
t(α1) = e1, t(α4) = e5 t(α6) = e7 and e3 is a source or a sink;

ii) symmetric orientation of kind (b) if it is not symmetric of kind (a) and it
is symmetric with respect to the side 3 − 4 − 5.

Definition 4.6. We say that an quiver of type Ẽ7 has symmetric orientation if it
is symmetric with respect to the side 5 − 4.

Remark 4.7. (i) We say that the quiver Q is symmetric with respect to the
middle point r + 1 if that point is center of symmetry of the quiver Q.

(ii) We say that the quiver Q is symmetric with respect to an axis i−−i+ r, if
the line obtained with the points {i, i+ r} is symmetry axis of the quiver.

Let G be a group and we will assume that G is acting trivially on Λ, we have
Λ[G] =

∏m
t=1 Λ. Hence, from now on, we will assume that G is acting non trivially

on Λ. Let H = {g : g(ei) = ei for all i in Q0}. Clearly H is a normal subgroup of
G. Let T = G/H , then 1 → H → G→ T → 1 is a short exact sequence of groups.

Theorem 4.8. Let Λ = kQ be a tame hereditary algebra, with Q of type Ãn

(n > 1), D̃n (n ≥ 4), Ẽ6, Ẽ7 or Ẽ8, and G a finite abelian group of order m acting
non trivially on Λ, with m invertible in Λ.
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i) If H = G then Λ[G] =
∏m

t=1 Λ;

ii) If H ( G and Λ = kQ with Q of type Ãn then
ii.1) Q is symmetric not cyclic, n = 2r − 1 if it is symmetric with respect

to one axis, or n = 4r′ − 1 if it is symmetric with respect to a pair of
perpendicular axes, the order of G is divisible by 2 or 4 respectively,

and Λ[G] ≃ (
∏m/2

t=1 Λ)∗γ Z/2Z or Λ[G] ≃ (
∏m/4

t=1 Λ)∗γ (Z/2Z×Z/2Z);
ii.2) Q is cyclic of order s, not symmetric, M is the smallest natural num-

ber such that M(s− 1) is divisible by n+ 1, the order of G is divisible

by M and Λ[G] ≃ (
∏m/M

t=1 Λ) ∗γ Z/MZ;
or

ii.3) Q is symmetric and cyclic of order r + 1, n = 2r − 1, the order of

G is divisible by 2 or 4 and Λ[G] ≃ (
∏m/2

t=1 Λ) ∗γ Z/2Z or Λ[G] ≃

(
∏m/4

t=1 Λ) ∗γ (Z/2Z × Z/2Z) .

iii) If H ( G and Λ = kQ with Q of type D̃n, n > 4 then
iii.1) Q has symmetric orientation of kind (b), not (a), the order of G is

even and Λ[G] ≃ (
∏m/2

t=1 Λ) ∗γ Z/2Z,
iii.2) Q has symmetric orientation of kind (a), not (b), the order of G is

divisible by 2 or 4, and Λ[G] ≃ (
∏m/2

t=1 Λ) ∗γ Z/2Z or Λ[G] ≃

(
∏m/4

t=1 Λ) ∗γ (Z/2Z × Z/2Z),
or

iii.3) Q has symmetric orientation of kind (a) and (b), the order of G is

divisible by 2 or 4 and Λ[G] ≃ (
∏m/2

t=1 Λ)∗γ Z/2Z, Λ[G] ≃ (
∏m/4

t=1 Λ)∗γ

(Z/2Z × Z/2Z) or Λ[G] ≃ (
∏m/4

t=1 Λ) ∗γ Z/4Z.

iv) If H ( G and Λ = kQ with Q of type D̃4 then
iv.1) Q is symmetric of order 1 or 3, the order of G is divisible by 2 or 3

and Λ[G] ≃ (
∏m/2

t=1 Λ) ∗γ Z/2Z or Λ[G] ≃ (
∏m/3

t=1 Λ) ∗γ Z/3Z;
iv.2) Q is symmetric of order 2, the order of G is divisible by 2 or 4 and

Λ[G] ≃ (
∏m/2

t=1 Λ) ∗γ Z/2Z or Λ[G] ≃ (
∏m/4

t=1 Λ) ∗γ (Z/2Z × Z/2Z);
or

iv.3) Q is symmetric of order 4, the order of G is divisible by 2, 3 or 4

and Λ[G] ≃ (
∏m/2

t=1 Λ) ∗γ Z/2Z, Λ[G] ≃ (
∏m/3

t=1 Λ) ∗γ Z/3Z, Λ[G] ≃

(
∏m/4

t=1 Λ) ∗γ (Z/2Z × Z/2Z) or Λ[G] ≃ (
∏m/4

t=1 Λ) ∗γ Z/4Z ;

v) If H ( G and Λ = kQ with Q of type Ẽ6 then
v.1) Q has symmetric orientation of kind (a), the order of G is divisible by

2 or 3 and Λ[G] ≃ (
∏m/2

t=1 Λ) ∗γ Z/2Z or Λ[G] ≃ (
∏m/3

t=1 Λ) ∗γ Z/3Z;
or

v.2) Q has symmetric orientation of kind (b), the order of G is divisible by

2 and Λ[G] ≃ (
∏m/2

t=1 Λ) ∗γ Z/2Z;

vi) If H ( G and Λ = kQ with Q of type Ẽ7 then Q has symmetric orientation,

G is a group of even order and Λ[G] ≃ (
∏m/2

t=1 Λ) ∗γ Z/2Z;

vii) If Λ = kQ with Q of type Ẽ8 then H = G and Λ[G] =
∏m

t=1 Λ.
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Proof. In order to prove the theorem, we need a precise description of all the
possible actions of G on Λ = kQ, for each type and orientation of Q. We use

Proposition 2.1 to describe all possible actions of G on kQ with Q of type Ãn, D̃n,

Ẽ6, Ẽ7 or Ẽ8. We observe that we identify the elements of Z/(n+ 1)Z with the
natural numbers 1, 2, · · · , n+ 1 in the indexes of the idempotents ei.

i) Theorem 2.8 cannot be applied because Λ is not simply connected. Using
[16, (2.3), (2.4)] for this case we have Λ[G] =

∏m
t=1 Λ (where s = 1, |G| = n,

m = n/s = n, µ = 0. · · · , n− 1 under the conditions of [16, (2.3)]) .

ii) Let Λ = kQ with Q of type Ãn and let g ∈ G, g 6∈ H . Assume that g fixes
at least one point, say g(ej) = ej. Then g(ej+1) = ej+1 or g(ej+1) = ej−1.
In the first case, repeating this procedure we have that g(ei) = ei for
all i, and so g ∈ H , a contradiction. In the second case, we get that
g(ei) = e2j+n+1−i, for all i, and this determines the orientation of the
arrows. If n = 2r, we have g(er+j) = er+j+1 and g(er+j+1) = er+j, a
contradiction since there is only one arrow joining er+j and er+j+1. So
n = 2r − 1 and Q has symmetric orientation. Moreover, g2(ei) = ei for all
i, so g2 ∈ H .

Now let g ∈ G, g 6∈ H , g(ei) 6= ei for all i. Let g(e1) = ej . If g(e2) =
ej−1, the previous reasoning says that there must exist a middle point
between 2 and j−1 that will be fixed by g, a contradiction. So g(e2) = ej+1,
and inductively we get that g(ei) = ej−1+i. This determines the orientation
of the arrows, and so Q is cyclic of order s, where s is the first element in
the set {j ∈ N : there exists g ∈ G such that g(ei) = ej−1+i}. Let g0 ∈ G
be such that g0(ei) = es−1+i. Let j − 1 = q(s− 1) + t, with 0 ≤ t < s− 1.

Then gg−q
0 (ei) = g(e−q(s−1)+i) = e(j−1)−q(s−1)+i = et+i. If t 6= 0, we get

a contradiction to the minimality of s. So j − 1 = q(s− 1) and gg−q
0 ∈ H

and g = g0
q in T .

We denote by

G1 = {g ∈ G : g 6∈ H, g(ej) = ej for some j },

G2 = {g ∈ G : g 6∈ H, g(ei) = ej−1+i for some j, 1 < j ≤ n+ 1, ∀i}.

We have already proved that G1 6= ∅ if and only if Q has symmetric
orientation, and G2 6= ∅ if and only if Q is cyclic of order s.

Assume first that Q is cyclic of order s and is not symmetric. We have
seen that g = g0

q in T for any g ∈ G2. Moreover, gh
0 (ei) = eh(s−1)+i, so

gh
0 ∈ H if and only if h(s− 1) is divisible by n+ 1. Let M be the smallest

natural number such that M(s− 1) is divisible by n+1. We conclude that
T ≃ Z/MZ in this case.

Assume now that Q is symmetric but not cyclic, and let g, g′ ∈ G1, that
is, g(ei) = e2j+n+1−i and g′(ei) = e2t+n+1−i for some j and t, n = 2r − 1.
We assume, without loss of generality, that t > j. If gg′ = g′g, then
e2(j−t)+i = gg′(ei) = g′g(ei) = e2(t−j)+i, so 2(t− j) is divisible by r. Since
1 ≤ t, j ≤ n + 1, we have that 2(t − j) = qr for q = 0, 1, 2, 3. If q = 0, 2
then g(ei) = g′(ei) and hence g−1g′ ∈ H , that is, g = g′ in T , and hence
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T ≃ Z/2Z in this case. If q = 1, 3 then n = 4r′ − 1 and Q is symmetric
with respect to the axes j−−j+ 2r′ and j+ r′ −−j+ 3r′ and in this case
T ≃ Z/2Z × Z/2Z.

Finally, assume that Q is symmetric (n = 2r − 1) and cyclic of order s,
and let g ∈ G1 and g0 ∈ G2, that is, g(ei) = e2j+n+1−i and g0(ei) = es−1+i.
If gg0 = g0g, then e2j+n+1−s+1−i = gg0(ei) = g0g(ei) = es−1+2j+n+1−i, so
s− 1 is divisible by r. Since 1 < s ≤ n+ 1, we have that s− 1 = r and in
this case M = 2 and T ≃ Z/2Z × Z/2Z.

Finally, from Theorem 2.2 and [16, (2.3)] we have the conclusions, that
is Λ[G] ≃ Λ[H ] ∗γ T or Λ[G] ≃ Λ[H ] ∗γ T ≃ (

∏s
t=1 Λ) ∗γ T .

iii) Let Λ = kQ with Q of type Dn, n > 4. Let g ∈ G, g 6∈ H . We observe first
that {g(e3), g(en−1)} = {e3, en−1}, see Proposition 2.1.

Assume first that g(e3) = e3 and g(en−1) = en−1. Then g(ei) = ei for all
i = 4, · · · , n−2. Since g 6∈ H , we must have g(e1) = e2 or g(en) = g(en+1).
This implies that Q has symmetric orientation of kind (a) and all possible
actions are given by:

1) g1(e1) = e2, g1(e2) = e1, g1(en) = en+1, g1(en+1) = en;
2) g2(e1) = e2, g2(e2) = e1, g2(en) = en, g2(en+1) = en+1;
3) g3(e1) = e1, g3(e2) = e2, g3(en) = en+1, g3(en+1) = en.

Since g2
1 , g

2
2 , g

2
3 ∈ H and g2g3 = g1 = g3g2, we conclude that T ≃ Z/2Z or

Z/2Z × Z/2Z.
Assume now that g(e3) = en−1 and g(en−1) = e3. Then, using the same

argument as in the proof of Theorem 3.6 in the case of An, we conclude
that Q is symmetric of kind (b). If Q is not of kind (a), the unique possible
non trivial action on the complete set of idempotents is given by g(e1) =
en+1, g(en+1 = g(e1), g(e2) = en, g(en) = e2 and g(ei) = en−i+2 for all
i = 3, · · · , n− 1. In this case, T ≃ Z/2Z.

To finish with this case, we have to assume that Q is symmetric of kind
(a) and (b). Then all the possible non trivial actions are given by

1) g1(e1) = en+1, g1(e2) = en, g1(en) = e2, g1(en+1) = e1, g1(ei) =
en−i+3 for all i = 3, · · · , n− 1;

2) g2(e1) = en, g2(e2) = en+1, g2(en) = e1, g1(en+1) = e2, g2(ei) =
en−i+3 for all i = 3, · · · , n− 1;

3) g3(e1) = en+1, g3(e2) = en, g3(en) = e1, g3(en+1) = e2, g3(ei) =
en−i+3 for all i = 3, · · · , n− 1;

4) g4(e1) = en, g4(e2) = en+1, g4(en) = e2, g4(en+1) = e1, g4(ei) =
en−i+3 for all i = 3, · · · , n− 1;

5) g5(e1) = e2, g5(e2) = e1, g5(en) = en, g5(en+1) = en+1, g5(ei) = ei

for all i = 3, · · · , n− 1;
6) g6(e1) = e1, g6(e2) = e2, g6(en) = en+1, g6(en+1) = en, g6(ei) = ei

for all i = 3, · · · , n− 1;
7) g7(e1) = e2, g7(e2) = e1, g7(en) = en+1, g7(en+1) = en, g7(ei) = ei

for all i = 3, · · · , n− 1.

Rev. Un. Mat. Argentina, Vol 50-1



18 OLGA FUNES

Now g2
1 , g

2
2 , g

2
5 , g

2
6, g

2
7 ∈ H , g4

3 ∈ H , g4
4 ∈ H and g4g3 ∈ H . Moreover, if

i 6= j, then gigj = gjgi implies that (i, j) is equal to (1, 2), (1, 7), (2, 7),
(3, 4), (3, 7) or (4, 7). Moreover g1g2g7, g4g7 ∈ H . Hence T ≃ Z/2Z,
Z/2Z × Z/2Z or Z/4Z.

Finally, from Theorem 2.2 and Theorem 2.8 we have that Λ[G] ≃ Λ[H ]∗γ

T ≃ (
∏s

t=1 Λ) ∗γ T .

iv) Let Λ = kQ with Q of type D̃4. Let g ∈ G, g 6∈ H . Necessarily, by
Proposition 2.1, g(e3) = e3. If Q is symmetric of order 1 or 3, the same
reasoning made for D4 in the proof of Theorem 3.6 holds, and hence T ≃
Z/2Z or T ≃ Z/3Z.

If Q is symmetric of order 2, assume that s(α1) = s(α2) = 3 = t(α3) =
t(α4). Hence all the possible cases for g 6∈ H are:

i) g1(e1) = e2, g1(e2) = e1, g1(e4) = e5, g1(e5) = e4;
ii) g2(e1) = e1, g2(e2) = e2, g2(e4) = e5, g2(e5) = e4;
iii) g3(e1) = e2, g3(e2) = e1, g3(e4) = e4, g3(e5) = e5.

In fact g2
1 , g

2
2, g

2
3 ∈ H , g2g3(ei) = g1(ei) and gsgj(ei) = gjgs(ei) for all

s, j with 1 ≤ i, j ≤ 3 and for all i = 1, · · · , n. Consequently T ≃ Z/2Z or
Z/2Z × Z/2Z.

If Q is symmetric of order 4, all the possible cases for g 6∈ H are in one
to one correspondence with the non trivial permutations of e1, e2, e4, e5.
Hence T ≃ Z/2Z, Z/3Z, Z/2Z × Z/2Z or Z/4Z (all the possible abelian
subgroups of S4).

Finally, from Theorem 2.2 and Theorem 2.8 we have that Λ[G] ≃ Λ[H ]∗γ

T ≃ (
∏s

t=1 Λ) ∗γ T .
v) This case follows from an argument similar to what has been done in the

proof of Theorem 3.6 for the case D4 (for any g ∈ G, g(e3) = e3 and the
action of g on e2, e4, e6 is uniquely determined by the action of g in e1, e5
and e7).

vi) Let Λ = kQ with Q of type Ẽ7, and let g 6∈ H . By Proposition 2.1,
g(e4) = e4 and then g(e5) = e5. Now g(e1) = e1 or e8. In the first case
we get that g(ei) = ei for all i, and so g ∈ H , a contradiction. Then
g(e1) = e8 and this determines completely the orientation of the arrows,
that is, Q has symmetric orientation, and the action of g on the complete
set of idempotents of Λ. Since g2 ∈ H , we can deduce that |G| = m = 2s
is an even number. Let g′ ∈ G, g′ 6∈ H . By the previous reasoning, g′ and
g act in the unique possible way on the complete set of idempotents of Λ.
Then gg′(ei) = ei for all i, hence gg′ ∈ H , that is, g′ = g−1 = g in T . So
T ≃ Z/2Z and Λ[G] ≃ Λ[H ] ∗γ Z/2Z ≃ (

∏s
t=1 Λ) ∗γ Z/2Z, see Theorem 2.2

and Theorem 2.8.
vii) If we consider the case Q of type Ẽ8, the unique possible action on the

set of idempotents is the trivial one. Hence G = H , T = 1 and the result
follows from i).

�
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Corollary 4.9. Let Λ = kQ be an hereditary algebra, with Q of type Ãn (n > 1),

D̃n (n ≥ 4), Ẽ6, Ẽ7 or Ẽ8, and G an abelian group of order m acting on Λ, with
m invertible in Λ. Suppose that G does not act trivially on the set {e1, · · · , en+1}
of idempotents of Λ and H acts trivially on Λ.

i) If Λ = kQ with Q of type Ãn (n > 1) and

i.1) Q is symmetric not cyclic, n = 2r − 1 then Λ[G] ≃ (
∏m/2

t=1 Λ)[Z/2Z]

or Λ[G] ≃ (
∏m/4

t=1 Λ)[Z/2Z × Z/2Z];

i.2) Q is cyclic of order s, not symmetric, then Λ[G] ≃ (
∏m/M

t=1 Λ)[Z/MZ];
or

i.3) Q is symmetric and cyclic of order r + 1, n = 2r − 1, then Λ[G] ≃

(
∏m/2

t=1 Λ)[Z/2Z] or Λ[G] ≃ (
∏m/4

t=1 Λ)[Z/2Z × Z/2Z].

ii) If Λ = kQ with Q of type D̃n, n > 4, and
ii.1) Q with symmetric orientation of kind (b), not (a), then

Λ[G] ≃ (
∏m/2

t=1 Λ)[Z/2Z],
ii.2) Q with symmetric orientation of kind (a), not (b), then Λ[G] ≃

(
∏m/2

t=1 Λ)[Z/2Z] or Λ[G] ≃ (
∏m/4

t=1 Λ)[Z/2Z × Z/2Z],
or

ii.3) Q with symmetric orientation of kind (a) and (b) then

Λ[G] ≃ (
∏m/2

t=1 Λ)[Z/2Z], Λ[G] ≃ (
∏m/4

t=1 Λ)[Z/2Z×Z/2Z] or Λ[G] ≃

(
∏m/4

t=1 Λ)[Z/4Z].

iii) If Λ = kQ with Q of type D̃4 and

iii.1) Q is symmetric of order 1 or 3 then Λ[G] ≃ (
∏m/2

t=1 Λ)[Z/2Z] or Λ[G] ≃

(
∏m/3

t=1 Λ)[Z/3Z];

iii.2) Q is symmetric of order 2 then Λ[G] ≃ (
∏m/2

t=1 Λ)[Z/2Z] or Λ[G] ≃

(
∏m/4

t=1 Λ)[Z/2Z × Z/2Z];
or

iii.3) Q is symmetric of order 4 then Λ[G] ≃ (
∏m/2

t=1 Λ)[Z/2Z], Λ[G] ≃

(
∏m/3

t=1 Λ)[Z/3Z] or Λ[G] ≃ (
∏m/4

t=1 Λ)[Z/2Z × Z/2Z];

iv) If Λ = kQ with Q of type Ẽ6 and

v.1) Q with symmetric orientation of kind (a) then Λ[G] ≃ (
∏m/2

t=1 Λ)[Z/2Z]

or Λ[G] ≃ (
∏m/3

t=1 Λ)[Z/3Z];
or

iv.2) Q with symmetric orientation of kind (b) then Λ[G] ≃ (
∏m/2

t=1 Λ)[Z/2Z];

v) If Λ = kQ with Q of type Ẽ7 and Q with symmetric orientation then

Λ[G] ≃ (
∏m/2

t=1 Λ)[Z/2Z].

Proof. It follows from Theorem 4.8 and Corollary 2.7. �

The following corollary follows easily from [16, (2.3), (2.4)].
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Corollary 4.10. Let Λ = kQ be an hereditary algebra, with Q of type Ãn (n > 1),

D̃n (n ≥ 4), Ẽ6, Ẽ7 or Ẽ8, and G an cyclic group of order m acting on Λ, with m
invertible in Λ.

i) If Λ = kQ with Q of type Ã3 and G = Z/2Z is acting non trivially on the
set {e1, · · · , e4} of idempotents of Λ then the skew group algebra Λ[Z/2Z]

is Morita equivalent to an algebra kQ′ with Q′ of type D̃4.

ii) If Λ = kQ with Q of type Ã5+2r , r ≥ 0 and G = Z/2Z is acting non
trivially on the set {e1, · · · , en} of idempotents of Λ then the skew group
algebra Λ[Z/2Z] is Morita equivalent to an algebra kQ′ with Q′ of type

D̃5+r.

iii) If Λ = kQ with Q of type D̃4, and G = Z/2Z is acting non trivially on the
set {e1, · · · , e5} of idempotents of Λ then the skew group algebra Λ[Z/2Z]

is Morita equivalent to an algebra kQ′ with Q′ of type Ã3. If G = Z/3Z

is acting non trivially on the set {e1, · · · , e5} of idempotents of Λ then the
skew group algebra Λ[Z/3Z] is Morita equivalent to an algebra kQ′ with Q′

of type Ẽ6. If G = Z/4Z is acting non trivially on the set {e1, · · · , e5} of
idempotents of Λ then the skew group algebra Λ[Z/4Z] is Morita equivalent

to an algebra kQ′ with Q′ of type D̃4.

iv.1) If Λ = kQ with Q of type D̃5+r, r ≥ 0 and G = Z/2Z is acting non trivially
on the set {e1, · · · , en} of idempotents of Λ and the action of g ∈ G on Λ is
induced by a reflection in the quiver, then the skew group algebra Λ[Z/2Z]

is Morita equivalent to an algebra kQ′ with Q′ of type Ã5+2r.

iv.2) If Λ = kQ with Q of type D̃2r, r ≥ 3 and G = Z/2Z is acting non trivially
on the set {e1, · · · , en} of idempotents of Λ and the action of g ∈ G on Λ
is induced by a reflection with respect the middle point er+1 in the quiver,

a) if Q is of type D̃6 then the skew group algebra Λ[Z/2Z] is Morita

equivalent to an algebra kQ′ with Q′ of type D̃4;

b) if Q is of type D̃2r, r ≥ 4 then the skew group algebra Λ[Z/2Z] is

Morita equivalent to an algebra kQ′ with Q′ of type D̃2k−3.

v) If Λ = kQ with Q of type Ẽ6 and G = Z/2Z is acting non trivially on the
set {e1, · · · , e7} of idempotents of Λ then the skew group algebra Λ[Z/2Z]

is Morita equivalent to an algebra kQ′ with Q′ of type Ẽ7. If G = Z/3Z

is acting non trivially on the set {e1, · · · , e7} of idempotents of Λ then the
skew group algebra Λ[Z/2Z] is Morita equivalent to an algebra kQ′ with Q′

of type D̃4.

vi) If Λ = kQ with Q of type Ẽ7 and G = Z/2Z is acting non trivially on the
set {e1, · · · , e8} of idempotents of Λ then the skew group algebra Λ[Z/2Z]

is Morita equivalent to an algebra kQ′ with Q′ of type Ẽ7.

The case Ã1 is not considered in Theorem 4.8 because the techniques we use
do not hold in this case. In fact, Λ is the Kronecker algebra and Proposition 2.1
does not hold since this algebra has double arrows. Moreover, Theorem 2.8 cannot
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be applied because Λ is not simply connected. We will only consider the case of a
cyclic group acting on the Kronecker algebra, then it is possible to apply directly
[16, (2.3)].

If G is a cyclic group acting on Λ, the Kronecker algebra, |G| = m with m
invertible in Λ then all possible actions are given by:

Ã1
• •

.........................................................................

.......
...
..
..
..

.........................................................................

.......
...
..
..
..

1 2

α

β

1) g(ei) = ei, i = 1, 2, g(α) = α, g(β) = β and in this case the skew group
algebra Λ[G] ≃ (

∏m
t=1 Λ). [16, (2.3)]

2) g(ei) = ei, i = 1, 2, g(α) = λα, g(β) = µβ with λm = µm = 1,
2.1) if λ = 1 and µ 6= 1 then the skew group algebra Λ[G] is hereditary of

type Ã2m. [16, (2.3)]
2.2) If λ 6= 1 and µ 6= 1 then the skew group algebra Λ[G] ≃

∏m
t=1 Λ. [16,

(2.3)]
3) g(ei) = ei, i = 1, 2, g(α) = λβ, g(β) = µα with λm = µm = 1, and in this

case the skew group algebra Λ[G] is hereditary of type
∏2m

t=1A1. [16, (2.3)]
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