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SIMULTANEOUS APPROXIMATION BY A NEW SEQUENCE
OF SZASZ-BETA TYPE OPERATORS

ALI J. MOHAMMAD AND AMAL K. HASSAN

ABSTRACT. In this paper, we study some direct results in simultaneous ap-
proximation for a new sequence of linear positive operators My (f(t); z) of
Szasz—Beta type operators. First, we establish the basic pointwise convergence
theorem and then proceed to discuss the Voronovaskaja-type asymptotic for-
mula. Finally, we obtain an error estimate in terms of modulus of continuity
of the function being approximated.

1. INTRODUCTION

In [3] Gupta and others studied some direct results in simultaneous approxima-
tion for the sequence:

J)) :ZQn,k(l‘) /bn,k(t)ft dt
k=0 0

where z,t € [0,00), gnr(x) = e_wk#x)k and by, ,(t) = %tk(l + ¢)~(nFhtD),
After that, Agrawal and Thamer [1] applied the technique of linear combination
introduced by May [4] and Rathore [5] for the sequence B, (f(t);x). Recently,

Gupta and Lupas [2] studied some direct results for a sequence of mixed Beta—
Szasz type operator defined as L, (f(t);x) = E by k( f Qnk—1 () f(t) dt + (1 +
x)~" 1 f(0).

In this paper, we introduce a new sequence of linear positive operators M, (f(t); z)
of Szasz—Beta type operators to approximate a function f(z) belongs to the space
Col0,00) = {f € C[0,00) : |f(t)] < C(1 +t)* forsome C' > 0, > 0}, as follows:

ank /bnk 1 t) dt +e " f(0), (1.1)
k=1 0
We may also write the operator (1.1) as M, (f(%); f Wi (t, z) f(t) dt where
o0
Wy(t,x) = > qni(x) by e—1(t) + e "(t), §(t) being the Dirac-delta function.

k=1
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The space Cy [0,00) is normed by ||f|o = sup [f(t)| (1+¢)~*.
0<t<o0

There are many sequences of linear positive operators with are approximate the
space Cy [0,00). All of them (in general) have the same order of approximation
O(n~1) [6]. So, to know what is the different between our sequence and the other
sequences, we need to check that by using the computer. This object is outside our
study in this paper.

Throughout this paper, we assume that C' denotes a positive constant not nec-
essarily the same at all occurrences, and [] denotes the integer part of [.

2. PRELIMINARY RESULTS
For f € C'[0,00) the Szasz operators are defined as S, (f;2) = > gnr(x) f (%),
k=1
x € [0,00) and for m € N°(the set of nonnegative integers), the m-th order moment

oo
of the Szasz operators is defined as fiy,m(x) = Y Gn.x(2) (% — a:)m
k=0

LEMMA 2.1. [3] For m € N°, the function p, m(z) defined above, has the
following properties:
(i)  pnolx) =1, upi(z) =0, and the recurrence relation is

Nhin,m+1(T) = (M:z,m(@ + mﬂn,m—l(x)) sm =1

(i1)  pin,m () is a polynomial in = of degree at most [m/2];
(iii) For everyx € [0,00),tn,m(z) = O (n~[(m+1/2))

From above lemma, we get

Y k(@) (k = na)? = n* (pn25() - (—2)¥e ) (2.1)
k=1
=n* {0 7)+O0(n %)} (for any s> 0)
=0(n?) (it s > 7).

For m € NY, the m-th order moment T, ,, () for the operators (1.1) is defined
as:

Toom(x) =M, ((t—z)™x) = Z G, k() /bn,k_l(t)(t —z)™dt + (—x)"e ",
k=1 2

LEMMA 2.2.For the function T, m(z), we have Ty o(x) = 1,Ty1(x) = -

n—1’
Tho(z) = % and there holds the recurrence relation:

(n—m —1)Ty my1(x) = 2T, . (x) + (22 + 1)m + ) Ty m(z) (2.2)
+mx(z +2)Thm-1(z), n>m-+1.

Further, we have the following consequences of Ty, m(x):
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(i)  Thm(z) is a polynomial in = of degree exactly m;
(ii) For every x € [0,00), Ty m(z) = O (n~m+1/2)),

Proof: By direct computation, we have T, o(x) = 1, T, 1(z) = %5 and
To(x) = % Next, we prove (2.2). For x = 0 it clearly holds. For

€ (0,00), we have

Z T 1o /bn p—1(t)(t —x)"dt —n(—x)me™™ —mT, m_1(x).

Using the relations zq), ; (z) = (k—nz) gnk(x) and t (14+2) b, (¢) = (k — (n + 1)) x
bk (1), we get:

gk

Ty m(z) = (k —nx) qnk(x /bn ko1 (Ot —2)"dt+n(—2)" e ™™ — maTpm_1(x)

=
Il
—

p”qg

/ H(L+ ) by gy (B)(E — 2)™dt + (n+ )Ty (2) — (—2)™ e
0

£
Il

+ @+ DThm(z) — (x+1)(=2)"e ™ — maT, m—1(x).

By using the identity ¢(1 +t) = (t — 2)? + (1 + 22)(t — 2) + 2(1 + x), we have

«T), Zan(iU)/bnk L) (¢ — )™ T2t 4 (1 + 22) Zan /bnk L@ —x)ymHa

z(1+4 2 Z In.k(T) /b;,k,l(t)(t —2)"dt + (n 4+ DT mr1(z)
= 0

+ (14 2)Th,m (x) — maTy m—1(x) — (—z)™e ™",
Integrating by parts, we get
xT,’%m(:c) =nm—-—m—1)Ty mt1(x) — (m+2x+2mx) T, m(z) —mz(x+2) Ty m—1(x)

from which (2.2) is immediate.

From the values of T}, o(x) and T, 1(z), it is clear that the consequences (i) and
(ii) hold for m = 0 and m = 1. By using (2.2) and the induction on m the proof of
consequences (i) and (ii) follows, hence the details are omitted.

From the above lemma, we have

S gui(@) / b1 ()t — )27 dt = Ty — (—2)>"e ™" (2.3)
k=1 0

(n™") +0(n"7°) (for any s> 0)

@)
o(mn™") (if s > 7).
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LEMMA 2.3. Let dand v be any two positive real numbers and [a,b] C (0, 00).
Then, for any s > 0, we have

/ W (t,2) £ dt — O(n—).

el Clap)

Making use of Schwarz inequality for integration and then for summation and
(2.3), the proof of the lemma easily follows.
LEMMA 2.4. [3] There exist polynomials Q; j.r(x) independent of n and k
such that
2" D" (g1 (2)) = > n'(k —nx)’ Qi jr(x) gnk(x), where D = ==
2i+j<r
i,j >0

3. MAIN RESULTS

Firstly, we show that the derivative M,(f)( f(t);x) is an approximation process
for f(z), r=1, 2,

Theorem 3.1. Ifr € N, f € C4[0,00) for some a > 0 and f) exists at a
point x € (0,00), then

lim M (f(t);z) = f (). (3.1)
n—oo
Further, if ) exists and is continuous on (a —1,b+n) C (0,00), n > 0, then
(3.1) holds uniformly in [a,b].

Proof: By Taylor’s expansion of f, we have

) (g .
10 =3 L0 oy ket - 0y,

7!
i=0

where, (t,2) — 0 as t — x. Hence

o0

MO (f Zf“’ / W) -2+ [ WI(0)e(t,0) (- o)

0 0
= Il + IQ.

Now, using Lemma 2.2 we get that M, (¢™;z)is a polynomial in x of degree
exactly
, for all m € N°. Further , we can write it as:

(n—=—m-1)!n

Mn(t752) = == =1

m(m—1) 2™ " +0(n"?). (3.2)

Therefore,
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_ Zf“;!(w) <(Tz(;7";ﬁ)!nrr!) :(;m(x) ((n(;i I)})!nr) S () as n— oo,

Next, making use of Lemma 2.4 we have

Qi (@) & ]7’ .
I < —_ n - n,k— ) -
|I2] < Z n Zq k(@) |k —nzl” [ bpr-1(t) [e(t,z)| [t —|" dt
2i+j<r k=1 0
,7>0
+ (nz) e " (0, z)|
= I3+ I4.

Since e(t,z) — 0 as t — x, then for a given € > 0, there exists a § > 0 such
that |e(t,x)| < e, whenever 0 < |t — | < 0. For |t — | > 0, there exists a constant
C > 0 such that |e(t,z)(t —2)"| < C|t — z|".

Now, since sup w =M(z) =C Vz e (0,00). Hence,

2i+j5<r
i,j 20

L<C S 0 gua) k- naf / bt (t) et — o dt
k=1

20+5<r = t—a|<§
1,7 >0
+ / b i—1(t) |t —z|" dt
[t—z]>6
=I5 + I.

Now, applying Schwartz inequality for integration and then for summation, (2.1)
and (2.3) we led to
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1/2

Is<eC > n') ank(@) [k—nef ( [tnsma® dt) ( [bnsatoe - :c>2rdt>
2i4+j<r k=1 0 0
4,j 20

o0
(since/bn,k,l(t) dt=1)
0

oo 1/2 /[ 00 1/2
<eCc > af (Z qn,k(:v>(k:—nx)2j> (kZ qn,k(a:)/bn,k_l(t)(t—x)”dt)
=1 0

2%i+j<r k=1
i,7 >0
<eCOm/?) > niomi?) =e0(1).
2i4+j5<r

4,j 20

Again using Schwarz inequality for integration and then for summation, in view
of (2.1) and Lemma 2.3, we have

Is < C Z nian,k(a:) |k — nzx|! / by k—1(t) |t — x| dt

2i4+j<r k=1 [t—2|>8
i,j >0
- oo 1/2 1/2
SC 3 'Y ank(@) [k —naf ( / b k—1(1) dt) / b k—1(D)(t — ) dt
2i+j<r k=1 0 t—x|>6
i,j >0
1/2

e S ) B LI AL e
k=1 k=1

2%i+j<r t—i|>6
4,j 20
<O(n™?%) Z n*O(n?/?) (for any s > 0)
2i+j3<r
4,520
=0 (nT/Q_S =o(1) (for s> r/2).

Now, since € > 0 is arbitrary, it follows that Is = o(1). Also, Iy — 0 as n — oo
and hence I = o(1), combining the estimates of I; and I3, we obtain (3.1).

To prove the uniformity assertion, it sufficient to remark that 6(e) in above proof
can be chosen to be independent of z € [a, b] and also that the other estimates holds
uniformly in [a, ).

Our next theorem is a Voronovaskaja-type asymptotic formula for the operators

S(f)z), r=1,2, . ...
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THEOREM 3.2. Let f € C,[0,00) for some a > 0. If f+2) exists at a point
€ (0,00) , then

tim (MO ((0:2) ~ 1O@) = IO 4 (4 vz 1@ (33)
+ %x(m +2) £ ().

Further, if f2) exists and is continuous on the interval (a=mn,b4+mn) C (0,00), n>0,
then (3.8) holds uniformly on [a,b).

Proof: By the Taylor’s expansion of f(t), we get

My(Lr) ( (t - x)i; LL') + MT(LT) (E(t, SC)(t o x)r+2; (E)

=5 + I,

where e(t,z) — Oas t — .
By Lemma 2.2 and (3.2), we have

f L Z_j (1) o
_ f<rr!(a:) MO 2) + f(<;++1>1()!) ((r 1) () MO (s 2) + MO m))
# I (2O D g0 ) 4 2) ) 50) + M) )
e (g
+ % {(r +1)(~2) (7@ znr__ll))!!”r r !)
+ <% (rt Dz BT =20 (nrjlg)) L 1)7«7«1)}
N f((;f)Q()x') { (r+ 1)2(7" +2) 22 <(n —(7::11))' In” . !)

+(r+2)(—2) <(%) (r+1)lz+ (%) (r+1) w)

n—r—3)In""% (r [ n—r—3)Ip B
+(( (n—31))'! ( +22)'x+( (n—31))'! (r+2)(7"+1)(r—|—1)!x)}+0(n ).

Hence in order to prove (3.3) it suffices to show that nly — 0 as n — oo, which
follows on proceeding along the lines of proof of Is — 0as n — oo in Theorem 3.1.

The uniformity assertion follows as in the proof of Theorem 3.1.

Finally, we present a theorem which gives as an estimate of the degree of ap-
proximation by My(f)(.; x) for smooth functions.

Rev. Un. Mat. Argentina, Vol 50-1



38 ALI J. MOHAMMAD AND AMAL K. HASSAN

THEOREM 3.3. Let f € C,[0,00) for some o > 0 andr < q <r+2. If
fD exists and is continuous on (a—n,b+n) C (0,00), n > 0, then for sufficiently
large n,

b ) - 10w, < o 3

where Cy ,Cy are constants independent of f and n, wy(0) is the modulus of con-
tinuity of f on (a—n,b+mn), and |||,y denotes the sup-norm on [a,b] .

Proof. By Taylor’s expansion of f, we have

4 (y (g — @) (g

A p (t —2)"x(t) + h(t, z)(1 = x (1)),

i=0
where £ lies between t,z, and x(t) is the characteristic function of the interval
(a—mn,b+mn). Now,

oo

/ W (t, @) (t — @) 'dt — f(”(x))

7

946
M (f(t)i2) — 1) (@) = (Zf )

@ (g) — £ (4 7
+/W£”(t,m) {%(pxm(t)}dt+/W,ET>(t,x)h(t,m)(1 — x(t)) dt

=11 + Is + I3.

By using Lemma 2.2 and (3.2), we get

b= 2‘1: f(i;!(x) Z ( ; )(_x)i_jj_;r ((n _(7{:11))!! =

i=r Jj=r
(n—j—1!ni™t

+ (n—1)!

i = et 0 ) - /@),
Consequently,

q
o < ™ (3]0
i=r

To estimate I we proceed as follows:

C[mb]) + O(n~?), uniformly on [a, b].

o @(e) = (@
Ll S/ ‘W,(Lr)(t,x) ‘ { | f@(€) q!f ) ()| |t—x|qx(t)}dt
0
< “’ﬂ;i)'(é) /‘Wgr>(t,x)\ <1+|t_5—x|) |t — x| dt
0
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< wf(q) (5) [

> p

qff;g ‘/bnk 1 t—:c|q+(5*1 |t—x|q+1) dt
0
+ (=n)"e " (x? + § ta T } , 0> 0.

Now, for s =0, 1, 2, ..., using Schwartz inequality for integration and then
for summation, (2.1) and (2.3), we have
(/ bn,kl(t)dt>
0
(3-4)

o 1/2
x (/q (D)t — x)%dt>
0

- 12 1/2
<an k(x (knm)2]> (ZQ'n k(x /bnk 1 )(tx)2sdt>

k=1 0

o0 0 oo .
3 nste) k= nall [ by (O]t 2l°dt < 3 goelo) b= naf
k=1 0

k=1

——

IN

— O(!/*)0(m™*/?)
=0

nU=%)/2) " uniformly on[a, b].

Therefore, by Lemma 2.4 and (3.4), we get

Mg

7 - i i Qi ()|
A |/b o) Jt—a)tde <> Z n' [k = nal! SR g, (@) (3.5)
0 k=1 9 4
%]

bl
Il
o
ol/\

J
2

o0
x/bn,Hu) [t — | dt
0

sup sup 1Qig.r(@)] Z n (Z qn,k(z)|k7nz\j/bn,k_1(t) [t — =z|® dt)
k=1

2i+j < r z€lab] z 2%itj<r 0
i,7 >0 i,j>0
=C nt0nY¥™2/2) = O(n""*)/2) uniformly on la,b] .
21 +] <r
1,720
. [Qijr@] _
(since sup sup ——2i—— = M(x) but fixed )
2i+j<r w€lap]
1,720

Choosing 6 = n~/? and applying (3.5), we are led to

Wi (%) [

”12”0[11,6] < q!

< Con~ /2 (n—1/2> .

Onr=0/2y 4 p1/20(n(r—a=1/2) 4 O(n_m)] , (for any m > 0)
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Since t € [0,00) \ (a—n, b+n), we can choose § > 0 in such a way that [t —z| > ¢

for all « € [a,b]. Thus, by Lemmas 2.3 and 2.4 , we obtain

> i i Qi, j,r (T
TAED SN DI e gL EC P

xT

brk1(8) [A(t, @) | dt + (—n) e [h(0,2)]
[t—z|>s

For |t — x| > §, we can find a constant C' such that |h(t, z)| < C|t — z|”. Hence,

using Schwarz inequality for integration and then for summation ,(2.1), (2.3), it
easily follows that Is = O(n~*%) for any s > 0, uniformly on [a, ].

(1]
2]
(3]

(4]

Combining the estimates of I , I I3, the required result is immediate.
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