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EXPONENTS OF MODULAR REDUCTIONS OF FAMILIES OF

ELLIPTIC CURVES

IGOR E. SHPARLINSKI

Abstract. For some natural families of elliptic curves we show that “on av-
erage” the exponent of the point group of their reductions modulo a prime p

grows as p
1+o(1).

1. Introduction

For integers a and b such that 4a3 + 27b2 6= 0, we denote by Ea,b the elliptic
curve defined by the affine Weierstraß equation:

Ea,b : Y 2 = X3 + aX + b.

For a basic background on elliptic curves, we refer to [11].
For a prime p > 3, we denote by Fp the finite field of p elements, which we

identify with the set of integers {0,±1, . . . ,±(p − 1)/2}.
When p ∤ 4a3+27b2, the set Ea,b(Fp), consisting of the Fp-rational points of Ea,b

together with a point at infinity O, forms an abelian group under an appropriate
composition rule called addition, and the number of elements in the group Ea,b(Fp)
satisfies the Hasse bound :

|#Ea,b(Fp) − p − 1| 6 2
√

p (1)

(see, for example, [11, Chapter V, Theorem 1.1]).
It is well-known that Ea,b(Fp) is of rank at most two, that is, Ea,b(Fp) is iso-

morphic to

Ea,b(Fp) ∼= Z/mZ × Z/nZ (2)

for unique integers m and n with m | n and #Ea,b(Fp) = mn. The number n is
called the exponent of Ea,b(Fp) which we denote by ℓa,b(p). In other words, ℓa,b(p)
is the smallest positive ℓ such that ℓP = O for all points P ∈ Ea,b(Fp).

We also put ℓa,b(p) = 0 if p | 4a3 + 27b2.
Thus we see that (1) and (2) imply the following trivial bound

ℓa,b(p) > (Ea,b(Fp))
1/2

> p1/2 − 1. (3)

The exponent of elliptic curves has been studied in a number of works, see [4, 7,
8, 9, 10], with a variety of results, each of them indicating that in a “typical case”
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the exponent tends to be substantially larger than the bound (3) (and its analogue
for curves over arbitrary finite fields) guarantees.

W. Duke [4], among other results, has proved that, assuming the Generalised
Riemann Hypothesis, for every fixed integer a and b with 4a3 + 27b2 6= 0, and
arbitrary small ε > 0, the bound

ℓa,b(p) > p1−ε (4)

holds for all but o(T/ log T ) of primes p 6 T .
It is also shown in [10] that (4) holds for all but o(p2) pairs (a, b) ∈ Fp × Fp.
Here we use a combination of the results and ideas of [1, 10] to prove uncondi-

tionally that (4) is satisfied for almost all pairs (a, b) with |a| 6 A, |b| 6 B for A
and B relatively small compared to p.

Theorem 1. For any fixed ε > 0 and all integers A, B satisfying the inequalities

AB1/2
> p1+ε and B > p1/4+ε

or

A1/2B > p1+ε and A > p1/4+ε

the bound

ℓa,b(p) > p1−ε

holds for all but o(AB) pairs (a, b) with |a| 6 A, |b| 6 B

In particular, Theorem 1 is nontrivial if

max{A, B} > p7/8+ε and min{A, B} > p1/4+ε

or

AB > p4/3+ε.

We also show that averaging over p gives some additional saving.

Theorem 2. For any fixed ε > 0 and all integers A, B and T satisfying the

inequalities

T ε
6 A, B 6 T 1−ε and AB > T 1+ε

√

min{A, B} .

the bound (4) holds for all but o(ABT/ log T ) triples (a, b, p) with |a| 6 A, |b| 6 B,

p 6 T .

We note that the condition A, B 6 T 1−ε from [1], where it is used to simplify
the error term, is not neccessary. One can easily extend Theorem 2 for A and B
beyond this range, however since (as in [1]) small values of A and B are of main
interest we have not done this.

We remark that in [5] some of the results of [4] have been extended to hyper-
elliptic curves. It would also be interesting to obtain analogues of our result for
natural families of hyperelliptic curves.

We also consider the set of Farey fractions

F(W ) = {u/v : gcd(u, v) = 1, 1 6 u, v 6 W}.
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In particular

#F(W ) =

(

6

π2
+ o(1)

)

W 2.

For t = u/v with gcd(v, p) = 1 and two polynomial A(X), B(X) ∈ Z[X ], the
reduction EA(t),B(t)(Fp) is correctly defined. Various questions concerning the be-
haviour of the curves EA(t),B(t)(Fp) on average over p 6 T and t ∈ F(W ) have
been studied in [2]. Here we continue to study this family of curves. Certainly the
most interesting case is when W is small compared to T .

Theorem 3. Assume that the discriminant

∆A,B(t) = −16(4A(t)3 + 27B(t)2)

is nonzero and the j-invariant

jA,B(t) = − 6912A(t)3

4A(t)3 + 27B(t)2

is nonconstant. Then for any fixed ε > 0 and all integers W and T with

W > T 1/2+ε

the bound

ℓA(t),B(t)(p) > p1−ε

holds for all but o(WT/ log T ) pairs (t, p) with t ∈ F(W ), p 6 T .

2. Preparations

The following result follows immediately from the more precise statement of [10,
Theorem 3.1].

Lemma 4. For any ε > 0, the number of triples (a, b) ∈ Fp × Fp with

ℓa,b(p) < p1−ε

is at most o
(

p2
)

.

Let dp = gcd(p − 1, 6) and put

σp(H) = max
χdp=χ0

χ6=χ0

{

1,

∣

∣

∣

∣

∣

H
∑

n=1

χ(n)

∣

∣

∣

∣

∣

}

,

where the maximum is taken over all non-principal multiplicative characters χ
modulo p such that χdp is the principal character χ0.

Similarly, we define ep = gcd(p − 1, 4) and put

ρp(H) = max
χep=χ0

χ6=χ0

{

1,

∣

∣

∣

∣

∣

H
∑

n=1

χ(n)

∣

∣

∣

∣

∣

}

,

where the maximum is taken over all non-principal multiplicative characters χ
modulo p such that χep is the principal character χ0. For an arbitrary subset
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S ⊆ Fp × Fp, we denote by Np(S, A, B) the number of pairs such that (a, b) ∈ S
with |a| 6 A and |b| 6 B. We also denote

E(A, B; p) = min
{

Aσp(B) + B1/2p, B ρp(A) + A1/2p
}

.

The following estimate is given in [1].

Lemma 5. For all primes p > 3, integers 1 6 A, B 6 (p − 1)/2, and subsets

S ⊆ Fp × Fp such that whenever (r, s) ∈ S the isomorphism Ea,b(Fp) ∼= Er,s(Fp)
implies (a, b) ∈ S, the following bound holds:

∣

∣

∣

∣

Np(S, A, B) − 4AB

p2
#S

∣

∣

∣

∣

≪ E(A, B; p).

Moreover, it is shown in [1] that E(A, B; p) is small “on average” over p.

Lemma 6. The following bound holds:
∑

p6T

E(A, B; p) ≪ ABT 1/2+o(1) + AB7/8T + B1/2T 2

For a prime p and an integer t with 1 6 t < p we denote by RT,p(t) the number
of fractions u/v ∈ F(T ) with gcd(v, p) = 1 and u/v ≡ t (mod p).

It is shown in [3] that RT,p(t) is close to its expected value #F(T )/p on average
over t = 1, . . . , p − 1. More precisely, we have:

Lemma 7. We have,

p−1
∑

t=0

∣

∣

∣

∣

RW,p(t) −
6

π2
· W 2

p

∣

∣

∣

∣

= O
(

W 2p−1 + Wp1/2+o(1)
)

.

3. Proof of Theorem 1

Let Sp(ε) be the set of pairs (a, b) ∈ Fp × Fp for which ℓa,b(p) 6 p1−ε. Then it
is enough to show that

Np (Sp(ε), A, B) = o(AB).

Since by Lemma 4 we have #Sp(ε) = o(p2), invoking Lemma 5 we see that it is
enough to check that E(A, B; p) = o(AB).

Assume that B > p1/4+ε then by the Burgess bound, see [6, Theorems 12.5 and
12.6], we have σp(B) = o(B). Also, if AB1/2 > p1+ε then have B1/2p = o(AB).

Similarly, if A > p1/4+ε then ρp(B) = o(B), and if A1/2B > p1+ε then have

A1/2p = o(AB).

4. Proof of Theorem 2

As before, let Sp(ε) be the set of pairs (a, b) ∈ Fp × Fp for which ℓa,b(p) 6 p1−ε.
Then it is enough to show that

∑

p6T

Np (Sp(ε), A, B) = o(ABT/ log T ). (5)

Let us assume that A > B since the case A < B is similar.
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Using the trivial bound Np(Sp(ε), A, B) 6 AB for primes p 6 2A+1, we deduce
∑

p6T

Np (Sp(ε), A, B) =
∑

2A+1<p6T

Np(Sp(ε), A, B) + O(A2B). (6)

Noticing that for p > 2A + 1 the set Sp(ε) satisfies the conditions of Lemma 5,
we obtain

∑

2A+1<p6x

Np(Sp(ε), A, B)

=4AB
∑

2A+1<p6T

#Sp(ε)

p2
+ O





∑

2A+1<p6T

E(A, B; p)



 .

(7)

By Lemma 4 we have
∑

2A+1<p6T

#Sp(ε)

p2
= o(T/ log T ). (8)

Substituting (7) and (8) in (6), we obtain
∑

p6T

Np (Sp(ε), A, B)

= o(ABT/ log T ) + O





∑

2A+1<p6T

E(A, B; p) + A2B



 .

We now easily verify that under the conditions of the theorem, Lemma 6 implies
the desired bound (5).

5. Proof of Theorem 3

As before, we use Sp(ε) to denote the set of pairs (a, b) ∈ Fp × Fp for which
ℓa,b(p) 6 p1−ε.

Let TA,B,p(ε) be the set of t ∈ Fp such that
(

A(t)λ4, B(t)λ6
)

∈ Sp(ε).

for some λ ∈ F∗
p.

Obviously, for any t ∈ Fp and λ ∈ F∗
p we have

ℓA(t),B(t)(p) = ℓA(t)λ4,B(t)λ6(p)

(since the corresponding curves are isomorphic, see [11, Section III.1]).
We also note that the system of equations

A(t)λ4 = a, B(t)λ6 = b

leads to the equation
b2A(t)3 = a3B(t)2

which has O(1) solutions (by the condition on the j-invariant jA,B(t)).
Therefore

#TA,B,p(ε) ≪
#Sp(ε)

p
.
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Using Lemma 7, we obtain

∑

t∈TA,B,p

RW,p(t) ≪
W 2#TA,B,p(ε)

p
+ W 2p−1 + Wp1/2+o(1) = o(W 2)

which concludes the proof.
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