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HECKE OPERATORS ON COHOMOLOGY

MIN HO LEE

ABSTRACT. Hecke operators play an important role in the theory of automor-
phic forms, and automorphic forms are closely linked to various cohomology
groups. This paper is mostly a survey of Hecke operators acting on certain
types of cohomology groups. The class of cohomology on which Hecke opera-
tors are introduced includes the group cohomology of discrete subgroups of a
semisimple Lie group, the de Rham cohomology of locally symmetric spaces,
and the cohomology of symmetric spaces with coefficients in a system of lo-
cal groups. We construct canonical isomorphisms among such cohomology
groups and discuss the compatibility of the Hecke operators with respect to
those canonical isomorphisms.

1. INTRODUCTION

This paper is mainly a survey of Hecke operators acting on certain types of coho-
mology groups. The class of cohomology on which Hecke operators are introduced
includes the group cohomology of discrete subgroups of a semisimple Lie group,
the de Rham cohomology of locally symmetric spaces, and the cohomology of sym-
metric spaces with coefficients in a system of local groups. We construct canonical
isomorphisms among such cohomology groups and discuss the compatibility of the
Hecke operators with respect to those canonical isomorphisms.

Automorphic forms play a major role in number theory, and they are closely
related to many other areas of mathematics. Modular forms, or automorphic forms
of one variable, are holomorphic functions on the Poincaré upper half plane H
satisfying a certain transformation formula with respect to the linear fractional
action of a discrete subgroup I' of SL(2,R), and they are closely linked to the
geometry of the associated Riemann surface X = I'\H. For example, modular
forms for I" can be interpreted as holomorphic sections of a line bundle over X,
and the space of such modular forms of a given weight corresponds to a certain
cohomology group of X with local coefficients or with some cohomology group of the
discrete group T (cf. [1], [2], [5]) with coefficients in some I'-module. Modular forms
can be extended to automorphic forms of several variables by using holomorphic
functions either on the Cartesian product H" of n copies of H for Hilbert modular
forms or on the Siegel upper half space H,, of degree n for Siegel modular forms.
More general automorphic forms can also be considered by using semisimple Lie
groups. Indeed, given a semisimple Lie group G of Hermitian type and a discrete
subgroup I' of GG, we can consider automorphic forms for I" defined on the quotient
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100 MIN HO LEE

D = G/K of G by a maximal compact subgroup K of G. The space D has the
structure of a Hermitian symmetric domain, and automorphic forms on D for T’
are holomorphic functions on D satisfying an appropriate transformation formula
with respect to the natural action of I on D (cf. [3]). Such automorphic forms are
also linked to families of abelian varieties parametrized by the locally symmetric
space '\ D (cf. [6], [10], [14]). Close connections between automorphic forms for the
discrete group I' C G and the group cohomology of I" or the de Rham cohomology
of D with certain coefficients have also been studied in numerous papers over the

years (see e.g. [11]).
Hecke operators are certain averaging operators acting on the space of automor-
phic forms (cf. [1], [12], [15]), and they are an important component of the theory

of automorphic forms. For example, they are used to obtain Euler products as-
sociated to modular forms which lead to some multiplicative properties of Fourier
coefficients of those automorphic forms. In light of the fact that automorphic forms
are closely related to the cohomology of the corresponding discrete subgroups of
a semisimple Lie group, it would be natural to study the Hecke operators on the
cohomology of the discrete groups associated to automorphic forms as was done in
a number of papers (see e.g. [6], [8], [7], [17]). Hecke operators on the cohomology
of more general groups were also investigated by Rhie and Whaples in [13]. On
the other hand, if f is an automorphic form on a Hermitian symmetric domain
D = G/K for a discrete subgroup I' of G described above, then f can be inter-
preted as an algebraic correspondence on the quotient space I'\D, which has the
structure of a complex manifold, assuming that I is torsion-free. Such a correspon-
dence is determined by a pair of holomorphic maps A, : I'\D — T'\D, where I
is another discrete subgroup of G. The maps A and p can be used to construct a
Hecke operator on the de Rham cohomology of I'\D. The idea of Hecke operators
on cohomology of complex manifolds of the kind described above was suggested,
for example, by Kuga and Sampson in [9] (see also [7]).

The goal of this paper is to discuss relations among different types of cohomology
described above and establish the compatibility of the Hecke operators acting on
those cohomology groups. The organization of the paper is as follows. In Section 2
we review Hecke algebras associated to subgroups of a given group, whose examples
include the algebras of Hecke operators considered in the subsequent sections. In
Section 3 we describe the cohomology of groups as well as Hecke operators acting
on such cohomology. We also discuss equivariant cohomology and its relation with
group cohomology. The de Rham cohomology of a locally symmetric space with
coefficients in a vector bundle is discussed in Section 4 by using the language of
sheaves, and then Hecke operators are introduced on Rham cohomology groups. In
Section 5 we study the cohomology of a locally symmetric space with coefficients
in a local system of groups in connection with other types of cohomology. Hecke
operators are also considered for this cohomology. Section 6 is concerned with
compatibility of Hecke operators. We discuss canonical isomorphisms among de
Rham, singular, and group cohomology and show that the Hecke operators acting
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HECKE OPERATORS ON COHOMOLOGY 101

on those cohomology groups are compatible with one another under those canonical
isomorphisms.

2. HECKE ALGEBRAS

In this section we review some of the basic properties of Hecke algebras. In
Section 2.1 we discuss the commensurability relation on the set of subgroups of a
given group G, consider double cosets determined by two commensurable subgroups
of GG, and describe decompositions of such double cosets in terms of left or right
cosets of one of those two subgroups. We introduce a binary operation on the set of
double cosets in Section 2.2, which is used in Section 2.3 to construct the structure
of an algebra, known as a Hecke algebra, on the set of double cosets determined by
a single subgroup of the given group. More details and some additional properties
of Hecke algebras can be found, for example, in [6], [12] and [15].

2.1. Double cosets. Let G be a group. Two subgroups I' and I are said to be
commensurable (or T is said to be commensurable with T') if

[:TNI' <o, [IM:TNT']< o0,

that is, if ' NI has finite index in both I" and I'V. We shall write I' ~ I’ when
I' is commensurable with I”. If H is a subgroup of G and if K is a subset of G
containing H, then we shall denote by K/H (resp. H\K) the set of left (resp. right)
cosets of H in K.

Lemma 2.1. The commensurability relation ~ is an equivalence relation.

Proof. The relation ~ is clearly reflexive and symmetric. Let I'y, I's and I's be
subgroups of G with I'y ~ I's and I's ~ I'3. We consider the map

FlﬂI‘g/FlﬂI‘gﬂl“g—J‘g/FgﬂI‘g (21)

sending the left coset v(I'y NT'2NT'3) to the left coset y(I'2NT's) for each v € 'y NTs.
If y(T2 NT3) = ~+/'(T'y NT3) with 7,7 € T'; N Ty, then v~ 14" € T'1 NT'y N T'3; hence
we see that y(I'y NTe NT3) = 4/ (I'y NTe NT3). Thus the map (2.1) is injective,
and therefore we have

[iNTy:TiNTeNT3] <[T2:ToNT3) < oo,
which implies that
[ :TiNToNnTs) =T TN NTe : TNy NTs) < .
Similarly, it can be shown that
[5:T1NTyNT3] < oo,

and hence we obtain

[ :TiNT3] <[ :T1NTeNTs] < oo,

[5:T1NT3] <[T3:T1NT2NT3] < o0.

Thus the relation is transitive, and therefore the lemma follows. O
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Given a subgroup I' of G, we set
F={aeG|a 'Ta~T},
which will be called the commensurator of T in G.
Lemma 2.2. The commensurator I is a subgroup of G containing T.

Proof. Given a, 5 € f, since " !'T'a ~ T, we see that
(@371 'T(ap™!) = fla”'Ta)5™"

is commensurable with ST 3~!. However, the commensurability 3~ 'T'8 ~ I implies
that T' ~ BT371; hence we have

(@™ T(ap™") ~ T.

Thus a3~! € f‘, and therefore I is a subgroup of G. Since r clearly contains T,
the proof of the lemma is complete. O

Lemma 2.3. If T ~T’, then I" =T.

Proof. T ~ T/ and a € T, then we have
a Ta~a ' Ta=T'~T;

hence « € T, which shows that I C T'. On the other hand, if 3 € I, then we have
BB~ BB~ T ~ T

hence ( € I. Thus we have I" cT. Similarly, it can be shown that rcr , and
therefore we obtain IV =T. O

Proposition 2.4. LetT' ~ TV, and let a € L. Then the double coset Tal” can be
decomposed into disjoint unions of the form

T s
Tal’ = HI‘oryi = H §;al” (2.2)
i=1 j=1

for some positive integers r and s, where {7;}{_; and {6;}3_; are complete sets of
coset representatives of (I’ Na~Ta)\I" and T'/(T Na~'T"a), respectively.

Proof. We note first that a right coset of I' contained in T'aI” can be written in
the form Tay for some v € IV, If Tany’ with 7/ € T” is another subset of T'al”, we
see that Tary = Fay’ if and only if 4/y~! € IV N a~'Ta, which is equivalent to the
condition that
T'Nna 'Ta)yy = (I"na 'Ta)y.

Since a 'Ta ~ T' ~ I, the index [IV : I N a~'Tq] is finite. Thus, if {y;}7_, is a
set of representatives of (I" N a~!Ta)\I", each v; determines a unique coset I'ay;
contained in I'al”; hence we have

T
Fal” = H Loy;.
i=1
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HECKE OPERATORS ON COHOMOLOGY 103

Similarly, it can be shown that
Fal” =[] d;er",
j=1

where s = [[': T'Na~'T"a]. O

2.2. Operations on double cosets. Let G be the group considered in Section
2.1, and fix a subsemigroup A of G. We denote by C(A) the collection of subgroups
I' of G that are mutually commensurable and satisfy

rcAcT.

Given I',TV € C(A) and a commutative ring R be with identity, we denote by
Hr(T,T7; A) the free R-module generated by the double cosets Tal” with a € A.
Thus an element of Hr(I',I"; A) can be written in the form

Z colal”,
ac€A

where the coefficients ¢, € R are zero except for a finite number of a. We denote
by deg(T'aI”) the number of right cosets I'y contained in T'al”. Thus, if Tal”
is as in (2.2), then deg(T'al”) = r. If n is an element of Hy(T',T'; A) given by
N= 2 aea Cal'al’, then we set

degn = Z o deg(Tal”) (2.3)
acA

and refer to it as the degree of 7.
We now consider an R-module M and assume that the subsemigroup A C G
acts on M on the right by
(m,0) —m-6eM
for (m,d) € M x A. Thus we have
m-1=m, m-(5)=(m-65)-§

for all m € M and §,8 € A. Given I € C(A), let M" denote the submodule of M
consisting of the I'-invariant elements of M, that is,

M"={meM|m-vy=mforallyeT}

If the double coset T'al” with @ € A and T',T” € C(A) has a decomposition of the
form

d
Lal’ = H Ca, (2.4)
i=1
then we define its operation on MT by
d
m | Tal’ = Zm oy (2.5)
i=1
for all m € M".
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Lemma 2.5. The operation of Dal” on MY in (2.15) is independent of the choice
of the representatives a; of the right cosets of T in (2.4) and

m |Tal’ € M"
for all m € M".

Proof. If Te;, T are subsets of T'al” with I'ey; = T'e}, then o) = ~ya; for some
v € T. Thus we see that m - o} = (m-7)-a; = m-q; for all m € M"; hence
m | Tal” is independent of the choice of the representatives c;. On the other hand,
if TaI” has a decomposition as in (2.4), then we see that

d
Fal” = H Loy
=1
for all v € I'. Thus we have
d d
(m | Tal’) -+ = Zm~ (ay) = Zm~ai =m | Tal’;
i=1 i=1

hence it follows that m | Tal” € M™". O

We see easily that the map m — (m | Tal) given by (2.15) is in fact a homomor-
phism of R-modules. We now extend this by defining an R-module homomorphism
associated to each element of Hr(T,T'; A) by

m|n= an(m | Tal”)

forme MU and n =Y coTal” € Hr(T,I"; A).
Given elements I'1,T'2,I's € C(A) and double cosets of the form

T s
Tyl = [[Tieu, TfTs =[] T28 (2.6)
i=1 j=1
with o, 3 € A, we set
(C1aly) - (F2fT3) = > e, TiATs, (2.7)
B!

where the summation is over the set of representatives v € A of the double cosets
I'17I's contained in A and

ey = #{(1,)) [ Thaif; =17} (2.8)

is the number of pairs (7,7) with 1 <¢ <r and 1 < j < s such that I'y;8; = I'17.
Since ¢y = 0 except for a finitely many double cosets I'yyI'3, the sum on the right
hand side of (2.7) is a finite sum.

Let R[I'1\A] denote the free R-module generated by the right cosets I';av with
a € A. Then A acts on R[I'1\A] by right multiplication. On the other hand, there
is a natural injective map Hr(I'1,T'2; A) — R[I'1\A] sending I'1al's = []; Ty to
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> ;T1a;. By using this injection we may regard Hr(I'1,I'2; A) as an R-submodule
of R[I'1\A], and under this identification we see easily that

Hr(T1,Te; A) = R[\A ™. (2.9)

If the double cosets I'1al's and I';5T's are as in (2.6), using (2.15) and (2.8), we
have

(T'1aTs) | (T2pT3) = Zrlai | ([200'3) = Z Zf‘mzﬂj = Z cy Iy,
i=1 i=1 j—1 ~

Using Lemma 2.5 and the identification (2.9) with I', T replaced by 'y, I's, we see
that

> e,Tiy € RID\AJ™.

v

Thus by using (2.9) again, we obtain
e Ty =Y e, TiTs;
¥ ¥

hence it follows that
(FlaFg) . (Fgﬁrg) = (Flafg) | (Fgﬁrg) (210)

From this and Lemma 2.5 we see that the operation in (2.7) is independent of the
choice of the representatives oy, 8; and .

Lemma 2.6. Let T'1al'y and T'9fTs be as in (2.6), and let ¢, with T1yT's C A be
as in (2.8). Then we have

cydeg(I'1yT's) = #{(4,7) | T10;B;I's = T17T'3}
for each v € A.

Proof. We assume that I'17I's C A has a decomposition of the form

¢
AT = H INT7
k=1

Then the relation I'y ;3,13 = I'1yI'3 holds if and only if I'y o; 3; = I'1 7y, for exactly
one k € {1,...,t}. Thus, if ¢, is as in (2.8), we see that

t
#{(i,7) | N33 =175} = Z#{(ivj) | Thaify =Ty} = eyt

k=1

hence the lemma follows from this and the fact that deg(T'17T'2) = t. O
Lemma 2.7. If ;1 € H(['1,T2;A) and n2 € Hr(T2,T's; A), then we have

deg(n1 - m2) = deg(m1) deg(n2).
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Proof. Let Th1al's € Hr(['1,T9;A) and T96Ts € Hpr([2,T's; A) be as in (2.7).
Then, using (2.3) and Lemma 2.6, we have

deg[(T'10ls) - (T2fTs)] = > ¢y deg(T'1AT's).

However, by (2.8) the right hand side of this relation is equal to the number of pairs
(4,j) with 1 <i <7 and 1 < j < s and therefore is equal to rs = deg(I'1al's) -
deg(T'yal's). Thus the lemma follows by extending this result linearly. O

2.3. Hecke algebras. Given I',T'5,T's € C(A), the operation in (2.7) induces a
bilinear map

Hr(l1,Tos A) x Hr(T2, T'3; A) — He(l'1, T3 A)
defined by

<§a: aaI‘laI‘2> : (%: bﬁrngPg) =" aabs(T1aly) - (T2fT). (2.11)

o,
Using (2.10), we see that the operation of Hp(T'2,T'3;A) on Hr(T1,T2;A) =
R[T1\AJ' coincides with the multiplication operation in (2.11), that is,
men2=m|n (2.12)
for all ;1 € Hg(['1,T9; A) and 12 € Hr(Ta, T's; A).
If M is an R-module on which A acts on the right, then it follows easily from
the definition that
(m | m) |2 =m| (m - n2)
for all m € My € Hp(T1,T2; A) and 12 € Hgr(T2,T'3; A). From this and (2.12)
we obtain
(- m2) -1 = - (02 - 73) (2.13)
for all 1 € Hg(['1,T9;A), 2 € Hr(T'2,T's; A) and 03 € Hr(T's, T'y; A).
Given I' € C(A), we set
He(l;A) = Hr(T,T;A).
Then by (2.13) the multiplication operation on Hg(T'; A) is associative and Hr(T'; A)
is an algebra over R with identity I'. When R = Z, we shall simply write
H(I;A) = Hz (I A) = Hy (D, I A).
Definition 2.8. Given I' € C(A), the algebra Hr(I'; A) is called the Hecke algebra

over R of ' with respect to A. If R = Z, then H(T'; A) = Hy(T'; A) is simply called
the Hecke algebra of T' with respect to A.

Let A and A’ be two subsemigroups of G with A C A’. Then certainly Hr(T'; A)
is a subset of Hr(T'; A’). If Tal, TAT € Hr(T; A) with a, f € A are regarded as
elements of Hg(I'; A’), their product can be written in the form

(Cal) - ('AT) = Y ¢, IT, (2.14)
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where the summation is over the set of representatives v of the double cosets I'yT"
contained in A’. However, we have I'4I' C T'al'ST" C A; hence the product in
(2.14) coincides with the product of T'al' and T'ST in Hi(T; A). Thus we see that
Hgr(T; A) is a subalgebra of Hr(T'; A’).

Proposition 2.9. Let o € T, and assume that [P\T'al'| = [Cal'/T|. Then the
quotients T\I'al' and T'al' /T have a common set of coset representatives.

Proof. We assume that I'al’ can be decomposed as

d d
Fal = [[Ta; =[] BT
i=1

i=1
Then it can be shown that I'ey; N G;1" is nonempty for all ¢ and j. Indeed, if I'cy;
and ;I are disjoint for some ¢ and 7, then I'ay; C Uk# GrI', and therefore we have

Fal' =Ta;l' = ] BT,
k#j

which is a contradiction. Thus, in particular, we have T'a; N 3;T" # () for each i. If
6; € T'ay N B;I for each i, then we see that I'a; = I'd; and &;I" = §;I". Hence we

have
d d
ral =[] rs; = [ 6T,
i=1 i=1
and {6;}%_, is a common set of coset representatives. O

We now discuss the commutativity of the Hecke algebra Hpr(T'; A). Note that
an involution on A is a map ¢ : A — A satisfying

(ap)" = p'a, (o)
for all o, B € A.

Theorem 2.10. Lett: A — A be an involution on A, and assume that an element
' € C(A) satisfies

I‘“=r, Ta'TlT=Tal (2.15)
for all « € A. Then the associated Hecke algebra Hr(T; A) is commutative.

Proof. Given a € A with I'al’ = ]_[f=1 Ta;, using (2.15), we have
d
Fal' =Ta'T = (Tal)" = [J i,
i=1

Hence by Lemma 2.9 the sets I'\['al' and T'al’/T" have a common set of coset
representatives. Thus we may write

d

d
Tal = HI‘ai = ]_[ a;T
i=1

i=1
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for some ag,...,aq € A. Similarly, if § is another element of A, we have

rar=[Jrs; =[] 4T
j=1

i=1

for some positive integer s and 3; € A for 1 < j < s. We now assume that

(Tal) - (DAT) = ch ), (0AD) - (Dal) Zc (T4T),

where ¢, and ¢/, € A are as in (2.8). Then we have

oy = #{(i,7) [ Tei3; = I'v}
= #{(i,j) | Pa;3j = TAI'}/|[T\I T
=#{(i,7) | IBjo; = Ty'T}/|[T\Iy'T|
=#{(i,5) | DBja; =T} =,

where we used the fact that

(TBT) - (Ta'T) = (0BT - (Pal) }:c (T = }: ¢ (Dy'T).

Hence it follows that Hr(I'; A) is a commutative algebra. O

Example 2.11. Let G = GL(n,Q) for some positive integer n, and consider the
subgroup I' = SL(n,Z) and the subsemigroup

A={a€ Mn,Z)|deta > 0}

t

of G. Then we see that the transposition o — *« is an involution satisfying

‘=T, TcACTL.

Given o € A, by the elementary divisor theorem the corresponding double coset
T'al’ can be written as

T'al’ =Tyl
for some diagonal matrix oy = diag(ds, ..., d,), where the diagonal entries dy, . .., d,
are positive integers satisfying d; | d;11 for each i. Hence we see that

I'‘al’ =Ttayl = Tayl = Tal.
Thus by Theorem 2.10 the Hecke algebra H(I'; A) = Hz(I'; A) is commutative.

3. GROUP COHOMOLOGY

In this section we review group cohomology and its relation with equivariant
cohomology as well as Hecke operators acting on group cohomology. The descrip-
tion of the cohomology of a group G with coefficients in a G-module by using
both homogeneous and nonhomogeneous cochains is given in Section 3.1. Given a
complex K on which a group I' acts on the left and a left I'-module A, in Section
3.2 we construct the associated equivariant cohomology of K with coefficients in A
following Eilenberg [4]. We also obtain an isomorphism between this equivariant
cohomology and the cohomology of I' with the same coefficients. We then discuss
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Hecke operators acting on group cohomology in Section 3.3 introduced by Rhie and
Whaples [13].

3.1. Cohomology of groups. Let G be a group, and let M be a left G-module.
Thus M is an abelian group on which G acts on the left. Then the cohomol-
ogy of G with coefficients in M can be described by using either homogeneous or
nonhomogeneous cochains.

Given a nonnegative integer ¢, let C9(G, M) denote the group consisting of the
M -valued functions f : G¢ — M on the ¢-fold Cartesian product G¢ = G x---xG of
G, called nonhomogeneous q-cochains. We then consider the map 0 : CY(G, M) —
CiY(G, M) defined by

(0f)(o1,...,0q+1) = 01f(02,...,0q41) (3.1)
+ Z(—l)if(ffh N T P 1o RPN

i=1
+ (=1 f (o1, .., 04)
for all f € CYG, M) and (01,...,04+1) € G9!, Then 9 is the coboundary map
for nonhomogeneous g-cochains satisfying 9% = 0. The associated g-th cohomology
group of G with coefficients in M is given by
HY(G, M) = 2%(G,M)/B*(G, M),

where Z9(G, M) is the kernel of 9 : C*(G, M) — C(G, M) and BY(G, M) is the
image 0 : C171(G, M) — C1(G, M).

For each ¢ > 0 we also consider the group €4(G, M) of homogeneous q-cochains
consisting of the maps ¢ : G471 — M satisfying

¢(ogog,...,004) = op(oo,...,04)
for all 0,00, ...,0, € G. We then define the map 6 : €4(G, M) — €91(G, M) by
g+1
(00)(00,- -, 0q41) = D _(=1)'¢(00, -, 051,041, -, Og41) (3.2)
i=0

for all ¢ € €4(G, M) and (og,...,0441) € G""2, which is the coboundary map
for nonhomogeneous g-cochains satisfying 62 = 0. Then the corresponding g-th
cohomology group of G in M is given by

HUG, M) =39(G, M)/B(G, M),
where 39(G, M) is the kernel of 9 : €4(G, M) — €41 (G, M) and B9(G, M) is the
image 0 : €1~ Y(G, M) — €4(G, M).

We can establish a correspondence between homogeneous and nonhomogeneous
cochains as follows. Given f € C4(G,M) and ¢ € €4(G, M), we consider the
elements fy € €1(G, M) and ¢n € CU(G, M) given by

fru(oo,...,00) = Jof(aalal, oy tog, ... ,aqillaq) (3.3)

on(01,...,0¢) = p(1,01,0102,...,0102--04) (34
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for all 0g,01,...,04 € G. Then we see that
(fH)N(Uh .. .,0'(1) = fH(l,O'l,UlO'Q, c..,0102 " 'Uq) = f(O'l, .. .,0'(1),
(én)u(00,-..,0q) = o0pn (0] ‘01,07 ‘o2, ... ot og)
= Uogzﬁ(l,aalal,aalag, e ,oalaq) = ¢(00,...,0q)

for all f € C1(G, M) and ¢ € €9(G, M). Thus, by extending linearly we obtain
the linear maps

(m: CUG M) — &G, M), ()n:€N(G M) —CYG, M)

such that (-)g o (-)n and (-)y o () g are identity maps on €4(G, M) and CY(G, M),
respectively. The next lemma shows that this correspondence between homoge-
neous and nonhomogeneous cochains is compatible with the coboundary maps.

Lemma 3.1. Given a nonnegative integer q, we have

Of)g = 0fu, (0¢)N = OpN

for all f € CYG, M) and ¢ € €1(G, M).

Proof. Given elements 0g,01,...,0411 € G and f € C1(G, M), using (3.1), (3.2)
and (3.3), we have

(af)H(UOa 01y Uq+1) = Uo(af)(g(;lglv 0;1027 s 7011_10q+1)
= analalf(aflag, . a;lanrl)
+ Z Yioof(ogton,...,0; 01,07 oita,. .., J;IUqul)
+ (—1)q+100f(00_101, ey Oy 110q)
q
= fH(Uh e 70q+1 —|— Z fH g0y - - - ,0'1'_1,0'1‘4_1, e ,O'(H_l)
1=1

+ (— )qulfH(Uo, R O'q)

= (0fm)(00,01,...,0¢+1)-
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On the other hand, if ¢ € €971(G, M), by using (3.1), (3.2) and (3.4) we see that

(bp)N (o1, 0q41) = (09)(1,01,0102,...,0102 -+ 0g11)

= ¢(0150102; v, 0102 'Uq+1)
q .
+Z(—1)z¢(1;01,~~701 S O1,01 gy 01 Ot )

i=1
( 1)(]+1¢(1 O1y---5,01""" U(]-‘rl)
q
= 016N (02, .-, 0¢+1) +Z VoON(T1y -y Ti1, OiTig 1y -y Tgi)
i=1

+ (=)™ on(o1,...,0041)

= (8¢N)(Ula s 70q+1),
hence the lemma follows. U

From Lemma 3.1 we see that the diagram

cua, M)y . gua, My DY oo, M)
dl 5| o
ot (@, M) 7 gatiq, ) DY cetia, )

is commutative, which implies that there is a canonical isomorphism
HY(G,M) = 9H1(G, M)

for each ¢ > 0.

3.2. Equivariant cohomology. Let K be a complex, which can be described as
follows. The elements of the complex K are called cells, and there is a nonnegative
integer associated to each cell called the dimension of the cell. A cell o4, € K of
dimension ¢ > 0 is referred to as a g-cell, and the incidence number (o411 @ 4]
associated to the a g-cell o, and a (g + 1)-cell o441 is an integer that is nonzero
only for a finite number of g-cells o, and satisfies

Z[Uq+1 togllog 1 0g-1] =0 (3.5)

for ¢ > 1. Given ¢ > 0, we denote by Cy(K) the free abelian group generated by
the g-cells, and the elements of C(K) are called g-chains. The boundary operator
on Cy(K) is the homomorphism

9 : Cy(K) — Cqa1(K)

of abelian groups given by

o, = Z [0g : 0g—1]0g-1 (3.6)

Tg—1
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for each generator o, of Cy(K), where the summation is over the generators o4
of Cy_1(K). Then it can be shown that 0 satisfies 9> = 90 9 = 0.
Given an abelian group A, we consider the associated group of ¢-cochains given
by
CY(K,A) =Hom(Cy(K), A). (3.7)
Since C,(K) is generated by the g-cells, a g-cochain f is uniquely determined by
its values f(oy,) for the g-cells o,. The coboundary operator
§:CUK,A) — CTHK, A) (3.8)
on CU(K, A) is defined by
(0f)(c) = f(9c) (3.9)
for all f € CY(K,A) and ¢ € Cy41(K), and the condition 9? = 0 implies 62 = 0.
Then the g-th cohomology group of the complex K over A is given by the quotient
HYK,A)=Z9K,A)/B(K, A),
where Z9(K, A) is the kernel of § : C9(K, A) — C91(K, A) and BY(K, A) is the
image B(K,A) of § : C17Y(K, A) — C4(K, A).
We now assume that a group I' acts on K and on A, both on the left. Given
g > 0, an element f € C1(K, A) is said to be an equivariant q-cochain if it satisfies

fye) =vf(c) (3.10)
for all v € T and ¢ € Cy(K), where C9(K,A) is as in (3.7). We denote by
CL(K, A) the subgroup of C?(K, A) consisting of the equivariant cochains. If § is
the coboundary map in (3.8) and if f is an equivariant g-cochain, then we have

5f(vegr1) = f(Oveq1) = f(v0cq1) = 7f(Ocqr1) = v[0f(cqt1)]

for all v € T, which shows that df is an equivariant (¢ + 1)-cochain. We define an
equivariant q-cocycle to be an element of the group

Z8(K, A) = Z(K, A) N CL(K, A)

and an equivariant q-coboundary an element of the subgroup

BL(K,A) =6CL (K, A) (3.11)
of BI(K,A). Then the quotient group
HY(K, 4) = Z3(K, A)/BY(K, A) (3.12)

is the equivariant g-th cohomology group of K over A.
We denote by Z%(K, A) the subgroup of C9(K, A) consisting of the cochains
with an equivariant coboundary, that is,

Z4(K, A) = {c€ CU(K,A) | 6c € BL™ (K, A)}. (3.13)

An element of Z} (K, A) is called a residual g-cocycle. A residual q-coboundary, on
the other hand, is an element of the group

BL(K, A) = BY(K, A) + CL(K, A).
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If b€ BY(K,A) and ¢ € CL(K, A), then by (3.11) the element (b+ ¢) € B%L(K, A)
satisfies

5(b+c¢) = dce dCL(K,A) = BL (K, A);
hence by (3.13) the group B% (K, A) is a subgroup of Z} (K, A). The corresponding
quotient group

Hy(K,A) = Z{(K,A)/By(K, A)

is the residual g-th cohomology group of K over A. Then it can be shown (cf. [4])
that there is an exact sequence of the form

S HL(K, A) S HIK,A) L HY(K,A) S HEYKA) — -, (3.14)
where the homomorphisms ¢ and 7 are induced by the inclusions
ZL(K,A) C ZU(K, A) C Z4(K, A),
B%L(K,A) Cc BY(K,A) C B(K,A)
and the map 4 is given by the coboundary map on C?(K, A).

We now consider the complex K defined as follows. The g-cells in Ky are
ordered (g + 1)-tuples (7o,...,74) of elements of T', so that Cy(Kr) is the free
abelian group generated by the (q + 1)-fold Cartesian product T'9"* of I'. Given a
g-cell ¥ = (v0,...,7) and a (¢—1)-cell @ = (ap, . .., g—1), we define the incidence
number [§ : & to be (=1)% if & = (y0,...,7i,---,7,) and zero otherwise, where 7;
means deleting the entry 7;. Then it can be shown that the integer [y : @] satisfies
(3.5), so that K is indeed a complex. By (3.6) its boundary operator on Cy(KT)
is given by

q

0(Y0;--+7a) = D (=1)'(0s-+++Fis - -+ %) € Cm1(KT) (3.15)
=0

for 4g,...,74 € T. We define the left action of the group I' acts on Cy(Kt) by

Y05 -+ +5%) = (705 -+ YYq) (3.16)

for all v € T and (Y0, .. .,7,) € I'9"!. Thus, if " acts on an abelian group A on the
left, then we can consider the equivariant cohomology groups H%(Kr, A) of Kr
over A.

Proposition 3.2. Given a left T'-module A, there is a canonical isomorphism
HYT,A) = HL(Kp, A) (3.17)
for each ¢ > 0.

Proof. For each ¢ > 0 the group of g-cochains over A associated to the complex
K, is given by

C%Kr,A) = Hom(CY(Kr), A).
Thus C(Kr, A) consists of maps [ : Cy(Kr) — A satisfying

f(z; mﬁi) = zi:mifﬁi)
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where 7; is a ¢-cell in Kt and m; € A for each i. Therefore C4(Kr, A) may be
regarded as the free abelian group generated by the maps of the form

h:TH - A
By (3.10) and (3.16) an element f € C9(Kr, A) is equivariant if

Y055 7q) = F(Y(v0, -+, 70)) = F(v05 -+ 77g) (3.18)

for each v € T' and each generator (Yo, ...,v,) € I'""! of C,(Kr). By (3.9) the
coboundary map ¢ : C¢(Kr, A) — C91(Kr, A) is given by

(0£) (Y0, - -+ Yg+1) = F(O(v0, - - -, Vg+1)) (3.19)
q+1 ‘
=f( (=105, i+ Yg41)
<iz; 0 o Yo+ )
q+1

= Z(_l)zf(r}/(h ce 7%1') s 77(1-‘,—1)
=0

for all f € C1(Kr, A), where we used (3.15). Thus we see that the space of equi-
variant elements of C9(Kr, A) coincides with the space €%(I", A) of homogeneous
g-cochains considered in Section 3.1; hence the proposition follows. (]

3.3. Hecke operators on group cohomology. In this section, we discuss Hecke
operators acting on the group cohomology. Let G be a fixed group. If I is a
subgroup of G, as in Section 2.2 we denote by [ its commensurator. Given a sub-
semigroup A of G, recall that C(A) is the set of mutually commensurable subgroups
I" of G such that

rcAcr.
We choose an element I' € C(A) and denote by H(I'; A) the associated Hecke
algebra described in Section 2.3. Thus H(T'; A) is the Z-algebra generated by
double cosets I'al” with a € A. _
Given a subgroup I' of G, we consider the Hecke algebra H(T';T) associated to
the subsemigroup A = T' of G. Let Tal’ with e € T be an element of H(T';T') that
has a decomposition of the form

d
Fal =[] Fa; (3.20)
i=1
for some aq,...,qq4 € I. Since T'al'y = Tal for each v € T', we have

d d
Pal' = [[Ta; = [] Tainy
=1

i=1

for all v € T'. Thus for 1 <1 < d, we see that

iy = &i(7) - Qigy) (3.21)
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for some element &; () € I', where (a(4), - . ., () is @ permutation of (o, . .., aq).
For each ¢ and v,+" € ' we have

(i)Y =&() - i)y = &) - &) (V) - iy (4 -
Comparing this with a;(77) = &(77')exi(y47), we see that

i) =i(v)(), &) =&O) - &y (Y) (3.22)

for all v,+" € T

Given a nonnegative integer p and a I'-module M, let ¢€?(T", M) be the group
of homogeneous p-cochains described in Section 3.1. For an element ¢ € €?(T", M)
and a double coset Tal' with o € T that has a decomposition as in (3.20), we
consider the map ¢’ : TP — M given by

(b 707"'77;0 Za Et 'YO 751(7}’))7

where the maps &; : I’ — T' are determined by (3.21). Then it is known that ¢’ is an
element of €P(T", M) (see [13]). Thus each double coset T'al’ with o € T determines
the C-linear map

F(a) : €P(T, M) — ¢P(I', M) (3.23)
defined by
d
(F(@)d)(r0,---,7) = Zafl - 9(&i(10), - -5 () (3.24)

for ¢ € €P(I', M), where I'al’ = [, ., ,T'a; and each &; is as in (3.21). Then the
map T («) is independent of the choice of representatives of the coset decomposition
of I'al modulo I". Furthermore, it can be shown that

T(a) 0dp = dp 0 F(a) (3.25)
for each p > 1, where 8, and §,+1 are coboundary maps on €7(I', M) and €7+1(T", M),
respectively. Thus the map T(«) in (3.23) induces a homomorphism
T(a) : HP(I, M) — HP(T, M),

which is the Hecke operator on HP(T', M) corresponding to a.

The Hecke operators can also be described by using nonhomogeneous cochains
as follows. For each ¢ > 0 we denote by C4(I"; M) the group of nonhomogeneous
g-cochains over M as in Section 3.1. Given f € C4(I', M) and « € [ with Tal as
n (3.20), we set

(T(@)f)(v1s- -5 7) (3.26)
d
= Z a7 F (&), &) (12)s Eirane) (13)s - -+ i omg 1) (V)
=1

for all y1,...,7, €T
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Proposition 3.3. Given o € f, the map T(a)f : T9 — M is an element of
CUT, M) and satisfies

T(e)f = (T(a)fu)n
for all f € CYT, M), where the operators

(Vg : CUG, M) - €1(G, M), ()n:CYG M)—CYG,M)
are as in (3.3) and (3.4).
Proof. Given f € C4(I', M), by (3.3) we have
fu(oo,01,...,04) =00 - f(aalal, oy tog, ... ,aqillaq)

for all 0g,01,...,04 € I'. Thus for a € f, using (3.24), we obtain

d
(T(a)fu)(o0,01,...,04) = ZaflfH(éi(Uo% o &i(og))

d
= Zaflfz‘(ao)_lf@i(00)_1&(01)7§z‘(01)_1§i(02)7 s &ilog-1) T i(0y)).

Hence by using (3.4) we have
(s(a)fH)N(’yh .. '77q) = (Z(a)fH)(la’ylvvl’y% e Y172 'Yq)

d
= Z a; F(&m) & (n) T G (), Si(e) T (res),s - -

i=1
s &l "Yq—l)_lfi(’}/l Y1)
for all v1,...,7, € I'. However, it follows from (3.22) that

Gln o ve—1) an  Ye—17k) = i) (W)
for 2 < k < ¢q. Hence we obtain

d
(i(a)fH)N(ryla s 77(]) = Z ai_lf(fi(,}q% gi(“ﬂ)('m)a Ei(’n’yz)('m)a s 7€i(71~~~v471)(7q))a

i=1
and therefore the proposition follows from this and (3.26). O

Let 9, : C4(T,M) — C9™Y (T, M) and 9441 : CITHT, M) — CI3(I', M) be
the coboundary maps for nonhomogeneous cochains. Then, using Lemma 3.1 and
(3.25), we have

(Og1T () )i = dq1(T(a) f) 1 = 6q41(%(a) fr)
=%()bqfu =T()(9qf)r = (T()04 f)
for all f € CY9(T", M); hence it follows that
T(a) 00, = 941 0 T(a)

for each ¢ > 0. Therefore the map T'(«) : CUT, M) — C4T', M) also induces the
Hecke operator
T(o): H(I',M) — HY(I', M)
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on H(T', M) that is compatible with T(«).

4. DE RHAM COHOMOLOGY

The focus of this section is on the de Rham cohomology of differentiable mani-
folds with coefficients in a vector bundle and Hecke operators on such cohomology.
In Section 4.1 we review basic properties of the sheaf cohomology including the
sheaf-theoretic interpretation of the de Rham and C'°*° singular cohomology of dif-
ferentiable manifolds with coefficients in a real vector space. If I' is a fundamental
group of a manifold X and p is a representation of I' in a finite-dimensional real vec-
tor space, we can consider the associated vector bundle V, over X. In Section 4.2
we construct the de Rham cohomology of X with coefficients in V,. This cohomol-
ogy is identified, in Section 4.3, with certain cohomology of the universal covering
space of X associated to the representation p of I'. We use this identification to
introduce Hecke operators on the de Rham cohomology of X with coefficients in

V, (cf. [6]).

4.1. Cohomology of sheaves. Let X be a topological space, and let S be a sheaf
over X of certain algebraic objects, such as abelian groups, rings, and modules (see
e.g. [18] for the definition and basic properties of sheaves). If U is an open subset
of X, we denote by I'(X,S) or S(U) the space of sections of S over U. Then a
resolution of S is an exact sequence of morphisms of sheaves of the form

0-S—F - Fl 7> — ...,

which we also write as
0—-8§—F°

in terms of the graded sheaf F* = {F'};>( over X.

Example 4.1. (i) Let A be an abelian group regarded as a constant sheaf over a
topological space X. Given an open set U C X, let SP(U, A) denote the group of
singular p-cochains in U with coefficients in A. If U is a unit ball in a Euclidean
space, then its cohomology group is zero. Hence the sequence

- PN U, A) L sP(U, A) 2 SPEYU, A)

is exact, where § denotes the usual coboundary operator for singular cochains. We
denote by SP(A) the sheaf over X generated by the presheaf U +— SP(U, A). Then
the previous exact sequence induces the exact sequence

0-A—-8U4)Lsia)L...,
of sheaves, which is a resolution of the sheaf A over X.
(ii) Let R be the constant sheaf of real numbers, and let X be a differentiable
manifold of real dimension n. We denote by P the sheaf of real-valued p-forms on
X. Then we have a sequence of the form

0-RLEOL et L dgn o (4.1)
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where d is the exterior differentiation operator and ¢ is the natural inclusion map.
Using the Poincaré lemma, it can be shown that the sequence (6.4) is exact and
therefore is a resolution of the sheaf R.

(iii) Let X be a complex manifold of complex dimension n, and let £7+? the sheaf
of (p, q)-forms on X. Given p with 0 < p < n, we consider the sequence

0— QP — gp0 9, gp-l 5,...9, ePm 0, (4.2)

where ()7 denotes the sheaf of holomorphic p-forms on X that is the kernel of
morphism 9 : 70 — £P:1. Then the d Poincaré lemma implies the sequence (4.2)
is exact and therefore is a resolution of the sheaf QF.

Given a sheaf S over a topological space X, in order to define the cohomology
of X with coefficients in S we now construct a particular resolution of S. Let S¥
together with a local homeomorphism @ : S¥ — X be the associated étale space,
which means that S¥ is a topological space such that S is isomorphic to the sheaf
of sections of w. Let €°(S) be the presheaf defined by

S U)={s:U—SF |wos=1y}

for each open subset U C X. Then €°(S) is in fact a sheaf and is known as the
sheaf of discontinuous sections of S over X, and the natural map S(U) — €°(S)(U)
determines an injective morphism & — €%(S) of sheaves. We set

FHS) =U8)/S, €!(8) ="(FI(S)),
and define inductively
FUS) = €HS)/FHS),  €(S) =(F(S))
for i > 2. Then the natural morphisms determine short exact sequences of sheaves
over X of the form
0—8—¢e’S) —er(S) —0,

0— FY(S) — ¢{(S) = ¢H(S) =0

for i > 2. These sequences induce the long exact sequence

0—8—¢%S) — el(S) —» €*S) — -,

which is called the canonical resolution of S. By taking the global section of each
term of this exact sequence we obtain a sequence of the form

0—T(X,8) = I'(X,e%S)) - I'(X, e (S) — -+,
which is in fact a cochain complex. For each i > 0 we set
C'(X,8) =T(X,¢1(S)),
so that the collection C*(X,S) = {C(X,8)}i>o becomes a cochain complex.

Definition 4.2. Given a sheaf S over X, the ¢-th cohomology group of the cochain
complex C*(X,S) is called the g-th cohomology group of X with coefficients in S
and is denoted by H?(X,S), that is,

HI(X,S) = H1(C*(X,S)) (4.3)

Rev. Un. Mat. Argentina, Vol 50-1



HECKE OPERATORS ON COHOMOLOGY 119

for all ¢ > 0.

If the coboundary homomorphism C*(X,S) — C*t1(X,S) is denoted by §° for
i > —1 with C71(X,S) = 0, then (4.3) means that
HY(X,S) = Kerd"/ITm s
In particular we have

H°(X,S) = Ker§’ =T'(X,S).

Definition 4.3. (i) A sheaf F over a topological space X is flabby if for any open
set U C X the restriction map F(X) — F(U) is surjective.

(ii) A sheaf F over a topological space X is soft if for any closed set U C X the
restriction map F(X) — F(U) is surjective.

(iii) A sheaf F of abelian groups over a paracompact Hausdorff space X is fine
if for any disjoint subsets Y7 and Y3 of X there is an automorphism ¢ : F — F
which induces the zero map on a neighborhood of Y; and the identity map on a
neighborhood of Y5.

Theorem 4.4. Let S be a sheaf over a paracompact Hausdorff space X. If S is
soft, then
H1(X,8)=0

for all g > 1.

Proof. See [18, Theorem 3.11]. O

Definition 4.5. A resolution of a sheaf S over X of the form
08— A" - A - A% — ...

is said to be acyclic if H/ (X, A") =0 for all i > 0 and j > 1.

Let S be a sheaf of abelian groups over X, and let

O—>S—>A0—>A1—>A2—>--- (44)

be a resolution of §. By taking the global section of each term of this exact sequence
we obtain a cochain complex of the form

0—T(X,8) -T(X,A%) - T(X,A") = T(X,4%) — ---.

Thus we can consider the cohomology groups H?(I'(X,.A®)) of the cochain complex
I'X,A°) ={I'(X, A")};>o.

Theorem 4.6. If the resolution (4.4) of the sheaf S over X is acyclic, then there
18 a canonical isomorphism

HI(X,S) = HY(I'(X, A%))
for all g > 0.
Proof. See [18, Theorem 3.13]. O

Lemma 4.7. Let R be a sheaf of rings over X, and let M be a sheaf of modules
over R. If R is soft, then M is soft.
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Proof. Let K be a closed subset of X, and consider an element s € M(K). Then s
can be extended to a neighborhood U of K. Define an element h € R(KU(X —U))
satisfying h(xz) = 1 for x € K and h(xz) =0 for x € X — U. Since R is soft, h can
be extended to an element h € R(X). Then h-s € M(X) is an extension of s. [J

Let F' be a vector space over R, and let £9(F) with ¢ > 0 be the sheaf of
F-valued ¢-forms on a differentiable manifold X. Let S (F') be the sheaf ob-
tained by modifying S?(A4) in Example 4.1(i) by using A = F and C* singular
g-cochains. We consider the corresponding graded sequences £° = {Ei}izo and
S (F) = {8. (F)}i>o of sheaves over X. Then the g-th C* singular cohomol-
ogy group HI (X,F) and the g-th de Rham cohomology group Hp (X, F) with
coefficients in F' are defined by

HY(X, F) = HI(T(X,85,(F)), Hpp(X,F) = HI(T(X,&°(F)))

for each ¢ > 0. On the other hand, if £E7* = {EP1} >0 with €77 as in Example
4.1(iii), then the Dolbeault cohomology group of X of type (p,q) is defined by
HOD(X) = HOT(X, 7))
for p,q > 0.
Theorem 4.8. (i) Let F be a vector space over R. If X is a differentiable manifold,
then there are canonical isomorphisms
H(X, F) & HL(X, F) = Hiq(X, F)

for all ¢ > 0, where H4(X, F') denotes the q-th cohomology group of X with coeffi-
cients in the constant sheaf F.
(i) If X is a complex manifold of complex dimension n, then there is a canonical
isomorphism,
HPD(X) = H(X, ),
for all p,q > 0 with p+ q = 2n, where QP is the sheaf of holomorphic p-forms on
X.

Proof. Given a manifold X, there are resolutions of the constant sheaf F' of the
form

0—-F—E&(F), 0—F—S(F).

Using the argument of the partition of unity, it can be shown that SO (F) and
EO(F) are soft sheaves. Since the sheaf S (F) is a module over SO (F') for each
q > 0, it follows from Lemma 4.7 that SI (F) is soft. Thus, using Theorem 4.4 and
Theorem 4.6, we see that

HI(X, F) = HY(D(X, S%(F)) = HL,(X, F).
Similarly, each £9(X) is soft; hence we have
HY(X,F) = HYT(X,£(F)) = H. (X, F),

which proves (i). As for (ii), we consider the resolution (4.2) of QP and use the fact
that the sheaves £7°¢ are soft. g
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4.2. De Rham cohomology and vector bundles. Let X be a manifold, and
let D be the universal covering space of X. Let I' = 71(X) be the fundamental
group of X, so that X can be identified with the quotient space I'\D.

Let p be a representation of I' in a finite-dimensional real vector space F', and
define an action of I' on D x F by

v+ (2,0) = (v2, p(7)v) (4.5)

for all v € T and (z,v) € D x F. We equip the real vector space F' with the
Euclidean topology and denote by

V,=T\D x F (4.6)

the quotient of D x F' with respect to the I'-action in (4.5). Then the natural
projection map pr; : D x F' — D induces a surjective map 7 : V, — X such that
the diagram

DxF —2.V,

prll lﬂ (4.7)

D —Z- X
is commutative, where @ and w denote the canonical projection maps. The sur-
jective map m determines the structure of a vector bundle over X on V, as can be
seen in the following proposition.

Proposition 4.9. The set V, has the structure of a locally constant vector bundle
over X =T\D with fiber F whose fibration is the map ©:V, — X in (4.7).

Proof. Let {Uq}aer be an open cover of X such that the inverse image 7= (U,) of
each U, under w is homeomorphic to U,. By taking smaller open sets if necessary
we may assume that U, N Ug is either connected or empty for all o, 3 € I. For
each a € I we select a connected component (7a of 71 (Uy). If Uy, NUg # 0, then
there exists a unique element vy, g € I' such that

Ya,8Ua NUg # 0. (4.8)
We define the map v, : Uy x F — 7= 1(U,) by
Ya(z,y) = @(Z,y) (4.9)

for all (z,y) € Uy x F, where 7 is the element of U, with @(Z) = . Then we
see easily that v, is a bijection. We shall now introduce a vector space structure
on each fiber V,, = 7~ 1(z) with z € X. Given x € U, C X, we define the map
Yoz : F— V. by

wa,x(v) = ¢a($av) (410)
for all v € F. Then 1, is bijective, and therefore we can define a vector space
structure on V,, by transporting the one on F' via the map 9, . We need to
show that such a structure is independent of z. Let x € U, NUpg. If 7, € [7& and
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I3 € [75 are the elements with @w(Z,) = * = @w(Z4). Then from (4.8) we see that
T3 = Ya,8T«- Using this and the relations (4.5), (4.9) and (4.10), we obtain

Va(@,v) = @(Ta,v) = %(V;}B%ﬁv v)
= @(Ta, P(Ve8)V) = Ya(, p(Var,8)0)
for all v € F'. Hence we see that the diagram
F p(Ya,) F
wa(ww)l ld’ﬁ(wﬂ))
Vysw =——= V)

is commutative, which shows that the vector space structure on V, , is independent
of z. Finally, we note that the map

b =Y N (Uy) = Uy x F

can be used as a local trivialization for each o € I. (]
Given a positive integer p, we first define a function which assigns to each x € X

an alternating p-linear map
Ep 1 Tp(X) X oo X Tp(X) = Vy i, (4.11)

where T, (X) denotes the tangent space of X at z € X and V, , is the fiber of V,
at z. We then define, for each a € I, the function &, on U, which associates to
each x € U, an F-valued alternating p-linear map &, (x) given by

fa(ﬂi) = ¢oz,:c o0&y, (4.12)
where ¢o,0 = ¢a |v, .,

Definition 4.10. A V,-valued p-form on X is a function £ on X which assigns to
each z € X an alternating p-linear map &, of the form (4.11) such that the function
&q in (4.12) is differentiable.

Let {Ua}aer be an open cover of X. Noting that V, is locally constant by
Proposition 4.9, we denote by Co g3 € GL(F') the constant transition function on
U,NUg for o, 3 € I. Then a V,-valued p-form on X can be regarded as a collection
{wa }aer of F-valued p-forms w, on U, satisfying

wg = Ca,gwa
on U, NUg for all o, B € I with U, NUg # 0. Since each C, g is constant, we have
dwg = d(Cy,pwa) = Cy pdwy;

hence the collection {dwq }aer determines a V(p)-valued (p + 1)-form on X. Thus,
it EP(X,V,) denotes the space of all V,-valued p-forms on X, the map {wq }aecr —
{dwq }aer determines an operator

d:EP(X,V,) — EPTHX, V) (4.13)
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with d? = 0 for each p > 0. Then the de Rham cohomology of X with coefficients
in V, is the cohomology of the cochain complex £°(X,V,) = {EP(V(p))}p>0 with
the coboundary operator (4.13). Thus the quotient
Ker(d: £1(X,V,) — E77H(X,V,))

1€ (X, V,)
for ¢ > 0 is the ¢-th de Rham cohomology of X with coefficients in V,,.

HYX,V,) =

(4.14)

4.3. Hecke operators on de Rham cohomology. Let D, I') X = I'\D, and
the representation p : I' — GL(F') be as in Section 4.2. Given p > 0, the space
EP(D, F) of all F-valued p-forms on D is spanned by the elements of the form w® v
with w € EP(D) and v € F. By setting

dw®@v) = (dw) @ v

we obtain the map d : EP(D, F) — EPTY(D, F) with d? = 0; hence we can consider
the associated cochain complex £°(D, F) = {&P(D, F')},>0 whose cohomology is
the de Rham cohomology Hy (D, F') of D with coefficients in F. By Theorem 4.8
there is a canonical isomorphism

H{.(D,F)~HY(D,F)

for each ¢ > 0. This isomorphism can be described more explicitly as follows.
Given ¢ > 0, the group S (D, F) of C* g-cochains considered in Theorem 4.8 can
be written as

SL,(D, F) = Hom(S:*, F),
where §2° is the group of C°° g-chains. Thus each element of S7° is a finite sum
of the form ¢ = ), a;5; with a; € Z, where each Z; : s — D is a C°° map from a
g-simplex in a Euclidean space to D. To each ¢-form w € £9(D, F') we set

fule) = /cw = Zai/SEfw (4.15)

for c =37, a;5; € §F. If ¢/ = ¢+ 0c” with ¢ € §25,, the Stokes theorem implies

that

Thus the map ¢ — f,(c) is well-defined map on the set of g-cycles in §;° and
therefore is an element of S (D, F). On the other hand, if W’ = w + dn with
n € EPYY(D, F), then we have

fule) = [@+dm = [w= 10

hence the map w — f,, is a well-defined map from H{ (D, F) to HL (D, F), and
according to Theorem 4.8 this map is an isomorphism.
For each p > 0, we set

EP(D,T,p) ={ne€&(D,F) | p(y)n=noryforalyel} (4.16)
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Then we see that

d(&?(D,T, p)) C E7(D, T, p);
hence we obtain the cochain complex £°(D,T,p) = {EP(D,T', p)}p>0. If the ¢-
th cohomology group for this complex is denoted by H?(D, T, p), then the next
proposition shows that it can be identified with the ¢-th de Rham cohomology
group with coefficients in V,.

Proposition 4.11. There is a canonical isomorphism
Hq(Xa VP) = Hq(D,P,p) (417)
for each ¢ > 0, where H1(X,V,) is as in (4.14).

Proof. Let @ : D x F' — V, and w : D — X be the canonical projection maps
as in the commutative diagram (4.7). Given z € D, we define the map p, : F —

Vp)z = Wﬁl(w(z)) by B

pz(v) = @(z,0)
for all v € F. Then for v € I' and v € F' we have

pyz(v) = B(y2,0) = B(v7 (v2,0)) = B2, p(7) 710) = pa(p(y) )

hence we see that

pos = p(y)ps (4.18)
If n € £9(V,), we define the element 77 € £7(D) by

ﬁz(ulv cee 7uq) = ﬂ;lnw(z) (w*ulv cee 7w*uq)
for all z € D and uq,...,uq € T,(D). Using this and (4.18), we have
7772('7*“1; e 77*“(1) = N;zlnw(yz) (w*')/*ula e 7w*7*uq)
= p(NHZ Neo(e) (@it - .., @attg)
= p(V)n=(u1, ..., uq)

for all v € T', which implies that 77 € £4(D,T, p). Now we see easily that the map
1 — 1 determines an isomorphism between £9(X,V,) and £4(D, T, p); hence the
lemma follows. U

We now want to introduce Hecke operators on H4(D,T, p), which by Proposi-
tion 4.11 may be regarded as Hecke operators on HY(X,V,). Let I' denote the

commensurator of I' as in Section 3.3, and consider an element a € [ C G such
that the double coset I'al’ has a decomposition of the form

d
Lal = ]_[ Co (4.19)
i=1
for some elements aq,...,aq € I'. Given a p-form w € EP(D), we denote by
T(a)w € EP(D) the p-form defined by
d
T(o)w = Z plai)tw o ay. (4.20)
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Lemma 4.12. Ifw € EP(D,T, p), then T'(a)w € EP(D,T, p) for each a € L.

Proof. Given an element « € r satisfying (4.19) and i € {1,...,d}, let a;(,) be an
element of G such that

ay = &(y) - Qi)
for some element &;(y) € I' as in (3.21), so that the set {ay(4),..., x4} is a
permutation of {aq,...,aq}. If w € EP(D,T, p), then by (3.21), (4.16) and (4.20)
the p-form T'(a)w satisfies

plai)'wo (i)

-

s
I
-

(T(e)w) oy =

plai) " 'wo (&(7)aiy))

1
.
a |l Ma.
=

p(& (M) rwo (&i(n)aicy))

-
I

p(V) (i) " p(&(7) w0 & () 0 g

Il
_M&

s
I
-

d
=p(7) Y plei(y) w0 ey = p(7)T(a)w
=1

for all 4 € T'; hence it follows that T'(«)w € EP(D, T, p). O

By Lemma 4.12 for each « € T there is a linear map
T(a): EYD,T,p) — EYD,T,p).
However, since T'(«) commutes with d, the same operator induces the operator
T(a): HY(D,T,p) — HY(D,T,p) (4.21)

on H1(D,T', p). Thus, using the canonical isomorphism (4.17), we obtain the op-
erator

T(a) : H(X,V,) — HI(X,V,)
for each ¢, which is a Hecke operator on H9(X,V,) determined by « € L.

5. COHOMOLOGY WITH LOCAL COEFFICIENTS

In this section we discuss the cohomology of a topological space X with co-
efficients in a system of local groups as well as Hecke operators acting on such
cohomology. Section 5.1 contains the description of a system of local groups £, as-
sociated to a representation p of the fundamental group of X in a finite-dimensional
real vector space. When X is a differentiable manifold, we show that the cohomol-
ogy of X with coefficients in the sheaf of sections of £, is canonically isomorphic
to the de Rham cohomology of the universal covering space D of X associated to p
introduced in Section 4.3. In Section 5.2 we discuss the homology and cohomology
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of X with coefficients in a general system of local groups. We introduce Hecke
operators in Section 5.3 acting on de Rham cohomology of X with coefficients in
the vector bundle V, considered in Section 4.2.

5.1. Local systems. Let X be an arcwise connected topological space with funda-
mental group I' = 71 (X)), and let D be its universal covering space. Thus X can be
identified with the quotient space I'\D. Given z,y € X, we denote by oy € I" the
homotopy class of curves from x to y. The homotopy class containing the inverse
of a curve belonging to a, is denoted by a;yl, and the symbol agyay. € I' denotes
the homotopy class obtained by traversing first a path in the class ay, followed by
a path in the class a,.. We fix a base point o € X, and denote the class o,z
simply by a,. We also use a to denote the class ag,z, of closed paths.

Definition 5.1. A system of local groups on X is a collection A= {Az}zex of
groups A, for x € X satisfying the following conditions:

(1) For each class ay, of paths in X there is an isomorphism A, — A,.

(ii) If the transform of a € A, under the isomorphism in (i) is denoted by
a0y € Ay, then we have (aogy)ay. = a(azyay.) for all z,y,z € X and a € A,.

The group A,,, where xg is the base point of X, will be denoted simply by A.
Then each element o € I' = 71 (X) determines an endomorphism a — acx = agyz,
of A; hence I' acts on A on the right.

Let p be a representation of I" in a finite-dimensional real vector space F. We
denote by Fy the vector space F' equipped with the discrete topology, and set

£, =T\D x F,

where the quotient is taken with respect to the action in (4.5) with F replaced
with Fy. Then the natural projection map D x F; — D induces a surjective map
m: L, — X =T\D.

Proposition 5.2. For each x € X, let L,, = 7 () be the fiber of L, over .
Then the space L,, regarded as the collection {L, +}zex of its fibers is a system of
local groups on X.

Proof. For each x € X the fiber £, , of L, over x is isomorphic to the discrete
additive group F;. There exist an open covering {U, }ac4 of X and a homeomor-
phism

VYo : Uy x Fy — 71 (U,) (5.1)
for each o € A such that ¥, (z,v) = 7(z) for all (z,v) € U, x Fyq and 1), induces
an isomorphism {z} x Fy = L, (. for each z € U,. If 2,y € X, since Fy is totally
disconnected, any curve oy, from z to y determines uniquely an isomorphism
L, = L,, which depends only on the homotopy class of a,, (see [16, Section
13]). Thus the collection {L£, ;}sex is a system of local groups on X. O

We now assume that X is a differentiable manifold and denote by V, = T'\D x F
the vector bundle over X given by (4.6), where F' is equipped with the Euclidean
topology. We denote by EP(X,V,) the sheaf of germs of V,-valued p-forms on X.
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If T(EP(X, V,)) denotes the space of sections of Er(X, V,), we obtain the cochain
complex T'(E°(X,V,)) = {T(EP(X,V,))}p>0 whose coboundary map

d:T(E(X,V,)) — D(E (X, V,))
is induced by the exterior differentiation map. Since the natural isomorphism
T(EP(X,V,)) = EP(X,V))
commutes with d, it determines a canonical isomorphism
HP(T(E*(X,V,)) = HP(X,V,) (5.2)
for each p > 0.

Proposition 5.3. Let Ep be the sheaf of germs of continuous sections of the local
system L, in Proposition 5.2. Then for each ¢ > 0 there are canonical isomor-
phisms

HY(X,L,) = HY(X,V,) = H(D,T, p)
between the g-th cohomology group H(X,V,) of the complex £°(X,V,) and the
q-th cohomology group H(X, Ep) of X with coefficients in Ep.

Proof. The second isomorphism was proved in Proposition 4.11. As for the first
isomorphism, by using the Poincaré lemma it can be shown that the sheaf £, is
locally constant and that the sequence
0— L, —E%X,V,) L EX,V,) L.
is exact. Hence by Theorem 4.6 there is a canonical isomorphism
HYX,L,) = HIT(E*(X,V,)).
Thus the lemma follows from this and (5.2). O

5.2. Homology and cohomology with local coefficients. Let X, D and I' =
7m1(X) be as in Section 5.1, so that X can be identified with the quotient space
I'\D. We consider a local system A = {A;}on X. If s = (po, . .., pq) is a Euclidean
simplex and 7 : s — X is a singular g-simplex in X, we set A4, = A,,,). Since
the leading vertex of the i-th face n(*) for 1 < i < ¢ coincides with that of 7, we
see that A, = A, ). For i = 0, however, the 0-th face 7(® has 7(p;) as its leading
vertex and is not connected with 7(pg). In this case the leading edge

Ay = 1(PoP1) (5.3)

of n is a path in X from 7(py) to n(p1) and yields an isomorphism a +— aX, of
Ay = Ay(py) onto Appy = Ay

Given z,y € X and a path oy, from x to y, we define an isomorphism o, :
Ay, — Ay by

Qgy(a) = aa;yl (5.4)

for all a € A,. We assume that the groups A, are topological and that the isomor-
phisms a — agy(a) of A, onto A, are continuous.
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We now introduce a cochain complex C*(X,A) = {C9(X, A)}4>0 defined as
follows. Given ¢ > 0, a g-cochain on X over A belonging to C?(X, A) is a function
f which assigns an element f(n) € A, to each singular ¢g-simplex 1 in X. We define

the homomorphism & : C7(X, A) — C7t1(X, A) by
g+1

O = M(f OO + 3 (1)) (5.5)

for each (¢+1)-simplex 5 and f € C9(X, A), where Ap is asin (5.3). Then it can be
shown that the homomorphism 4 satisfies 42 = 0 and therefore is a coboundary map
for the cochain complex C*(X, A). Thus we obtain the associated g-th cohomology
group
Ker(d : C9(X, A) — CH(X, A))

5Ca(X, A)

HI(X,A) =

of X with coefficients in A.

Let z9 € X be a base point, so that the fundamental group of X can be written
as I' = m (X, z9), and set A = A,, € A. Then A is an abelian group, and by (5.4)
the group I' acts on A on the left. Let Kp be the singular complex in D, and for
each ¢ > 0 let Cy(D) = Cy(Kp) denote the group of singular g-chains in D. Then
Cy(D) is the free abelian group generated by the singular g-simplexes in D, and
there is a boundary map Jp : Cy(D) — Cy—1(D) given by

q

3D77<P07 cee apq> = Z(_l)iﬂ@m e af)\ia e apq>
=0

for a singular g-simplex 1 in D associated to a Euclidean singular ¢g-simplex (po, . . . , Dg)-
Then the group of singular g-cochains with coefficients in A is given by

C1(D, A) = C1(Kp, A) = Hom(C,(D), A),
and its coboundary operator dp is defined by

opfn = fopn
for all f € CY(Kp,A) and n € C1(Kp). By (3.10) a g-cochain f € C4(D, A) is
equivariant with respect to I' if

fye) =~f(c)

for all v € T and ¢ € Cy(D, A). We denote by CL(D, A) the subgroup of C(D, A)
consisting of the equivariant cochains. If dp is the coboundary map, by (3.12) the
equivariant ¢-th singular cohomology group of D over A is given by

(2%(D, A) N CE(D, A))
5pCL (D, A)

where Z9(D, A) denotes the kernel of the map ép : C4(D, A) — CIT1(D, A).

?

H}, (D, A) =
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Theorem 5.4. There is a canonical isomorphism
HY(X,A) = HL(D, A)
for each ¢ > 0.

Proof. In this proof we shall regard an element z € D as the homotopy class of
paths in X joining the base point zg with 7z, where m : D — X is the natural
projection map. Then for each a € A, the element za = az™! € A,, = A is
well-defined, and we have

z(aa) = (za)a
for cach v € T. If f € C(X, A), we define the cochain 75 f € C(D, A) by

mef(n) = zf(mn) (5.6)
for all g-simplex i in D, where z € D is the leading vertex of . Since f(mn) € Ay, =
Ay, the element zf(7n) belongs to A, and therefore 7g f is a cochain belonging
to C9(D, A). Thus (5.6) determines a homomorphism 7g : C1(X, A) — C4(D, A).
If 0 denotes the coboundary map for C4(D, A), then by using (5.6) we have

at! qt+1
Omef)(m) =Y _(~1)'mef(n?) =Y (=1)'z" f(mn @),
=0 i=0

where (%) is the i-th face of 7 and () € D is the leading vertex of (). Since z is
the leading vertex of 1, for 1 < i < ¢+ 1 we see that 2(*) = z. For i = 0, however,
we have z(0) f(71(©)) = z)\m,f(m)(o)), where A, is the leading edge of the simplex
7n in D. Hence we obtain
g+1
O f)n) = 2Aunf (V) + Y (=1)'2f (70 ™)

i:q1+1 . .
_ Z(Ammn(% n Z(—lwf(m“)))

= 2(0f)(mn) = (7ed f)(n),
where we used (5.5) and (5.6). Thus we see that Org = mgd. We shall now show
that the map 7g is an isomorphism. First, if f is a nonzero element of C?(X, /Nl),
then f(n) # 0 for some g-simplex 7 in X. Hence there is a simplex 77 in D such
that 777 = n and 7 f(77) = zf(n) # 0, and therefore 7g is injective. To consider
the surjectivity of mp we note that, if n is a ¢-simplex in D with leading vertex z
and if v € T', then vz is the leading vertex of vn and

mif(yn) =vzf(myn) =v(2f(m)) = y7ef(0);
hence the cochain 7g f is equivariant. Now, let A be an equivariant g-cochain in
X over GG. Given a ¢-simplex 7 in X, we choose a ¢-simplex 7 in D with i = n
and consider the element z~1h(7]) of A,, where z is the leading vertex of 7. If 7 is
replaced by 777 with v € T', then we have

(y2) " th(yi) = 2"y yh(i) = 27 Th(®),
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where we used the fact that h is equivariant. Hence the element 2~'h(7) of A, is
independent of the choice of 7. We now define a cochain f € CY(X, A) by

fn) =27 h(@).

Then we see that

(mef)(n) = 2f (x0) = 2f(n) = 22~ 'h(n) = h(n),
and therefore g f = h, which implies the surjectivity of 7. We have thus shown
that 7 is an isomorphic mapping of the group of cochains C9(X, g) onto the group
C%L(D, A) of equivariant cochains. Since in addition drp = 7gd, it follows that
Z1(X, A) and Bi(X, Z) are mapped isomorphically onto the groups Z%(D, A) and
B%.(D, A), respectively. This proves that the map 7 determines the isomorphism
HY(X,A) ~ HL(D, A). 0

5.3. Hecke operators. Let D, I and X = I'\D be as in Section 5.1, and let V),
be the vector bundle over X given by (4.6) associated to a representation p: I' —
GL(F) of T in a finite-dimensional vector space F' over R.

We consider another manifold X’ = I"\D’, where I is the fundamental group
and D’ is the universal covering space of X’. Let o : IY — I be a group homo-
morphism, and let 7 : D’ — D be a C* map that is equivariant with respect to o,
which means that

F'7) = ol V()
for all v/ € IV and 2’ € D'. Then 7 induces a C*> map 7 : X’ — X. We now define
an action of IV on D’ x F' by
V- (20) = (2 plo (1))
for all v/ € IV, 2’ € D' and v € F. Then the corresponding quotient space
Ve =I'\D' x F (5.7)

is a vector bundle over X’ with fiber F, whose fibration 7" : V,, — X" is induced by

the natural projection map D’ x F' — D’. The next lemma shows that this bundle
is essentially the same as the vector bundle 7%V, over X’ obtained by pulling V,
back via 7.

Lemma 5.5. The bundle V,,,
pullback bundle 7*V,.

Proof. We note that the pullback bundle 7%V, over X’ is given by
PV, = {(@.6) € X' x V, | r(@') = 7(©)}, (5.8)

where 7 : V, — X is the fibration for the bundle V,. We introduce the notations
p:D—=T\D=X, ¢:DxV ->T\DxV =YV,
p D -T'"\D'=X' ¢:DxV-T\DxV=Y,

poo

over X' in (5.7) is canonically isomorphic to the

for the respective natural projection maps. Then (5.8) can be written in the form

™V, ={('(z).4(z,v)) | ' €D, 2 € D, v € F, 7(p/(¢')) = m(q(z,0))}-
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Since 7(p'(2")) = p(7(2")) and 7(q(z,v)) = p(z), the condition 7(p'(z")) = 7(q(z,v))
is equivalent to the relation z = y7(2’) for some v € I'. Using this and the fact
that q(v7(2'),v) = q(7(2'), p(7) ~v), we see that

™V, ={('(¢'),a(7(¢'),v)) | 2 € D', v € F}.
Thus we may define a map ¢ : V;oa — 7%V, by
o(d'(z,v)) = (W' (¢'),a(7(2'),v))
forall 2/ € D' and v € F. If v/ € T’ we have
o(d' ("2, p(a(7)v)) = (0'(V'2"),a(7(v'2"), plo(7))v))
= (p'(v'?), ale(v")7(2"), plo(v")v))
= ('(v'#),q(7(2),v)) = 6(d' (', 0));

hence ¢ is a well-defined surjective map. To verify the injectivity of ¢ we consider
elements 2’, 2] € D' and v,v; € F satisfying

(' (2),a(7(2),v)) = (W' (21), a(F(21), v1)).
Then we have
# =97, (1) =7(y'2) =0(¥)7(Z), vi=pla(y))v
for some ' € I, Thus we obtain
¢ (z1,v1) = ¢ (72 plo(v)v) = ¢ (', v),
and therefore ¢ is injective and the proof of the lemma is complete. O
Let H"(X,V,) be the r-th cohomology group for the cochain complex {€°(X,V,)}

for each r > 0 considered in Section 4.2. If H"(X,V,)* denotes the dual space of
H"(X,V,), then we have the natural identification

H'(X,V,)" =H"(X,V,),
where p* denotes the contragredient of p.
We assume that 7 : X’ — X is a smooth ¢-sheeted covering map for some pos-

itive integer £. Then the associated pull-back map 7* : £"(X,V,) — £ (X', V,,,)
determines the homomorphism

™ H(X,V,) — HT(X',VLOU)
of cohomology groups. On the other hand, according to the Poincaré duality, there
are canonical isomorphisms

P:H"(X,V,) — H""(X,V,)",
) HHnir(X,,V;OU)*,
where (-)* denotes the dual space of (-). Then the Gysin map associated to 7 is
the linear map

P H'(X,V,

poo

n:H(X',V,.,) = H'(X,V,)
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such that the diagram

HT(X/7V;oa) —— H"(X, Vp)

P’l lP
anr(X/’ V//)oa)* T anr(X’ Vp)*
is commutative; here ‘7* is the dual of the linear map
™ H"(X,V,) — H”_T(X/,V;OU).

Thus the Gysin map is characterized by the condition

/ T(w)ANE = wAT(E) (5.9)
b's X/
for allw € E"(X', V!

o) and § € EM7T(X,V,+). In order to discuss Hecke operators

on H"(X,V,) we now consider a pair (7,u) of smooth /-sheeted covering maps
T X — X,

Definition 5.6. For 0 < r < n the Hecke operator on H"(X,V,) associated to the
pair (7, ) is the map

T'(t,u) : H(X,V,) — H (X, V,)

given by
T (t,p) = o™ (5.10)

We now consider the case where D’ is equal to D and I" is a subgroup of I with
[[': V] = ¢. Let {e1,...,e¢} be the set of coset representatives of I'' in I, so that
we have

I‘:ﬁf'ai. (5.11)
If v € I, we shall use the same symbol ztoldenote either the map

¥v:D—-7D
sending z € D to vz € D or the map

v X' - X
which it induces.

Theorem 5.7. Let 7,1 : X' — X be covering maps, and assume that p is induced
by the identity map on D. Then for 1 < r < n the associated Hecke operator on
H"(X.,V,) is given by

for all E7(X,V,).
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Proof. First, we shall determine 7 for n € E"(X',V),,), where o : I — T' is the
inclusion map. By (5.9) we have

//nAu*(E):/Xu!(n)Af

for all £ € E"77(X,V,+). Let € € & T(D,T,p*) and §j € E"(D,T”,p o o) with
poo = p|r be the differential forms on D corresponding to ¢ and 7, respectively.
If 7 and F’ are fundamental domains of T" and T”, respectively, then by (5.11) the
domain F’ can be written as a disjoint union of the form

14
F = Hfz]:
i=1

Using this and the fact that the lifting of u is the identity map on D, we have

/X/n/\,u*(f)_/}_/77/\5_g/EiFﬁ/\g—g/Fﬁogi/\gogi
0 N y B
:;/Fﬁoei/\p*(sz‘)f:;/Fp(si)_lﬁogi/\g

Thus, if ®,, denotes the r-form on D defined by
¢ ¢

by = ple) i =)_ple)'ioe € ET(D), (5.12)

i=1 i=1

/,nAu*(é):/F@nAE

We now need to show that ®, is an element of £"(D,T',p). Given v € T" and a
positive integer ¢ < ¢, using (5.11), we see that

then we have

F/Ei’}/ = FIEH
for some i, € {1,...,¢}. Thus there is an element ¢; € I'" such that
ey = big, .
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Using this and (5.12), we see that

¢, 0y = Zp 7]06 O’Y—ZP& o (g:7)
:Zp(a 70 (6iei,) Zp& (06;) 0 e,
_ZP nogzﬂ, Zp 7706""(

= () 2Pl Nioei, = p(7)®y,

which shows that @, belongs to £"(D,T',p). Hence it follows that wi(n) is the
element of £"(X,V,) corresponding to ®, € £"(D,T, p) under the canonical iso-
morphism (4.17). Therefore we obtain

¢ ¢
T"(r,pw = Y pled) ref(Tw) = D ples) (T o) w
i=1 i=1
for all w € £7(X,V,), and hence the proof of the theorem is complete. O

6. COMPATIBILITY OF HECKE OPERATORS

The goal of this section is to establish the compatibility among the Hecke op-
erators acting on various types of cohomology groups. Given a discrete group I'
acting on a Riemannian symmetric space D and a representation p : I' — GL(F)
of I' in a finite-dimensional vector space F', Section 6.1 describes the canonical iso-
morphisms among the de Rham cohomology of D associated to p, the cohomology
of I with coefficients in F', and the equivariant C*° singular cohomology of D. The
compatibility between Hecke operators on singular cohomology and the ones on de
Rham cohomology is discussed in Section 6.2. In Section 6.3 it is shown that the
Hecke operators on the de Rham cohomology and those on the group cohomology
are compatible under the canonical isomorphism obtained in Section 6.1.

6.1. De Rham, singular and group cohomology. Let D be a Riemannian sym-
metric space, and let I" be a discrete group acting on D properly discontinuously.
We regard the associated quotient space X = I'\D as a subset of D consisting of
the set of representatives of the orbits of I' in D. We shall review relations between
singular and group cohomology discussed by Eilenberg in [4].

Let Z: s — D be a singular g-simplex in D, where s = (po, . .., Dq) is a Euclidean
simplex with ordered vertices pg < - -+ < pq. Then the vertices Z(po), ..., =(pq) of
Z in D can be written uniquely in the form

E(po) = 00x0, - .., 2(pg) = dqxq (6.1)

Rev. Un. Mat. Argentina, Vol 50-1



HECKE OPERATORS ON COHOMOLOGY 135

for some zy,...,z, € X. Let Kp be the singular complex in D as in Section 5.2,
and let K1 be the complex for the cohomology of the group I' considered in Section
3.2. If Zis as in (6.1), we define 7,Z to be the g-cell of K1 given by

702 = (50, ..., 04).

Thus 7, maps the singular simplexes in D into cells of Kt and induces a homomor-
phism

741 Cq(D) = Cy(Kp) — Cy(Kr) (6.2)
of groups of g-chains. We also see that
8p07q = Tg—1 Oap (6.3)

for all ¢ > 1.

Definition 6.1. (i) A g-cell ¢, in Kr is said to be basic if its first vertex is the
identity element of T', that is, if ¢, = (1,71, ...,7,4) for some v1,...,7, € T

(ii) A simplex Z in D is called basic if its leading vertex is one of the points in
X, where X is regarded as a subset of D consisting of the set of representatives of
I'-orbits in D as above.

Lemma 6.2. If n = dimD, then for each integer q with 0 < q < n there is a
homomorphism

vy : Cy(Kr) — Cy(D) (6.4)
satisfying
Opovy=vg100r, Vg=UrgY (6.5)
for all v € T with v_y = 0.
Proof. First, we choose a point 2o € D, and define vy : Co(Kr) — Co(D) by
vo(1) = z0, 1(7) =m0
for all v € T, where (1) is the basic 0-cell. Then we see that
Ip(v0(7)) = Op(ya0) =0 =v_1(0r(7)), Yw(v) =7"v20 =v(7"7)
for ,7" € T'; hence vy satisfies (6.5). In order to define v, for 0 < ¢
0

< n by

induction, we assume that the maps v; have been defined for all j with 0 < j < ¢
and they satisfy

Opovj=vj_100r, ~V;=U;y (6.6)

for all v € I'. Given a basic cell o, in K, its image v,_10ro, under v4_; o is an
integral chain in D of dimension ¢ — 1, and therefore by the first condition in (6.6)
it is a cycle in D, that is,

8puq,18paq = a%l/q(fq =0.

Since the space D is acyclic in dimensions less than n and ¢ — 1 < n, there is an
element of Cy(D), which we denote by v,0,, such that

Oprqoq = Vq—10roy.
We now obtain the homomorphism
Vg : Cq(Kr) — Cq(D)
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by extending the map o, — v40, to all the ¢-chains belonging to Cy(KT). O

Lemma 6.3. Given integers q and r with 0 < ¢ <n—1 and 0 < r <n, there exist
homomorphisms

Py : Cy(D) = Cg41(D),  Qr: Cr(Kr) — Crya(Kr)
satisfying the relations
vP, = Pyy, OpPyc=c—vy1y¢c — PyOpc, (6.7)
YQr = Qry, OrQrc = — 1 — Qp0pc (6.8)
for all c € Cy(D), ¢ € Cy(Kr) and v €T
Proof. Given a basic 0-cell z in D, we consider the 0-cycle x — v,74x. Since v 7,z =

v4(1) is a point in D and since D is pathwise connected, there is an integral 1-chain
Pyx such that Op Pyx = x — vy7,2. We extend this to the nonbasic O-cells by

Po(yz) = yPo(x)
for all v € I', and use induction for general P, as follows. Assume that P; has been
defined for all j-cells with j < ¢ < n and that the relations in (6.7) hold. Given a
basic g-simplex 1 of D, consider the g-chain
¢ =1n—VeTqn — Py—10p7
in D. Then we have
87;0 = 87;7; — aDI/qTqﬂ — 8qu,18n
= Opn — vg7,0pn — (Op1 — vg70pn — Py—10pm) = 0,

and hence the chain ¢ is an g-cycle in D. Since Hy(D) = 0, there is an (¢ + 1)-chain
P,n such that 0pPyn = c¢. We now extend the map P, to all the g-chains in Cy(D)

including nonbasic ones by using the first condition in (6.7). The construction of
() can be obtained in a similar manner. O

Theorem 6.4. Let D be a topological space that is acyclic in dimensions less than
n, and let T be a group acting on D without fized points. If A is a left I'-module,
then we have
HYT,A) 2 HL(D, A) (6.9)
for1<qg<mn-1, and
H™(T, A) = Ker[¢ : HE(D, A) — H"(D, A)], (6.10)
where the homomorphism ¢ is from the exact sequence (3.14) for the complex Kp.
Proof. Since the map 7, : C,,(D) — C,,(Kr) in (6.2) satisfies (6.3), it induces the
homomorphism
T4 HL(Kr, A) — HL(D, A) (6.11)
for each ¢. From (6.7) and (6.8) we see that the maps v,7, and 7,1, are chain
homotopic to the identity maps 1 : Cy(D) — Cy(D) and 1 : Cy(Kr) — Cy(Kr),
respectively. Since the maps v,, P, and (), are equivariant, for ¢ < n the homo-
morphisms in (6.11) are isomorphisms. Hence we obtain (6.9) by combining the

Rev. Un. Mat. Argentina, Vol 50-1



HECKE OPERATORS ON COHOMOLOGY 137

isomorphism 7# with the relation (3.17). In order to prove (6.10) we consider the
commutative diagram

H, (D, A) —2 Hp Y (D,A) —22 HR(D,A) —22 H"(D,A)

L ‘| !

H,_ 1 (Kp, A) —2 HEY(Kp, A) —% Hp(Kp, A) —2— H™(Kp, A)
induced by 7 and the exact sequence (3.14). Since Hy,_1(Kp,A) = H,(Kr,A) =0
(see [1, p. 47]), the map dr is an isomorphism. On the other hand, ¢ is injective
because H"~!(Kr, A) = 0. Using the relation dr7p = 717%716 and the fact that
both Tg_l and or are isomorphisms, we see that 7p is injective and has the same
image as . However, we have

SHE (D, A) = Ker ¢ = Kn(D, A);
hence we obtain (6.10). O

Let p: T' — GL(F) be a representation of I" in a finite-dimensional vector space
F over R as in Section 5.3, so that F' can be regarded as a left I'-module.

Proposition 6.5. There is a canonical isomorphism

HY(D,T,p)= H, (D, F) (6.12)
for each ¢ > 0.
Proof. It f, with w € EP(D,F) is as in (4.15), then by Theorem 4.8 the map

w +— f, determines an isomorphism between H{.(D,F) and HZ (D, F). On the
other hand, if w € £9(D, T, p), we have

w(70) Lcw—/vw—/wov / 7w p(v)/cw=p(7)fw(6)

for all v € I' and ¢ € §;°. Thus it follows that f,, is equivariant, and therefore the
map w — f, determines an isomorphism (6.12). O

Corollary 6.6. If D is contractible, there is a canonical isomorphism
HY(D,T, p) = H'(T, F)
for each ¢ > 0, where F' is regarded as a I'-module via the representation p.

Proof. This follows from the isomorphisms (6.9) and (6.12). O

6.2. Singular and de Rham cohomology. Let GG be a semisimple Lie group, and
let D be the associated symmetric space, which can be identified with the quotient
G/K of G by a maximal compact subgroup. Let T' be a discrete subgroup of G,
and let X = I'\D be the associated locally symmetric space. Let p : G — GL(F)
be a representation of G in a finite-dimensional real vector space F'.

Given ¢ > 0, the group C% (D, F') of C*° g-cochains in D with coefficients in F
can be written as

€4, (D, F) = Hom(C{°, F),
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where Cg° denotes the group of C>° g-chains in D. If o € [ with

d
Lal = H Ca, (6.13)
i=1
we define the map Ts(a) : CL (D, F) — CL (D, F) by
d

(Ty(@)f)(e) = D plai) ™" flaic) (6.14)

i=1

for all f € CL(D,F) and ¢ € C;°(D). Since clearly Ti(a) commutes with the
boundary operator for the complex C% (D, F), it induces the map

Ts(e) - HL, (D, F) — HL (D, F), (6.15)

which is the Hecke operator on the ¢-th C'* singular cohomology group HZ (D, F')
with coefficients in F'.

Lemma 6.7. The map Ts(a) : CL(D,F) — CL(D,F) given by (6.14) sends
T-equivariant q-cochains to I'-equivariant q-cochains.

Proof. Let a be an element of I such that the corresponding double coset has a
decomposition given by (6.13). Then, asin (3.21), for each i € {1,...,d} andy €T
there are elements i(y) € {1,...,d} and &(y) € I" such that

oy = &(7) - igy).- (6.16)

Furthermore, the set {ai(y),..., 4y} is a permutation of {a,...,aq} for each
yeT. Let f € CL (D, F) and ¢ € C°(D), where C, (D, F) is the subspace of
C% (D, F) consisting of I'-equivariant cochains. Then, since f is I'-equivariant, we
have

f(6¢) = p(8)f(c)
for all 6 € T. Using this, (6.14) and (6.16), we obtain

d
(Ts(@)f)(ve) = Y plai) " flaiye)

i=1

_Z p(& (V)i ) T F (& (V) e)

= Zp (fz( ))_1p(§i(7))f(ai(7)c)

d
= (1) D plait) " flai)re) = p()(T (@) f)(©)
i=1
for all v € T'. Thus it follows that T'(a)f € C% (D, F). O
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Given a € f, we denote by I'(,) the subgroup of I' defined by
L =ILNa 'Ta, (6.17)
and set
K@) =T@\P-
We assume that [I' : T'(,y] = d and that

d
I'=][]T (6.18)
i=1

with d1,...,ds € I'. Then by Lemma 2.4 we have

d
Fal = [[Tad. (6.19)

i=1
If v € I'(y), then avy'a™ € T; hence for each z € D we have
a(y'z) = (ay'a Vaz € T(az).

Thus it follows that a(I')z) C I'(az), and therefore the map a: D — D, z — az
induces a map o @ X(o) — X. However, since I'(,y C I', there is another map
p1 : X(q) — X induced by the identity map on D. Thus the maps p1 and g
are d-sheeted covering maps of X, and by Definition 5.6 they determine the Hecke
operator T7(u1, fta) on H"(X,V,) for each r > 0. By identifying H"(X,V,) with
H"(D,T, p) using the canonical isomorphism (4.17) we obtain the Hecke operator

Tr(ﬂh/ﬁa) : HT(D7Fap) - HT('D,F7p)

for each > 0. On the other hand, by Lemma 6.7 the Hecke operator (6.15) induces
the Hecke operator

To(a) : Hp (D, F) — Hp (D, F)

on the C* ¢-th equivariant cohomology group with coefficients in F. We denote
by

¢: HY(D,T', p) — H (D, F)
the canonical isomorphism (6.12).
Theorem 6.8. Given o € I' and q > 0, we have
P(T (s pra) [W]) = Ts(@)([w])
for allw € C1(D,T, p), where [w] denotes the cohomology class of w in H1(D,T, p).
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Proof. Let w € C4D,T',p), and let o be an element of r satisfying (6.13) and
(6.19). Then, using (6.14) and Theorem 5.7, we have

(T( )¢([ D)(e)

for all ¢ € C2°(D); hence the theorem follows. O

6.3. De Rham and group cohomology. Let G, K, D = G/K and the repre-
sentation p : I' — GL(F) of a discrete subgroup I' of G in F' be as in Section
6.2.

Let Cy(D) be the group of singular ¢-chains as in Section 5.2, and let Z: s — D
be a singular g-simplex belonging to Cy (D), where s = (po, ..., pq) is a Euclidean
simplex with ordered vertices py < --- < pq. Then, as in Section 6.1, the vertices
E(po),--.,E(pg) of E can be written uniquely in the form

E(po) = 501‘0, ceey E(pq) = 5(1.1?(1

for some g, ...,z € X, where X = I'\D is regarded as a subset of D consisting
of representatives of the orbits of I'. Given a g-form w € £9(D) on D, we define
the associated map F(w) : T'97! — F by

F(w)(0s---57) = / w (6.20)
Vg (V05-+1Yq)

for all 7g,...,7v4 € I, where v, : Cy(Kr) — Cy(D) is as in (6.4).
Lemma 6.9. Ifw € £9(D,T, p), then we have

F@) (705, 770) = p(1) T F (@) (0, - - %) (6.21)
for all v,7v0,...,74 €T.

Proof. Given ~y,...,v, € I, using the construction of v, in the proof of Lemma
(4.8), we see easily that

Vq('Y’YOa oo 777q) = 'yyq('yo’ .. w'Yq)
for all v € T'. Hence by using (4.16) we obtain

f(w)(7707---777q)=/ w=/ wory
7”4(701"'7'%1) Vq('YO:"~7'Yq)

= / p(y) " w
Vg (Y05++,Yq)

= p() " Fw)(0,---7q)
for all w € £9(D, T, p). O
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By Lemma 6.9 the map F(w) : 9"t — F given by (6.20) is a homogeneous
g-cochain for the cohomology of T described in Section 3.1. Thus we have

F(w) e €T, F)

for all w € £9(D, T, p), where F is regarded as a I'-module via the representation
p. We denote by § and 0 the coboundary maps for the complexes £°(D, T, p) and
¢* (T, F), respectively.

Lemma 6.10. The map w — F(w) given by (6.20) satisfies
0F (w) = F(dw)
for allw € E1(D, T, p).
Proof. Given 7o, ...,v4+1 € I' and w € E9(D,T, p), using (6.20), we see that

f(dw)('yo,...,'yq+1):/ dw:/ w
Va1 (Y0, Yg+1) Opvg11 (705 Yg41)
-/ w = F@) (O (0, 011));
Vg Or (Y05 Yq+1)

where we used the relation dp o vg41 = vy 0 Or from (6.5). However, since the
boundary operator dr and the coboundary operator dr are given by (3.15) and
(3.2), respectively, we have

q+1
.7:((4))(81"(')/07 s 77(]-‘,—1)) = Z(_l)zf(w)(')/()a o 7%1'7 s 77(]-‘,—1)
i=0
= (0F (W) (Y05 -+ +»Yg+1);
hence the lemma follows. O

By Lemma 6.10 the map F : £4(D,T, p) — €4(T', F') given by (6.20) induces the
canonical isomorphism

F: HYD,T,p) — HYT, F) (6.22)
for each ¢ > 0.
Lemma 6.11. Let (vo,...,7) € Cy(Kr), and let ¢ € Cy(D) be a q-cycle such that
T4(¢) = (Y0, - -+, Yq), where T4 : Cy(D) — C1(Kr) is as in (6.2). Then we have
F(w)(Y0,---,7q) = /Cw
for all closed q-forms w € £1(D.

Proof. If 74(c) = (70, ---,7q), by using (6.7) we see that
vg(Y0, - -1 Yq) = VqTqc = ¢ — PyOpc — OpPyc = ¢ — OpPye,

where we used the fact that ¢ is a cycle. Thus the formula (6.20) can be written

in the form
F@OOow= [ o= o= [ w=fu
c—90pPyc c Pyc c
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since w is a closed form. O

Let G be a reductive group containing I'; and let T C G be the commensurability
group of I'. Given a € T and ¢ > 0, let T(a) : HYT',F) — HYT, F) be the Hecke
operator on group cohomology described in Section 3.3. Let T'(«) : H4(D, T, p) —
HY(D,T, p) be the Hecke operator in (4.21), which may be regarded as a Hecke
operator on H7(X,V,) by using the canonical isomorphism

HY(X,V,) = HYD,T,p)
considered in (4.17).
Theorem 6.12. Let F be the isomorphism in (6.22). Then we have
T(a)o F=FoT(a)
for all o € r.

Proof. Assume that the double coset containing o« € I has a decomposition of the
form

Tal = ]_[ I
1<i<d

for some elements ayq,...,aq € L. If v e T and 1 <14 < d, as was described in
(3.21), we have

iy = &i(7) - Qigy)
for some element &; () € I', where {a (), . . ., 24(+) } is a permutation of {a, ..., aq}.

Since F' is a I'-module via the representation p, the formula (3.24) can be written
in the form

d

(T(@) )0, -->7a) = D () F(&(0)s - -5 &i(7a))

i=1

for each g-cocycle f € 3(T', F) and 7o,...,7v, € I'. Thus we have

d
(T(@)F @) (05 -70) = > plei) " F@)(&(0); - - &il7q)) (6.23)
i=1
for all w € £49(D,T,p). We now fix a point zy € D and choose the set X of
representatives of I'-orbits in such a way that
xo,aflxo,...,a(;lxo e X. (6.24)
Then, if 7, : Cy(D) — C1(KT) is as in (6.2), we see that
74{&i(v0)Z0, - -, &i(vg)T0) = (&i(0), - -, &i(7q))

for 1 < i < d. From this and Lemma 6.11, we obtain

F@)(&(0), &) = / o

(€(v0)zo,--,&(vq) o)
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Using this, (6.23), and the relation &;(y) = ai'ya;(}/) for 1 <14 < d, we have

d

(T@F @) (0 - -1 70) = > plas) ! / y

i=1 @i {Y0Z0,--,VqTq)
d
-1
=> / plai)” woa
1 (70Z0;--YqTq)

i=

where z; = oz;(i_)x for each j. However, since {a(4,);- -+, Q(v,)} 15 @ permutation
J

of {a1,...,aq}, the condition (6.24) implies that z; € X for each j € {0,1,...,¢}.

Hence we have

(Y0Z0s - -, VqZTq) = Tg(Y0s - -+ Yq),

and therefore it follows that

d
(T(@)F @) (0, 379) = D (Flpla) " 'wo ai)) (o, 7)

i=1
= (F(T(@)w))(v05 - -+ 79)-

Thus we obtain T(a)oF = FoT(«), and the proof of the theorem is complete. [

(1]
(2]
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