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HECKE OPERATORS ON COHOMOLOGY

MIN HO LEE

Abstract. Hecke operators play an important role in the theory of automor-
phic forms, and automorphic forms are closely linked to various cohomology
groups. This paper is mostly a survey of Hecke operators acting on certain
types of cohomology groups. The class of cohomology on which Hecke opera-
tors are introduced includes the group cohomology of discrete subgroups of a
semisimple Lie group, the de Rham cohomology of locally symmetric spaces,
and the cohomology of symmetric spaces with coefficients in a system of lo-
cal groups. We construct canonical isomorphisms among such cohomology
groups and discuss the compatibility of the Hecke operators with respect to
those canonical isomorphisms.

1. Introduction

This paper is mainly a survey of Hecke operators acting on certain types of coho-
mology groups. The class of cohomology on which Hecke operators are introduced
includes the group cohomology of discrete subgroups of a semisimple Lie group,
the de Rham cohomology of locally symmetric spaces, and the cohomology of sym-
metric spaces with coefficients in a system of local groups. We construct canonical
isomorphisms among such cohomology groups and discuss the compatibility of the
Hecke operators with respect to those canonical isomorphisms.

Automorphic forms play a major role in number theory, and they are closely
related to many other areas of mathematics. Modular forms, or automorphic forms
of one variable, are holomorphic functions on the Poincaré upper half plane H
satisfying a certain transformation formula with respect to the linear fractional
action of a discrete subgroup Γ of SL(2,R), and they are closely linked to the
geometry of the associated Riemann surface X = Γ\H. For example, modular
forms for Γ can be interpreted as holomorphic sections of a line bundle over X ,
and the space of such modular forms of a given weight corresponds to a certain
cohomology group ofX with local coefficients or with some cohomology group of the
discrete group Γ (cf. [1], [2], [5]) with coefficients in some Γ-module. Modular forms
can be extended to automorphic forms of several variables by using holomorphic
functions either on the Cartesian product Hn of n copies of H for Hilbert modular
forms or on the Siegel upper half space Hn of degree n for Siegel modular forms.
More general automorphic forms can also be considered by using semisimple Lie
groups. Indeed, given a semisimple Lie group G of Hermitian type and a discrete
subgroup Γ of G, we can consider automorphic forms for Γ defined on the quotient
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D = G/K of G by a maximal compact subgroup K of G. The space D has the
structure of a Hermitian symmetric domain, and automorphic forms on D for Γ
are holomorphic functions on D satisfying an appropriate transformation formula
with respect to the natural action of Γ on D (cf. [3]). Such automorphic forms are
also linked to families of abelian varieties parametrized by the locally symmetric
space Γ\D (cf. [6], [10], [14]). Close connections between automorphic forms for the
discrete group Γ ⊂ G and the group cohomology of Γ or the de Rham cohomology
of D with certain coefficients have also been studied in numerous papers over the
years (see e.g. [11]).

Hecke operators are certain averaging operators acting on the space of automor-
phic forms (cf. [1], [12], [15]), and they are an important component of the theory
of automorphic forms. For example, they are used to obtain Euler products as-
sociated to modular forms which lead to some multiplicative properties of Fourier
coefficients of those automorphic forms. In light of the fact that automorphic forms
are closely related to the cohomology of the corresponding discrete subgroups of
a semisimple Lie group, it would be natural to study the Hecke operators on the
cohomology of the discrete groups associated to automorphic forms as was done in
a number of papers (see e.g. [6], [8], [7], [17]). Hecke operators on the cohomology
of more general groups were also investigated by Rhie and Whaples in [13]. On
the other hand, if f is an automorphic form on a Hermitian symmetric domain
D = G/K for a discrete subgroup Γ of G described above, then f can be inter-
preted as an algebraic correspondence on the quotient space Γ\D, which has the
structure of a complex manifold, assuming that Γ is torsion-free. Such a correspon-
dence is determined by a pair of holomorphic maps λ, µ : Γ′\D → Γ\D, where Γ′

is another discrete subgroup of G. The maps λ and µ can be used to construct a
Hecke operator on the de Rham cohomology of Γ\D. The idea of Hecke operators
on cohomology of complex manifolds of the kind described above was suggested,
for example, by Kuga and Sampson in [9] (see also [7]).

The goal of this paper is to discuss relations among different types of cohomology
described above and establish the compatibility of the Hecke operators acting on
those cohomology groups. The organization of the paper is as follows. In Section 2
we review Hecke algebras associated to subgroups of a given group, whose examples
include the algebras of Hecke operators considered in the subsequent sections. In
Section 3 we describe the cohomology of groups as well as Hecke operators acting
on such cohomology. We also discuss equivariant cohomology and its relation with
group cohomology. The de Rham cohomology of a locally symmetric space with
coefficients in a vector bundle is discussed in Section 4 by using the language of
sheaves, and then Hecke operators are introduced on Rham cohomology groups. In
Section 5 we study the cohomology of a locally symmetric space with coefficients
in a local system of groups in connection with other types of cohomology. Hecke
operators are also considered for this cohomology. Section 6 is concerned with
compatibility of Hecke operators. We discuss canonical isomorphisms among de
Rham, singular, and group cohomology and show that the Hecke operators acting
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HECKE OPERATORS ON COHOMOLOGY 101

on those cohomology groups are compatible with one another under those canonical
isomorphisms.

2. Hecke algebras

In this section we review some of the basic properties of Hecke algebras. In
Section 2.1 we discuss the commensurability relation on the set of subgroups of a
given groupG, consider double cosets determined by two commensurable subgroups
of G, and describe decompositions of such double cosets in terms of left or right
cosets of one of those two subgroups. We introduce a binary operation on the set of
double cosets in Section 2.2, which is used in Section 2.3 to construct the structure
of an algebra, known as a Hecke algebra, on the set of double cosets determined by
a single subgroup of the given group. More details and some additional properties
of Hecke algebras can be found, for example, in [6], [12] and [15].

2.1. Double cosets. Let G be a group. Two subgroups Γ and Γ′ are said to be
commensurable (or Γ is said to be commensurable with Γ′) if

[Γ : Γ ∩ Γ′] <∞, [Γ′ : Γ ∩ Γ′] <∞,

that is, if Γ ∩ Γ′ has finite index in both Γ and Γ′. We shall write Γ ∼ Γ′ when
Γ is commensurable with Γ′. If H is a subgroup of G and if K is a subset of G
containingH , then we shall denote by K/H (resp. H\K) the set of left (resp. right)
cosets of H in K.

Lemma 2.1. The commensurability relation ∼ is an equivalence relation.

Proof. The relation ∼ is clearly reflexive and symmetric. Let Γ1, Γ2 and Γ3 be
subgroups of G with Γ1 ∼ Γ2 and Γ2 ∼ Γ3. We consider the map

Γ1 ∩ Γ2/Γ1 ∩ Γ2 ∩ Γ3 → Γ2/Γ2 ∩ Γ3 (2.1)

sending the left coset γ(Γ1∩Γ2∩Γ3) to the left coset γ(Γ2∩Γ3) for each γ ∈ Γ1∩Γ2.
If γ(Γ2 ∩ Γ3) = γ′(Γ2 ∩ Γ3) with γ, γ′ ∈ Γ1 ∩ Γ2, then γ−1γ′ ∈ Γ1 ∩ Γ2 ∩ Γ3; hence
we see that γ(Γ1 ∩ Γ2 ∩ Γ3) = γ′(Γ1 ∩ Γ2 ∩ Γ3). Thus the map (2.1) is injective,
and therefore we have

[Γ1 ∩ Γ2 : Γ1 ∩ Γ2 ∩ Γ3] ≤ [Γ2 : Γ2 ∩ Γ3] <∞,

which implies that

[Γ1 : Γ1 ∩ Γ2 ∩ Γ3] = [Γ1 : Γ1 ∩ Γ2][Γ1 ∩ Γ2 : Γ1 ∩ Γ2 ∩ Γ3] <∞.

Similarly, it can be shown that

[Γ3 : Γ1 ∩ Γ2 ∩ Γ3] <∞,

and hence we obtain

[Γ1 : Γ1 ∩ Γ3] ≤ [Γ1 : Γ1 ∩ Γ2 ∩ Γ3] <∞,

[Γ3 : Γ1 ∩ Γ3] ≤ [Γ3 : Γ1 ∩ Γ2 ∩ Γ3] <∞.

Thus the relation is transitive, and therefore the lemma follows. �
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Given a subgroup Γ of G, we set

Γ̃ = {α ∈ G | α−1Γα ∼ Γ},

which will be called the commensurator of Γ in G.

Lemma 2.2. The commensurator Γ̃ is a subgroup of G containing Γ.

Proof. Given α, β ∈ Γ̃, since α−1Γα ∼ Γ, we see that

(αβ−1)−1Γ(αβ−1) = β(α−1Γα)β−1

is commensurable with βΓβ−1. However, the commensurability β−1Γβ ∼ Γ implies
that Γ ∼ βΓβ−1; hence we have

(αβ−1)−1Γ(αβ−1) ∼ Γ.

Thus αβ−1 ∈ Γ̃, and therefore Γ̃ is a subgroup of G. Since Γ̃ clearly contains Γ,
the proof of the lemma is complete. �

Lemma 2.3. If Γ ∼ Γ′, then Γ̃′ = Γ̃.

Proof. If Γ ∼ Γ′ and α ∈ Γ′, then we have

α−1Γα ∼ α−1Γ′α = Γ′ ∼ Γ;

hence α ∈ Γ̃, which shows that Γ′ ⊂ Γ̃. On the other hand, if β ∈ Γ̃′, then we have

β−1Γβ ∼ β−1Γ′β ∼ Γ′ ∼ Γ;

hence β ∈ Γ̃. Thus we have Γ̃′ ⊂ Γ̃. Similarly, it can be shown that Γ̃ ⊂ Γ̃′, and

therefore we obtain Γ̃′ = Γ̃. �

Proposition 2.4. Let Γ ∼ Γ′, and let α ∈ Γ̃. Then the double coset ΓαΓ′ can be
decomposed into disjoint unions of the form

ΓαΓ′ =
r∐

i=1

Γαγi =
s∐

j=1

δjαΓ′ (2.2)

for some positive integers r and s, where {γi}ri=1 and {δj}sj=1 are complete sets of

coset representatives of (Γ′ ∩ α−1Γα)\Γ′ and Γ/(Γ ∩ α−1Γ′α), respectively.

Proof. We note first that a right coset of Γ contained in ΓαΓ′ can be written in
the form Γαγ for some γ ∈ Γ′. If Γαγ′ with γ′ ∈ Γ′ is another subset of ΓαΓ′, we
see that Γαγ = Γαγ′ if and only if γ′γ−1 ∈ Γ′ ∩ α−1Γα, which is equivalent to the
condition that

(Γ′ ∩ α−1Γα)γ = (Γ′ ∩ α−1Γα)γ′.

Since α−1Γα ∼ Γ ∼ Γ′, the index [Γ′ : Γ′ ∩ α−1Γα] is finite. Thus, if {γi}ri=1 is a
set of representatives of (Γ′ ∩ α−1Γα)\Γ′, each γi determines a unique coset Γαγi
contained in ΓαΓ′; hence we have

ΓαΓ′ =
r∐

i=1

Γαγi.
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HECKE OPERATORS ON COHOMOLOGY 103

Similarly, it can be shown that

ΓαΓ′ =

s∐

j=1

δjαΓ′,

where s = [Γ : Γ ∩ α−1Γ′α]. �

2.2. Operations on double cosets. Let G be the group considered in Section
2.1, and fix a subsemigroup ∆ of G. We denote by C(∆) the collection of subgroups
Γ of G that are mutually commensurable and satisfy

Γ ⊂ ∆ ⊂ Γ̃.

Given Γ,Γ′ ∈ C(∆) and a commutative ring R be with identity, we denote by
HR(Γ,Γ′; ∆) the free R-module generated by the double cosets ΓαΓ′ with α ∈ ∆.
Thus an element of HR(Γ,Γ′; ∆) can be written in the form

∑

α∈∆

cαΓαΓ′,

where the coefficients cα ∈ R are zero except for a finite number of α. We denote
by deg(ΓαΓ′) the number of right cosets Γγ contained in ΓαΓ′. Thus, if ΓαΓ′

is as in (2.2), then deg(ΓαΓ′) = r. If η is an element of HR(Γ,Γ′; ∆) given by
η =

∑
α∈∆ cαΓαΓ′, then we set

deg η =
∑

α∈∆

cα deg(ΓαΓ′) (2.3)

and refer to it as the degree of η.
We now consider an R-module M and assume that the subsemigroup ∆ ⊂ G

acts on M on the right by

(m, δ) 7→ m · δ ∈M

for (m, δ) ∈M × ∆. Thus we have

m · 1 = m, m · (δδ′) = (m · δ) · δ′

for all m ∈M and δ, δ′ ∈ ∆. Given Γ ∈ C(∆), let MΓ denote the submodule of M
consisting of the Γ-invariant elements of M , that is,

MΓ = {m ∈M | m · γ = m for all γ ∈ Γ}.

If the double coset ΓαΓ′ with α ∈ ∆ and Γ,Γ′ ∈ C(∆) has a decomposition of the
form

ΓαΓ′ =

d∐

i=1

Γαi, (2.4)

then we define its operation on MΓ by

m | ΓαΓ′ =
d∑

i=1

m · αi (2.5)

for all m ∈MΓ.
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Lemma 2.5. The operation of ΓαΓ′ on MΓ in (2.15) is independent of the choice
of the representatives αi of the right cosets of Γ in (2.4) and

m | ΓαΓ′ ∈MΓ′

for all m ∈MΓ.

Proof. If Γαi,Γα
′
i are subsets of ΓαΓ′ with Γαi = Γα′

i, then α′
i = γαi for some

γ ∈ Γ. Thus we see that m · α′
i = (m · γ) · αi = m · αi for all m ∈ MΓ; hence

m | ΓαΓ′ is independent of the choice of the representatives αi. On the other hand,
if ΓαΓ′ has a decomposition as in (2.4), then we see that

ΓαΓ′ =
d∐

i=1

Γαiγ
′

for all γ′ ∈ Γ′. Thus we have

(m | ΓαΓ′) · γ′ =

d∑

i=1

m · (αiγ
′) =

d∑

i=1

m · αi = m | ΓαΓ′;

hence it follows that m | ΓαΓ′ ∈MΓ′

. �

We see easily that the mapm 7→ (m | ΓαΓ′) given by (2.15) is in fact a homomor-
phism of R-modules. We now extend this by defining an R-module homomorphism
associated to each element of HR(Γ,Γ′; ∆) by

m | η =
∑

α

cα(m | ΓαΓ′)

for m ∈MΓ and η =
∑
α cαΓαΓ′ ∈ HR(Γ,Γ′; ∆).

Given elements Γ1,Γ2,Γ3 ∈ C(∆) and double cosets of the form

Γ1αΓ2 =

r∐

i=1

Γ1αi, Γ2βΓ3 =

s∐

j=1

Γ2βj (2.6)

with α, β ∈ ∆, we set

(Γ1αΓ2) · (Γ2βΓ3) =
∑

γ

cγΓ1γΓ3, (2.7)

where the summation is over the set of representatives γ ∈ ∆ of the double cosets
Γ1γΓ3 contained in ∆ and

cγ = #{(i, j) | Γ1αiβj = Γ1γ} (2.8)

is the number of pairs (i, j) with 1 ≤ i ≤ r and 1 ≤ j ≤ s such that Γ1αiβj = Γ1γ.
Since cγ = 0 except for a finitely many double cosets Γ1γΓ3, the sum on the right
hand side of (2.7) is a finite sum.

Let R[Γ1\∆] denote the free R-module generated by the right cosets Γ1α with
α ∈ ∆. Then ∆ acts on R[Γ1\∆] by right multiplication. On the other hand, there
is a natural injective map HR(Γ1,Γ2; ∆) → R[Γ1\∆] sending Γ1αΓ2 =

∐
i Γ1αi to
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∑
i Γ1αi. By using this injection we may regard HR(Γ1,Γ2; ∆) as an R-submodule

of R[Γ1\∆], and under this identification we see easily that

HR(Γ1,Γ2; ∆) = R[Γ1\∆]Γ2 . (2.9)

If the double cosets Γ1αΓ2 and Γ2βΓ3 are as in (2.6), using (2.15) and (2.8), we
have

(Γ1αΓ2) | (Γ2βΓ3) =

r∑

i=1

Γ1αi | (Γ2βΓ3) =

r∑

i=1

s∑

j=1

Γ1αiβj =
∑

γ

cγΓ1γ.

Using Lemma 2.5 and the identification (2.9) with Γ,Γ′ replaced by Γ2,Γ3, we see
that ∑

γ

cγΓ1γ ∈ R[Γ1\∆]Γ3 .

Thus by using (2.9) again, we obtain
∑

γ

cγΓ1γ =
∑

γ

cγΓ1γΓ3;

hence it follows that

(Γ1αΓ2) · (Γ2βΓ3) = (Γ1αΓ2) | (Γ2βΓ3). (2.10)

From this and Lemma 2.5 we see that the operation in (2.7) is independent of the
choice of the representatives αi, βj and γ.

Lemma 2.6. Let Γ1αΓ2 and Γ2βΓ3 be as in (2.6), and let cγ with Γ1γΓ3 ⊂ ∆ be
as in (2.8). Then we have

cγ deg(Γ1γΓ3) = #{(i, j) | Γ1αiβjΓ3 = Γ1γΓ3}

for each γ ∈ ∆.

Proof. We assume that Γ1γΓ3 ⊂ ∆ has a decomposition of the form

Γ1γΓ3 =
t∐

k=1

Γ1γk.

Then the relation Γ1αiβjΓ3 = Γ1γΓ3 holds if and only if Γ1αiβj = Γ1γk for exactly
one k ∈ {1, . . . , t}. Thus, if cγ is as in (2.8), we see that

#{(i, j) | Γ1αiβjΓ3 = Γ1γΓ3} =

t∑

k=1

#{(i, j) | Γ1αiβj = Γ1γ} = cγt;

hence the lemma follows from this and the fact that deg(Γ1γΓ2) = t. �

Lemma 2.7. If η1 ∈ HR(Γ1,Γ2; ∆) and η2 ∈ HR(Γ2,Γ3; ∆), then we have

deg(η1 · η2) = deg(η1) deg(η2).
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Proof. Let Γ1αΓ2 ∈ HR(Γ1,Γ2; ∆) and Γ2βΓ3 ∈ HR(Γ2,Γ3; ∆) be as in (2.7).
Then, using (2.3) and Lemma 2.6, we have

deg[(Γ1αΓ2) · (Γ2βΓ3)] =
∑

γ

cγ deg(Γ1γΓ3).

However, by (2.8) the right hand side of this relation is equal to the number of pairs
(i, j) with 1 ≤ i ≤ r and 1 ≤ j ≤ s and therefore is equal to rs = deg(Γ1αΓ2) ·
deg(Γ2αΓ3). Thus the lemma follows by extending this result linearly. �

2.3. Hecke algebras. Given Γ1,Γ2,Γ3 ∈ C(∆), the operation in (2.7) induces a
bilinear map

HR(Γ1,Γ2; ∆) ×HR(Γ2,Γ3; ∆) → HR(Γ1,Γ3; ∆)

defined by
(∑

α

aαΓ1αΓ2

)
·

(∑

β

bβΓ2βΓ3

)
=

∑

α,β

aαbβ(Γ1αΓ2) · (Γ2βΓ3). (2.11)

Using (2.10), we see that the operation of HR(Γ2,Γ3; ∆) on HR(Γ1,Γ2; ∆) =
R[Γ1\∆]Γ2 coincides with the multiplication operation in (2.11), that is,

η1 · η2 = η1 | η2 (2.12)

for all η1 ∈ HR(Γ1,Γ2; ∆) and η2 ∈ HR(Γ2,Γ3; ∆).
If M is an R-module on which ∆ acts on the right, then it follows easily from

the definition that

(m | η1) | η2 = m | (η1 · η2)

for all m ∈MΓ1 , η1 ∈ HR(Γ1,Γ2; ∆) and η2 ∈ HR(Γ2,Γ3; ∆). From this and (2.12)
we obtain

(η1 · η2) · η3 = η1 · (η2 · η3) (2.13)

for all η1 ∈ HR(Γ1,Γ2; ∆), η2 ∈ HR(Γ2,Γ3; ∆) and η3 ∈ HR(Γ3,Γ4; ∆).
Given Γ ∈ C(∆), we set

HR(Γ; ∆) = HR(Γ,Γ; ∆).

Then by (2.13) the multiplication operation on HR(Γ; ∆) is associative and HR(Γ; ∆)
is an algebra over R with identity Γ. When R = Z, we shall simply write

H(Γ; ∆) = HZ(Γ; ∆) = HZ(Γ,Γ; ∆).

Definition 2.8. Given Γ ∈ C(∆), the algebra HR(Γ; ∆) is called the Hecke algebra
over R of Γ with respect to ∆. If R = Z, then H(Γ; ∆) = HZ(Γ; ∆) is simply called
the Hecke algebra of Γ with respect to ∆.

Let ∆ and ∆′ be two subsemigroups of G with ∆ ⊂ ∆′. Then certainly HR(Γ; ∆)
is a subset of HR(Γ; ∆′). If ΓαΓ,ΓβΓ ∈ HR(Γ; ∆) with α, β ∈ ∆ are regarded as
elements of HR(Γ; ∆′), their product can be written in the form

(ΓαΓ) · (ΓβΓ) =
∑

γ

c′γΓγΓ, (2.14)
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where the summation is over the set of representatives γ of the double cosets ΓγΓ
contained in ∆′. However, we have ΓγΓ ⊂ ΓαΓβΓ ⊂ ∆; hence the product in
(2.14) coincides with the product of ΓαΓ and ΓβΓ in HR(Γ; ∆). Thus we see that
HR(Γ; ∆) is a subalgebra of HR(Γ; ∆′).

Proposition 2.9. Let α ∈ Γ̃, and assume that |Γ\ΓαΓ| = |ΓαΓ/Γ|. Then the
quotients Γ\ΓαΓ and ΓαΓ/Γ have a common set of coset representatives.

Proof. We assume that ΓαΓ can be decomposed as

ΓαΓ =
d∐

i=1

Γαi =
d∐

i=1

βiΓ.

Then it can be shown that Γαi ∩ βjΓ is nonempty for all i and j. Indeed, if Γαi
and βiΓ are disjoint for some i and j, then Γαi ⊂

⋃
k 6=j βkΓ, and therefore we have

ΓαΓ = ΓαiΓ =
⋃

k 6=j

βkΓ,

which is a contradiction. Thus, in particular, we have Γαi ∩ βiΓ 6= ∅ for each i. If
δi ∈ Γαi ∩ βiΓ for each i, then we see that Γαi = Γδi and δiΓ = βiΓ. Hence we
have

ΓαΓ =

d∐

i=1

Γδi =

d∐

i=1

δiΓ,

and {δi}di=1 is a common set of coset representatives. �

We now discuss the commutativity of the Hecke algebra HR(Γ; ∆). Note that
an involution on ∆ is a map ι : ∆ → ∆ satisfying

(αβ)ι = βιαι, (αι)ι

for all α, β ∈ ∆.

Theorem 2.10. Let ι : ∆ → ∆ be an involution on ∆, and assume that an element
Γ ∈ C(∆) satisfies

Γι = Γ, ΓαιΓ = ΓαΓ (2.15)

for all α ∈ ∆. Then the associated Hecke algebra HR(Γ; ∆) is commutative.

Proof. Given α ∈ ∆ with ΓαΓ =
∐d
i=1 Γαi, using (2.15), we have

ΓαΓ = ΓαιΓ = (ΓαΓ)ι =

d∐

i=1

αιiΓ.

Hence by Lemma 2.9 the sets Γ\ΓαΓ and ΓαΓ/Γ have a common set of coset
representatives. Thus we may write

ΓαΓ =
d∐

i=1

Γαi =
d∐

i=1

αiΓ
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for some α1, . . . , αd ∈ ∆. Similarly, if β is another element of ∆, we have

ΓβΓ =

s∐

i=1

Γβj =

s∐

j=1

βjΓ

for some positive integer s and βj ∈ ∆ for 1 ≤ j ≤ s. We now assume that

(ΓαΓ) · (ΓβΓ) =
∑

γ

cγ(ΓγΓ), (ΓβΓ) · (ΓαΓ) =
∑

γ

c′γ(ΓγΓ),

where cγ and c′γ ∈ ∆ are as in (2.8). Then we have

cγ = #{(i, j) | Γαiβj = Γγ}

= #{(i, j) | Γαiβj = ΓγΓ}/|Γ\ΓγΓ|

= #{(i, j) | Γβιjα
ι
i = ΓγιΓ}/|Γ\ΓγιΓ|

= #{(i, j) | Γβιjα
ι
i = Γγι} = c′γ ,

where we used the fact that

(ΓβιΓ) · (ΓαιΓ) = (ΓβΓ) · (ΓαΓ) =
∑

γ

c′γ(ΓγΓ) =
∑

γ

c′γ(Γγ
ιΓ).

Hence it follows that HR(Γ; ∆) is a commutative algebra. �

Example 2.11. Let G = GL(n,Q) for some positive integer n, and consider the
subgroup Γ = SL(n,Z) and the subsemigroup

∆ = {α ∈M(n,Z) | detα > 0}

of G. Then we see that the transposition α 7→ tα is an involution satisfying

tΓ = Γ, Γ ⊂ ∆ ⊂ Γ̃.

Given α ∈ ∆, by the elementary divisor theorem the corresponding double coset
ΓαΓ can be written as

ΓαΓ = ΓαdΓ

for some diagonal matrix αd = diag(d1, . . . , dn), where the diagonal entries d1, . . . , dn
are positive integers satisfying di | di+1 for each i. Hence we see that

Γ tαΓ = Γ tαdΓ = ΓαdΓ = ΓαΓ.

Thus by Theorem 2.10 the Hecke algebra H(Γ; ∆) = HZ(Γ; ∆) is commutative.

3. Group cohomology

In this section we review group cohomology and its relation with equivariant
cohomology as well as Hecke operators acting on group cohomology. The descrip-
tion of the cohomology of a group G with coefficients in a G-module by using
both homogeneous and nonhomogeneous cochains is given in Section 3.1. Given a
complex K on which a group Γ acts on the left and a left Γ-module A, in Section
3.2 we construct the associated equivariant cohomology of K with coefficients in A
following Eilenberg [4]. We also obtain an isomorphism between this equivariant
cohomology and the cohomology of Γ with the same coefficients. We then discuss
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Hecke operators acting on group cohomology in Section 3.3 introduced by Rhie and
Whaples [13].

3.1. Cohomology of groups. Let G be a group, and let M be a left G-module.
Thus M is an abelian group on which G acts on the left. Then the cohomol-
ogy of G with coefficients in M can be described by using either homogeneous or
nonhomogeneous cochains.

Given a nonnegative integer q, let Cq(G,M) denote the group consisting of the
M -valued functions f : Gq →M on the q-fold Cartesian productGq = G×· · ·×G of
G, called nonhomogeneous q-cochains. We then consider the map ∂ : Cq(G,M) →
Cq+1(G,M) defined by

(∂f)(σ1, . . . , σq+1) = σ1f(σ2, . . . , σq+1) (3.1)

+

q∑

i=1

(−1)if(σ1, . . . , σi−1, σiσi+1, . . . , σq+1)

+ (−1)q+1f(σ1, . . . , σq)

for all f ∈ Cq(G,M) and (σ1, . . . , σq+1) ∈ Gq+1. Then ∂ is the coboundary map
for nonhomogeneous q-cochains satisfying ∂2 = 0. The associated q-th cohomology
group of G with coefficients in M is given by

Hq(G,M) = Zq(G,M)/Bq(G,M),

where Zq(G,M) is the kernel of ∂ : Cq(G,M) → Cq+1(G,M) and Bq(G,M) is the
image ∂ : Cq−1(G,M) → Cq(G,M).

For each q ≥ 0 we also consider the group Cq(G,M) of homogeneous q-cochains
consisting of the maps φ : Gq+1 →M satisfying

φ(σσ0, . . . , σσq) = σφ(σ0, . . . , σq)

for all σ, σ0, . . . , σq ∈ G. We then define the map δ : Cq(G,M) → Cq+1(G,M) by

(δφ)(σ0, . . . , σq+1) =

q+1∑

i=0

(−1)iφ(σ0, . . . , σi−1, σi+1, . . . , σq+1) (3.2)

for all φ ∈ Cq(G,M) and (σ0, . . . , σq+1) ∈ Gn+2, which is the coboundary map
for nonhomogeneous q-cochains satisfying δ2 = 0. Then the corresponding q-th
cohomology group of G in M is given by

Hq(G,M) = Zq(G,M)/Bq(G,M),

where Zq(G,M) is the kernel of ∂ : Cq(G,M) → Cq+1(G,M) and Bq(G,M) is the
image ∂ : Cq−1(G,M) → Cq(G,M).

We can establish a correspondence between homogeneous and nonhomogeneous
cochains as follows. Given f ∈ Cq(G,M) and φ ∈ Cq(G,M), we consider the
elements fH ∈ Cq(G,M) and φN ∈ Cq(G,M) given by

fH(σ0, . . . , σq) = σ0f(σ−1
0 σ1, σ

−1
1 σ2, . . . , σ

−1
q−1σq) (3.3)

φN (σ1, . . . , σq) = φ(1, σ1, σ1σ2, . . . , σ1σ2 · · ·σq) (3.4)
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for all σ0, σ1, . . . , σq ∈ G. Then we see that

(fH)N (σ1, . . . , σq) = fH(1, σ1, σ1σ2, . . . , σ1σ2 · · ·σq) = f(σ1, . . . , σq),

(φN )H(σ0, . . . , σq) = σ0φN (σ−1
0 σ1, σ

−1
1 σ2, . . . , σ

−1
q−1σq)

= σ0φ(1, σ−1
0 σ1, σ

−1
0 σ2, . . . , σ

−1
0 σq) = φ(σ0, . . . , σq)

for all f ∈ Cq(G,M) and φ ∈ Cq(G,M). Thus, by extending linearly we obtain
the linear maps

(·)H : Cq(G,M) → Cq(G,M), (·)N : Cq(G,M) → Cq(G,M)

such that (·)H ◦ (·)N and (·)N ◦ (·)H are identity maps on Cq(G,M) and Cq(G,M),
respectively. The next lemma shows that this correspondence between homoge-
neous and nonhomogeneous cochains is compatible with the coboundary maps.

Lemma 3.1. Given a nonnegative integer q, we have

(∂f)H = δfH , (δφ)N = ∂φN

for all f ∈ Cq(G,M) and φ ∈ Cq(G,M).

Proof. Given elements σ0, σ1, . . . , σq+1 ∈ G and f ∈ Cq(G,M), using (3.1), (3.2)
and (3.3), we have

(∂f)H(σ0, σ1, . . . , σq+1) = σ0(∂f)(σ−1
0 σ1, σ

−1
1 σ2, . . . , σ

−1
q σq+1)

= σ0σ
−1
0 σ1f(σ−1

1 σ2, . . . , σ
−1
q σq+1)

+

q∑

i=1

(−1)iσ0f(σ−1
0 σ1, . . . , σ

−1
i−2σi−1, σ

−1
i−1σi+1, . . . , σ

−1
q σq+1)

+ (−1)q+1σ0f(σ−1
0 σ1, . . . , σ

−1
q−1σq)

= fH(σ1, . . . , σq+1) +

q∑

i=1

(−1)ifH(σ0, . . . , σi−1, σi+1, . . . , σq+1)

+ (−1)q+1fH(σ0, . . . , σq)

= (δfH)(σ0, σ1, . . . , σq+1).
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On the other hand, if φ ∈ Cq+1(G,M), by using (3.1), (3.2) and (3.4) we see that

(δφ)N (σ1, . . . , σq+1) = (δφ)(1, σ1, σ1σ2, . . . , σ1σ2 · · ·σq+1)

= φ(σ1, σ1σ2, . . . , σ1σ2 · · ·σq+1)

+

q∑

i=1

(−1)iφ(1, σ1, . . . , σ1 · · ·σi−1, σ1 · · ·σi+1, . . . , σ1 · · ·σq+1)

+ (−1)q+1φ(1, σ1, . . . , σ1 · · ·σq+1)

= σ1φN (σ2, . . . , σq+1) +

q∑

i=1

(−1)iφN (σ1, . . . , σi−1, σiσi+1, . . . , σq+1)

+ (−1)q+1φN (σ1, . . . , σq+1)

= (∂φN )(σ1, . . . , σq+1);

hence the lemma follows. �

From Lemma 3.1 we see that the diagram

Cq(G,M)
(·)H

−−−−→ Cq(G,M)
(·)N

−−−−→ Cq(G,M)

∂

y δ

y
y∂

Cq+1(G,M)
(·)H

−−−−→ Cq+1(G,M)
(·)N

−−−−→ Cq+1(G,M)

is commutative, which implies that there is a canonical isomorphism

Hq(G,M) ∼= Hq(G,M)

for each q ≥ 0.

3.2. Equivariant cohomology. Let K be a complex, which can be described as
follows. The elements of the complex K are called cells, and there is a nonnegative
integer associated to each cell called the dimension of the cell. A cell σq ∈ K of
dimension q ≥ 0 is referred to as a q-cell, and the incidence number [σq+1 : σq]
associated to the a q-cell σq and a (q + 1)-cell σq+1 is an integer that is nonzero
only for a finite number of q-cells σq and satisfies

∑

σq

[σq+1 : σq][σq : σq−1] = 0 (3.5)

for q ≥ 1. Given q ≥ 0, we denote by Cq(K) the free abelian group generated by
the q-cells, and the elements of Cq(K) are called q-chains. The boundary operator
on Cq(K) is the homomorphism

∂ : Cq(K) → Cq−1(K)

of abelian groups given by

∂σq =
∑

σq−1

[σq : σq−1]σq−1 (3.6)
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for each generator σq of Cq(K), where the summation is over the generators σq−1

of Cq−1(K). Then it can be shown that ∂ satisfies ∂2 = ∂ ◦ ∂ = 0.
Given an abelian group A, we consider the associated group of q-cochains given

by

Cq(K,A) = Hom(Cq(K), A). (3.7)

Since Cq(K) is generated by the q-cells, a q-cochain f is uniquely determined by
its values f(σq) for the q-cells σq . The coboundary operator

δ : Cq(K,A) → Cq+1(K,A) (3.8)

on Cq(K,A) is defined by

(δf)(c) = f(∂c) (3.9)

for all f ∈ Cq(K,A) and c ∈ Cq+1(K), and the condition ∂2 = 0 implies δ2 = 0.
Then the q-th cohomology group of the complex K over A is given by the quotient

Hq(K,A) = Zq(K,A)/Bq(K,A),

where Zq(K,A) is the kernel of δ : Cq(K,A) → Cq+1(K,A) and Bq(K,A) is the
image Bq(K,A) of δ : Cq−1(K,A) → Cq(K,A).

We now assume that a group Γ acts on K and on A, both on the left. Given
q ≥ 0, an element f ∈ Cq(K,A) is said to be an equivariant q-cochain if it satisfies

f(γc) = γf(c) (3.10)

for all γ ∈ Γ and c ∈ Cq(K), where Cq(K,A) is as in (3.7). We denote by
CqE(K,A) the subgroup of Cq(K,A) consisting of the equivariant cochains. If δ is
the coboundary map in (3.8) and if f is an equivariant q-cochain, then we have

δf(γcq+1) = f(∂γcq+1) = f(γ∂cq+1) = γf(∂cq+1) = γ[δf(cq+1)]

for all γ ∈ Γ, which shows that δf is an equivariant (q + 1)-cochain. We define an
equivariant q-cocycle to be an element of the group

ZqE(K,A) = Zq(K,A) ∩ CqE(K,A)

and an equivariant q-coboundary an element of the subgroup

BqE(K,A) = δCq−1
E (K,A) (3.11)

of Bq(K,A). Then the quotient group

Hq
E(K,A) = ZqE(K,A)/BqE(K,A) (3.12)

is the equivariant q-th cohomology group of K over A.
We denote by ZqR(K,A) the subgroup of Cq(K,A) consisting of the cochains

with an equivariant coboundary, that is,

ZqR(K,A) = {c ∈ Cq(K,A) | δc ∈ Bq+1
E (K,A)}. (3.13)

An element of ZqR(K,A) is called a residual q-cocycle. A residual q-coboundary, on
the other hand, is an element of the group

BqR(K,A) = Bq(K,A) + CqE(K,A).
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If b ∈ Bq(K,A) and c ∈ CqE(K,A), then by (3.11) the element (b+ c) ∈ BqR(K,A)
satisfies

δ(b+ c) = δc ∈ δCqE(K,A) = Bq+1
E (K,A);

hence by (3.13) the group BqR(K,A) is a subgroup of ZqR(K,A). The corresponding
quotient group

Hq
R(K,A) = ZqR(K,A)/BqR(K,A)

is the residual q-th cohomology group of K over A. Then it can be shown (cf. [4])
that there is an exact sequence of the form

· · ·
δ
−→ Hq

E(K,A)
ξ
−→ Hq(K,A)

η
−→ Hq

R(K,A)
δ
−→ Hq+1

E (K,A) → · · · , (3.14)

where the homomorphisms ξ and η are induced by the inclusions

ZqE(K,A) ⊂ Zq(K,A) ⊂ ZqR(K,A),

BqE(K,A) ⊂ Bq(K,A) ⊂ BqR(K,A)

and the map δ is given by the coboundary map on Cq(K,A).
We now consider the complex KΓ defined as follows. The q-cells in KΓ are

ordered (q + 1)-tuples (γ0, . . . , γq) of elements of Γ, so that Cq(KΓ) is the free
abelian group generated by the (q + 1)-fold Cartesian product Γq+1 of Γ. Given a
q-cell γ̃ = (γ0, . . . , γq) and a (q−1)-cell α̃ = (α0, . . . , αq−1), we define the incidence
number [γ̃ : α̃] to be (−1)i if α̃ = (γ0, . . . , γ̂i, . . . , γq) and zero otherwise, where γ̂i
means deleting the entry γi. Then it can be shown that the integer [γ̃ : α̃] satisfies
(3.5), so that KΓ is indeed a complex. By (3.6) its boundary operator on Cq(KΓ)
is given by

∂(γ0, . . . , γq) =

q∑

i=0

(−1)i(γ0, . . . , γ̂i, . . . , γq) ∈ Cq−1(KΓ) (3.15)

for γ0, . . . , γq ∈ Γ. We define the left action of the group Γ acts on Cq(KΓ) by

γ(γ0, . . . , γq) = (γγ0, . . . , γγq) (3.16)

for all γ ∈ Γ and (γ0, . . . , γq) ∈ Γq+1. Thus, if Γ acts on an abelian group A on the
left, then we can consider the equivariant cohomology groups Hq

E(KΓ, A) of KΓ

over A.

Proposition 3.2. Given a left Γ-module A, there is a canonical isomorphism

Hq(Γ, A) ∼= Hq
E(KΓ, A) (3.17)

for each q ≥ 0.

Proof. For each q ≥ 0 the group of q-cochains over A associated to the complex
Kq is given by

Cq(KΓ, A) = Hom(Cq(KΓ), A).

Thus Cq(KΓ, A) consists of maps f : Cq(KΓ) → A satisfying

f

(∑

i

miγ̃i

)
=

∑

i

mif(γ̃i)
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where γ̃i is a q-cell in KΓ and mi ∈ A for each i. Therefore Cq(KΓ, A) may be
regarded as the free abelian group generated by the maps of the form

h : Γq+1 → A.

By (3.10) and (3.16) an element f ∈ Cq(KΓ, A) is equivariant if

γf(γ0, . . . , γq) = f(γ(γ0, . . . , γq)) = f(γγ0, . . . , γγq) (3.18)

for each γ ∈ Γ and each generator (γ0, . . . , γq) ∈ Γq+1 of Cq(KΓ). By (3.9) the
coboundary map δ : Cq(KΓ, A) → Cq+1(KΓ, A) is given by

(δf)(γ0, . . . , γq+1) = f(∂(γ0, . . . , γq+1)) (3.19)

= f

(q+1∑

i=0

(−1)i(γ0, . . . , γ̂i, . . . , γq+1)

)

=

q+1∑

i=0

(−1)if(γ0, . . . , γ̂i, . . . , γq+1)

for all f ∈ Cq(KΓ, A), where we used (3.15). Thus we see that the space of equi-
variant elements of Cq(KΓ, A) coincides with the space Cq(Γ, A) of homogeneous
q-cochains considered in Section 3.1; hence the proposition follows. �

3.3. Hecke operators on group cohomology. In this section, we discuss Hecke
operators acting on the group cohomology. Let G be a fixed group. If Γ is a

subgroup of G, as in Section 2.2 we denote by Γ̃ its commensurator. Given a sub-
semigroup ∆ of G, recall that C(∆) is the set of mutually commensurable subgroups
Γ of G such that

Γ ⊂ ∆ ⊂ Γ̃.

We choose an element Γ ∈ C(∆) and denote by H(Γ; ∆) the associated Hecke
algebra described in Section 2.3. Thus H(Γ; ∆) is the Z-algebra generated by
double cosets ΓαΓ with α ∈ ∆.

Given a subgroup Γ of G, we consider the Hecke algebra H(Γ; Γ̃) associated to

the subsemigroup ∆ = Γ̃ of G. Let ΓαΓ with α ∈ Γ̃ be an element of H(Γ; Γ̃) that
has a decomposition of the form

ΓαΓ =

d∐

i=1

Γαi (3.20)

for some α1, . . . , αd ∈ Γ̃. Since ΓαΓγ = ΓαΓ for each γ ∈ Γ, we have

ΓαΓ =

d∐

i=1

Γαi =

d∐

i=1

Γαiγ

for all γ ∈ Γ. Thus for 1 ≤ i ≤ d, we see that

αiγ = ξi(γ) · αi(γ) (3.21)
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for some element ξi(γ) ∈ Γ, where (α1(γ), . . . , αd(γ)) is a permutation of (α1, . . . , αd).
For each i and γ, γ′ ∈ Γ we have

(αiγ)γ
′ = ξi(γ) · αi(γ)γ

′ = ξi(γ) · ξi(γ)(γ
′) · αi(γ)(γ′).

Comparing this with αi(γγ
′) = ξi(γγ

′)αi(γγ′), we see that

i(γγ′) = i(γ)(γ′), ξi(γγ
′) = ξi(γ) · ξi(γ)(γ

′) (3.22)

for all γ, γ′ ∈ Γ.
Given a nonnegative integer p and a Γ-module M , let Cp(Γ,M) be the group

of homogeneous p-cochains described in Section 3.1. For an element φ ∈ Cp(Γ,M)

and a double coset ΓαΓ with α ∈ Γ̃ that has a decomposition as in (3.20), we
consider the map φ′ : Γp+1 →M given by

φ′(γ0, . . . , γp) =

d∑

i=1

α−1
i · φ(ξi(γ0), . . . , ξi(γp)),

where the maps ξi : Γ → Γ are determined by (3.21). Then it is known that φ′ is an

element of Cp(Γ,M) (see [13]). Thus each double coset ΓαΓ with α ∈ Γ̃ determines
the C-linear map

T(α) : Cp(Γ,M) → Cp(Γ,M) (3.23)

defined by

(T(α)φ)(γ0, . . . , γp) =

d∑

i=1

α−1
i · φ(ξi(γ0), . . . , ξi(γp)) (3.24)

for φ ∈ Cp(Γ,M), where ΓαΓ =
∐

1≤i≤d Γαi and each ξi is as in (3.21). Then the

map T(α) is independent of the choice of representatives of the coset decomposition
of ΓαΓ modulo Γ. Furthermore, it can be shown that

T(α) ◦ δp = δp ◦ T(α) (3.25)

for each p ≥ 1, where δp and δp+1 are coboundary maps on Cp(Γ,M) and Cp+1(Γ,M),
respectively. Thus the map T(α) in (3.23) induces a homomorphism

T(α) : Hp(Γ,M) → Hp(Γ,M),

which is the Hecke operator on Hp(Γ,M) corresponding to α.
The Hecke operators can also be described by using nonhomogeneous cochains

as follows. For each q ≥ 0 we denote by Cq(Γ,M) the group of nonhomogeneous

q-cochains over M as in Section 3.1. Given f ∈ Cq(Γ,M) and α ∈ Γ̃ with ΓαΓ as
in (3.20), we set

(T (α)f)(γ1, . . . , γq) (3.26)

=

d∑

i=1

α−1
i f(ξi(γ1), ξi(γ1)(γ2), ξi(γ1γ2)(γ3), . . . , ξi(γ1···γq−1)(γq))

for all γ1, . . . , γq ∈ Γ.
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Proposition 3.3. Given α ∈ Γ̃, the map T (α)f : Γq → M is an element of
Cq(Γ,M) and satisfies

T (α)f = (T(α)fH)N

for all f ∈ Cq(Γ,M), where the operators

(·)H : Cq(G,M) → Cq(G,M), (·)N : Cq(G,M) → Cq(G,M)

are as in (3.3) and (3.4).

Proof. Given f ∈ Cq(Γ,M), by (3.3) we have

fH(σ0, σ1, . . . , σq) = σ0 · f(σ−1
0 σ1, σ

−1
1 σ2, . . . , σ

−1
q−1σq)

for all σ0, σ1, . . . , σq ∈ Γ. Thus for α ∈ Γ̃, using (3.24), we obtain

(T(α)fH)(σ0, σ1, . . . , σq) =

d∑

i=1

α−1
i fH(ξi(σ0), . . . , ξi(σq))

=

d∑

i=1

α−1
i ξi(σ0)

−1f(ξi(σ0)
−1ξi(σ1), ξi(σ1)

−1ξi(σ2), . . . , ξi(σq−1)
−1ξi(σq)).

Hence by using (3.4) we have

(T(α)fH)N (γ1, . . . , γq) = (T(α)fH)(1, γ1, γ1γ2, . . . , γ1γ2 · · ·γq)

=

d∑

i=1

α−1
i f(ξi(γ1), ξi(γ1)

−1ξi(γ1γ2), ξi(γ1γ2)
−1ξi(γ1γ2γ3), . . .

. . . , ξi(γ1 · · · γq−1)
−1ξi(γ1 · · · γq−1γq))

for all γ1, . . . , γq ∈ Γ. However, it follows from (3.22) that

ξi(γ1 · · · γk−1)
−1ξi(γ1 · · ·γk−1γk) = ξi(γ1···γk−1)(γk)

for 2 ≤ k ≤ q. Hence we obtain

(T(α)fH)N (γ1, . . . , γq) =

d∑

i=1

α−1
i f(ξi(γ1), ξi(γ1)(γ2), ξi(γ1γ2)(γ3), . . . , ξi(γ1···γq−1)(γq)),

and therefore the proposition follows from this and (3.26). �

Let ∂q : Cq(Γ,M) → Cq+1(Γ,M) and ∂q+1 : Cq+1(Γ,M) → Cq+2(Γ,M) be
the coboundary maps for nonhomogeneous cochains. Then, using Lemma 3.1 and
(3.25), we have

(∂q+1T (α)f)H = δq+1(T (α)f)H = δq+1(T(α)fH)

= T(α)δqfH = T (α)(∂qf)H = (T (α)∂qf)H

for all f ∈ Cq(Γ,M); hence it follows that

T (α) ◦ ∂q = ∂q+1 ◦ T (α)

for each q ≥ 0. Therefore the map T (α) : Cq(Γ,M) → Cq(Γ,M) also induces the
Hecke operator

T (α) : Hq(Γ,M) → Hq(Γ,M)
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on Hq(Γ,M) that is compatible with T(α).

4. De Rham cohomology

The focus of this section is on the de Rham cohomology of differentiable mani-
folds with coefficients in a vector bundle and Hecke operators on such cohomology.
In Section 4.1 we review basic properties of the sheaf cohomology including the
sheaf-theoretic interpretation of the de Rham and C∞ singular cohomology of dif-
ferentiable manifolds with coefficients in a real vector space. If Γ is a fundamental
group of a manifold X and ρ is a representation of Γ in a finite-dimensional real vec-
tor space, we can consider the associated vector bundle Vρ over X . In Section 4.2
we construct the de Rham cohomology of X with coefficients in Vρ. This cohomol-
ogy is identified, in Section 4.3, with certain cohomology of the universal covering
space of X associated to the representation ρ of Γ. We use this identification to
introduce Hecke operators on the de Rham cohomology of X with coefficients in
Vρ (cf. [6]).

4.1. Cohomology of sheaves. Let X be a topological space, and let S be a sheaf
over X of certain algebraic objects, such as abelian groups, rings, and modules (see
e.g. [18] for the definition and basic properties of sheaves). If U is an open subset
of X , we denote by Γ(X,S) or S(U) the space of sections of S over U . Then a
resolution of S is an exact sequence of morphisms of sheaves of the form

0 → S → F0 → F1 → F2 → · · · ,

which we also write as

0 → S → F•

in terms of the graded sheaf F• = {F i}i≥0 over X .

Example 4.1. (i) Let A be an abelian group regarded as a constant sheaf over a
topological space X . Given an open set U ⊂ X , let Sp(U,A) denote the group of
singular p-cochains in U with coefficients in A. If U is a unit ball in a Euclidean
space, then its cohomology group is zero. Hence the sequence

· · · → Sp−1(U,A)
δ
−→ Sp(U,A)

δ
−→ Sp+1(U,A)

is exact, where δ denotes the usual coboundary operator for singular cochains. We
denote by Sp(A) the sheaf over X generated by the presheaf U 7→ Sp(U,A). Then
the previous exact sequence induces the exact sequence

0 → A→ S0(A)
d
−→ S1(A)

d
−→ · · · ,

of sheaves, which is a resolution of the sheaf A over X .
(ii) Let R be the constant sheaf of real numbers, and let X be a differentiable

manifold of real dimension n. We denote by Ep the sheaf of real-valued p-forms on
X . Then we have a sequence of the form

0 → R
ι
−→ E0 d

−→ E1 d
−→ · · ·

d
−→ En → 0, (4.1)

Rev. Un. Mat. Argentina, Vol 50-1



118 MIN HO LEE

where d is the exterior differentiation operator and ι is the natural inclusion map.
Using the Poincaré lemma, it can be shown that the sequence (6.4) is exact and
therefore is a resolution of the sheaf R.

(iii) Let X be a complex manifold of complex dimension n, and let Ep,q the sheaf
of (p, q)-forms on X . Given p with 0 ≤ p ≤ n, we consider the sequence

0 → Ωp → Ep,0
∂
−→ Ep,1

∂
−→ · · ·

∂
−→ Ep,n → 0, (4.2)

where Ωp denotes the sheaf of holomorphic p-forms on X that is the kernel of
morphism ∂ : Ep,0 → Ep,1. Then the ∂ Poincaré lemma implies the sequence (4.2)
is exact and therefore is a resolution of the sheaf Ωp.

Given a sheaf S over a topological space X , in order to define the cohomology
of X with coefficients in S we now construct a particular resolution of S. Let SE

together with a local homeomorphism ̟ : SE → X be the associated étale space,
which means that SE is a topological space such that S is isomorphic to the sheaf
of sections of ̟. Let C0(S) be the presheaf defined by

C0(S)(U) = {s : U → SE | ̟ ◦ s = 1U}

for each open subset U ⊂ X . Then C0(S) is in fact a sheaf and is known as the
sheaf of discontinuous sections of S over X , and the natural map S(U) → C0(S)(U)
determines an injective morphism S → C0(S) of sheaves. We set

F1(S) = C0(S)/S, C1(S) = C0(F1(S)),

and define inductively

F i(S) = Ci−1(S)/F i−1(S), Ci(S) = C0(F i(S))

for i ≥ 2. Then the natural morphisms determine short exact sequences of sheaves
over X of the form

0 → S → C0(S) → C1(S) → 0,

0 → F i(S) → Ci(S) → Ci+1(S) → 0

for i ≥ 2. These sequences induce the long exact sequence

0 → S → C0(S) → C1(S) → C2(S) → · · · ,

which is called the canonical resolution of S. By taking the global section of each
term of this exact sequence we obtain a sequence of the form

0 → Γ(X,S) → Γ(X,C0(S)) → Γ(X,C1(S)) → · · · ,

which is in fact a cochain complex. For each i ≥ 0 we set

Ci(X,S) = Γ(X,Ci(S)),

so that the collection C•(X,S) = {Ci(X,S)}i≥0 becomes a cochain complex.

Definition 4.2. Given a sheaf S over X , the q-th cohomology group of the cochain
complex C•(X,S) is called the q-th cohomology group of X with coefficients in S
and is denoted by Hq(X,S), that is,

Hq(X,S) = Hq(C•(X,S)) (4.3)
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for all q ≥ 0.

If the coboundary homomorphism Ci(X,S) → Ci+1(X,S) is denoted by δi for
i ≥ −1 with C−1(X,S) = 0, then (4.3) means that

Hq(X,S) = Ker δi/ Im δi−1.

In particular we have
H0(X,S) = Ker δ0 = Γ(X,S).

Definition 4.3. (i) A sheaf F over a topological space X is flabby if for any open
set U ⊂ X the restriction map F(X) → F(U) is surjective.

(ii) A sheaf F over a topological space X is soft if for any closed set U ⊂ X the
restriction map F(X) → F(U) is surjective.

(iii) A sheaf F of abelian groups over a paracompact Hausdorff space X is fine
if for any disjoint subsets Y1 and Y2 of X there is an automorphism φ : F → F
which induces the zero map on a neighborhood of Y1 and the identity map on a
neighborhood of Y2.

Theorem 4.4. Let S be a sheaf over a paracompact Hausdorff space X. If S is
soft, then

Hq(X,S) = 0

for all q ≥ 1.

Proof. See [18, Theorem 3.11]. �

Definition 4.5. A resolution of a sheaf S over X of the form

0 → S → A0 → A1 → A2 → · · ·

is said to be acyclic if Hj(X,Ai) = 0 for all i ≥ 0 and j ≥ 1.

Let S be a sheaf of abelian groups over X , and let

0 → S → A0 → A1 → A2 → · · · (4.4)

be a resolution of S. By taking the global section of each term of this exact sequence
we obtain a cochain complex of the form

0 → Γ(X,S) → Γ(X,A0) → Γ(X,A1) → Γ(X,A2) → · · · .

Thus we can consider the cohomology groupsHq(Γ(X,A•)) of the cochain complex
Γ(X,A•) = {Γ(X,Ai)}i≥0.

Theorem 4.6. If the resolution (4.4) of the sheaf S over X is acyclic, then there
is a canonical isomorphism

Hq(X,S) = Hq(Γ(X,A•))

for all q ≥ 0.

Proof. See [18, Theorem 3.13]. �

Lemma 4.7. Let R be a sheaf of rings over X, and let M be a sheaf of modules
over R. If R is soft, then M is soft.
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Proof. Let K be a closed subset of X , and consider an element s ∈ M(K). Then s
can be extended to a neighborhood U of K. Define an element h ∈ R(K∪(X−U))
satisfying h(x) = 1 for x ∈ K and h(x) = 0 for x ∈ X − U . Since R is soft, h can

be extended to an element h̃ ∈ R(X). Then h̃ · s ∈ M(X) is an extension of s. �

Let F be a vector space over R, and let Eq(F ) with q ≥ 0 be the sheaf of
F -valued q-forms on a differentiable manifold X . Let Sq∞(F ) be the sheaf ob-
tained by modifying Sq(A) in Example 4.1(i) by using A = F and C∞ singular
q-cochains. We consider the corresponding graded sequences E• = {E i}i≥0 and
S•
∞(F ) = {Si∞(F )}i≥0 of sheaves over X . Then the q-th C∞ singular cohomol-

ogy group Hq
∞(X,F ) and the q-th de Rham cohomology group Hq

DR(X,F ) with
coefficients in F are defined by

Hq
∞(X,F ) = Hq(Γ(X,S•

∞(F )), Hq
DR(X,F ) = Hq(Γ(X, E•(F )))

for each q ≥ 0. On the other hand, if Ep,• = {Ep,q}q≥0 with Ep,q as in Example
4.1(iii), then the Dolbeault cohomology group of X of type (p, q) is defined by

H(p,q)(X) = Hq(Γ(X, Ep,•))

for p, q ≥ 0.

Theorem 4.8. (i) Let F be a vector space over R. If X is a differentiable manifold,
then there are canonical isomorphisms

Hq(X,F ) ∼= Hq
∞(X,F ) ∼= Hq

DR(X,F )

for all q ≥ 0, where Hq(X,F ) denotes the q-th cohomology group of X with coeffi-
cients in the constant sheaf F .

(ii) If X is a complex manifold of complex dimension n, then there is a canonical
isomorphism

H(p,q)(X) ∼= Hq(X,Ωp),

for all p, q ≥ 0 with p + q = 2n, where Ωp is the sheaf of holomorphic p-forms on
X.

Proof. Given a manifold X , there are resolutions of the constant sheaf F of the
form

0 → F → E•(F ), 0 → F → S•
∞(F ).

Using the argument of the partition of unity, it can be shown that S0
∞(F ) and

E0(F ) are soft sheaves. Since the sheaf Sq∞(F ) is a module over S0
∞(F ) for each

q ≥ 0, it follows from Lemma 4.7 that Sq∞(F ) is soft. Thus, using Theorem 4.4 and
Theorem 4.6, we see that

Hq(X,F ) ∼= Hq(Γ(X,S•
∞(F )) = Hq

∞(X,F ).

Similarly, each Eq(X) is soft; hence we have

Hq(X,F ) ∼= Hq(Γ(X, E•(F )) = Hq
DR(X,F ),

which proves (i). As for (ii), we consider the resolution (4.2) of Ωp and use the fact
that the sheaves Ep,q are soft. �
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4.2. De Rham cohomology and vector bundles. Let X be a manifold, and
let D be the universal covering space of X . Let Γ = π1(X) be the fundamental
group of X , so that X can be identified with the quotient space Γ\D.

Let ρ be a representation of Γ in a finite-dimensional real vector space F , and
define an action of Γ on D × F by

γ · (z, v) = (γz, ρ(γ)v) (4.5)

for all γ ∈ Γ and (z, v) ∈ D × F . We equip the real vector space F with the
Euclidean topology and denote by

Vρ = Γ\D × F (4.6)

the quotient of D × F with respect to the Γ-action in (4.5). Then the natural
projection map pr1 : D × F → D induces a surjective map π : Vρ → X such that
the diagram

D × F
e̟

−−−−→ Vρ

pr1

y
yπ

D
̟

−−−−→ X

(4.7)

is commutative, where ˜̟ and ̟ denote the canonical projection maps. The sur-
jective map π determines the structure of a vector bundle over X on Vρ as can be
seen in the following proposition.

Proposition 4.9. The set Vρ has the structure of a locally constant vector bundle
over X = Γ\D with fiber F whose fibration is the map π : Vρ → X in (4.7).

Proof. Let {Uα}α∈I be an open cover of X such that the inverse image π−1(Uα) of
each Uα under ̟ is homeomorphic to Uα. By taking smaller open sets if necessary
we may assume that Uα ∩ Uβ is either connected or empty for all α, β ∈ I. For

each α ∈ I we select a connected component Ũα of π−1(Uα). If Uα ∩ Uβ 6= ∅, then
there exists a unique element γα,β ∈ Γ such that

γα,βŨα ∩ Ũβ 6= ∅. (4.8)

We define the map ψα : Uα × F → π−1(Uα) by

ψα(x, y) = ˜̟ (x̃, y) (4.9)

for all (x, y) ∈ Uα × F , where x̃ is the element of Ũα with ̟(x̃) = x. Then we
see easily that ψα is a bijection. We shall now introduce a vector space structure
on each fiber Vρ,x = π−1(x) with x ∈ X . Given x ∈ Uα ⊂ X , we define the map
ψα,x : F → Vρ,x by

ψα,x(v) = ψα(x, v) (4.10)

for all v ∈ F . Then ψα,x is bijective, and therefore we can define a vector space
structure on Vρ,x by transporting the one on F via the map ψα,x. We need to

show that such a structure is independent of x. Let x ∈ Uα ∩ Uβ . If x̃α ∈ Ũα and
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x̃β ∈ Ũβ are the elements with ̟(x̃α) = x = ̟(x̃α). Then from (4.8) we see that
x̃β = γα,β x̃α. Using this and the relations (4.5), (4.9) and (4.10), we obtain

ψα(x, v) = ˜̟ (x̃α, v) = ˜̟ (γ−1
α,β x̃β , v)

= ˜̟ (x̃α, ρ(γα,β)v) = ψα(x, ρ(γα,β)v)

for all v ∈ F . Hence we see that the diagram

F
ρ(γα,β)
−−−−−→ F

ψα(x,v)

y
yψβ(x,v)

Vρ,x Vρ,x

is commutative, which shows that the vector space structure on Vρ,x is independent
of x. Finally, we note that the map

φα = ψ−1
α : π−1(Uα) → Uα × F

can be used as a local trivialization for each α ∈ I. �

Given a positive integer p, we first define a function which assigns to each x ∈ X
an alternating p-linear map

ξx : Tx(X) × · · · × Tx(X) → Vρ,x, (4.11)

where Tx(X) denotes the tangent space of X at x ∈ X and Vρ,x is the fiber of Vρ
at x. We then define, for each α ∈ I, the function ξα on Uα which associates to
each x ∈ Uα an F -valued alternating p-linear map ξα(x) given by

ξα(x) = φα,x ◦ ξx, (4.12)

where φα,x = φα |Vρ,x
.

Definition 4.10. A Vρ-valued p-form on X is a function ξ on X which assigns to
each x ∈ X an alternating p-linear map ξx of the form (4.11) such that the function
ξα in (4.12) is differentiable.

Let {Uα}α∈I be an open cover of X . Noting that Vρ is locally constant by
Proposition 4.9, we denote by Cα,β ∈ GL(F ) the constant transition function on
Uα∩Uβ for α, β ∈ I. Then a Vρ-valued p-form on X can be regarded as a collection
{ωα}α∈I of F -valued p-forms ωα on Uα satisfying

ωβ = Cα,βωα

on Uα ∩Uβ for all α, β ∈ I with Uα ∩Uβ 6= ∅. Since each Cα,β is constant, we have

dωβ = d(Cα,βωα) = Cα,βdωα;

hence the collection {dωα}α∈I determines a V(ρ)-valued (p+ 1)-form on X . Thus,
if Ep(X,Vρ) denotes the space of all Vρ-valued p-forms on X , the map {ωα}α∈I 7→
{dωα}α∈I determines an operator

d : Ep(X,Vρ) → Ep+1(X,Vρ) (4.13)
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with d2 = 0 for each p ≥ 0. Then the de Rham cohomology of X with coefficients
in Vρ is the cohomology of the cochain complex E•(X,Vρ) = {Ep(V(ρ))}p≥0 with
the coboundary operator (4.13). Thus the quotient

Hq(X,Vρ) =
Ker(d : Eq(X,Vρ) → Eq+1(X,Vρ))

dEq−1(X,Vρ)
(4.14)

for q ≥ 0 is the q-th de Rham cohomology of X with coefficients in Vρ.

4.3. Hecke operators on de Rham cohomology. Let D, Γ, X = Γ\D, and
the representation ρ : Γ → GL(F ) be as in Section 4.2. Given p ≥ 0, the space
Ep(D, F ) of all F -valued p-forms on D is spanned by the elements of the form ω⊗v
with ω ∈ Ep(D) and v ∈ F . By setting

d(ω ⊗ v) = (dω) ⊗ v

we obtain the map d : Ep(D, F ) → Ep+1(D, F ) with d2 = 0; hence we can consider
the associated cochain complex E•(D, F ) = {Ep(D, F )}p≥0 whose cohomology is
the de Rham cohomology H∗

DR(D, F ) of D with coefficients in F . By Theorem 4.8
there is a canonical isomorphism

Hq
DR(D, F ) ∼= Hq

∞(D, F )

for each q ≥ 0. This isomorphism can be described more explicitly as follows.
Given q ≥ 0, the group Sq∞(D, F ) of C∞ q-cochains considered in Theorem 4.8 can
be written as

Sq∞(D, F ) = Hom(S∞
q , F ),

where S∞
q is the group of C∞ q-chains. Thus each element of S∞

q is a finite sum
of the form c =

∑
i aiΞi with ai ∈ Z, where each Ξi : s → D is a C∞ map from a

q-simplex in a Euclidean space to D. To each q-form ω ∈ Eq(D, F ) we set

fω(c) =

∫
cω =

∑

i

ai

∫

s

Ξ∗
i ω (4.15)

for c =
∑

i aiΞi ∈ S∞
q . If c′ = c+ ∂c′′ with c′′ ∈ S∞

q+1, the Stokes theorem implies
that

fω(c′) =

∫

c+∂c′′
ω =

∫

c

ω +

∫

∂c′′
ω =

∫

c

ω +

∫

c′′
dω =

∫

c

ω = fω(c).

Thus the map c 7→ fω(c) is well-defined map on the set of q-cycles in S∞
q and

therefore is an element of Sq∞(D, F ). On the other hand, if ω′ = ω + dη with
η ∈ Ep+1(D, F ), then we have

fω′(c) =

∫

c

(ω + dη) =

∫

c

ω = fω(c);

hence the map ω 7→ fω is a well-defined map from Hq
DR(D, F ) to Hq

∞(D, F ), and
according to Theorem 4.8 this map is an isomorphism.

For each p ≥ 0, we set

Ep(D,Γ, ρ) = {η ∈ Ep(D, F ) | ρ(γ)η = η ◦ γ for all γ ∈ Γ}. (4.16)
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Then we see that
d(Ep(D,Γ, ρ)) ⊂ Ep(D,Γ, ρ);

hence we obtain the cochain complex E•(D,Γ, ρ) = {Ep(D,Γ, ρ)}p≥0. If the q-
th cohomology group for this complex is denoted by Hq(D,Γ, ρ), then the next
proposition shows that it can be identified with the q-th de Rham cohomology
group with coefficients in Vρ.

Proposition 4.11. There is a canonical isomorphism

Hq(X,Vρ) ∼= Hq(D,Γ, ρ) (4.17)

for each q ≥ 0, where Hq(X,Vρ) is as in (4.14).

Proof. Let ˜̟ : D × F → Vρ and ̟ : D → X be the canonical projection maps
as in the commutative diagram (4.7). Given z ∈ D, we define the map µz : F →
(Vρ)z = π−1(̟(z)) by

µz(v) = ˜̟ (z, v)

for all v ∈ F . Then for γ ∈ Γ and v ∈ F we have

µγz(v) = ˜̟ (γz, v) = ˜̟ (γ−1(γz, v)) = ˜̟ (z, ρ(γ)−1v) = µz(ρ(γ)
−1v);

hence we see that
µ−1
γz = ρ(γ)µ−1

z . (4.18)

If η ∈ Eq(Vρ), we define the element η̃ ∈ Eq(D) by

η̃z(u1, . . . , uq) = µ−1
z η̟(z)(̟∗u1, . . . , ̟∗uq)

for all z ∈ D and u1, . . . , uq ∈ Tz(D). Using this and (4.18), we have

η̃γz(γ∗u1, . . . , γ∗uq) = µ−1
γz η̟(γz)(̟∗γ∗u1, . . . , ̟∗γ∗uq)

= ρ(γ)µ−1
z η̟(z)(̟∗u1, . . . , ̟∗uq)

= ρ(γ)η̃z(u1, . . . , uq)

for all γ ∈ Γ, which implies that η̃ ∈ Eq(D,Γ, ρ). Now we see easily that the map
η 7→ η̃ determines an isomorphism between Eq(X,Vρ) and Eq(D,Γ, ρ); hence the
lemma follows. �

We now want to introduce Hecke operators on Hq(D,Γ, ρ), which by Proposi-

tion 4.11 may be regarded as Hecke operators on Hq(X,Vρ). Let Γ̃ denote the

commensurator of Γ as in Section 3.3, and consider an element α ∈ Γ̃ ⊂ G such
that the double coset ΓαΓ has a decomposition of the form

ΓαΓ =

d∐

i=1

Γαi (4.19)

for some elements α1, . . . , αd ∈ Γ̃. Given a p-form ω ∈ Ep(D), we denote by
T (α)ω ∈ Ep(D) the p-form defined by

T (α)ω =
d∑

i=1

ρ(αi)
−1ω ◦ αi. (4.20)
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Lemma 4.12. If ω ∈ Ep(D,Γ, ρ), then T (α)ω ∈ Ep(D,Γ, ρ) for each α ∈ Γ̃.

Proof. Given an element α ∈ Γ̃ satisfying (4.19) and i ∈ {1, . . . , d}, let αi(γ) be an
element of G such that

αiγ = ξi(γ) · αi(γ)

for some element ξi(γ) ∈ Γ as in (3.21), so that the set {α1(γ), . . . , αd(γ)} is a
permutation of {α1, . . . , αd}. If ω ∈ Ep(D,Γ, ρ), then by (3.21), (4.16) and (4.20)
the p-form T (α)ω satisfies

(T (α)ω) ◦ γ =

d∑

i=1

ρ(αi)
−1ω ◦ (αiγ)

=
d∑

i=1

ρ(αi)
−1ω ◦ (ξi(γ)αi(γ))

=
d∑

i=1

ρ(ξi(γ)αi(γ)γ
−1)−1ω ◦ (ξi(γ)αi(γ))

=

d∑

i=1

ρ(γ)ρ(αi(γ))
−1ρ(ξi(γ))

−1ω ◦ ξi(γ) ◦ αi(γ)

= ρ(γ)

d∑

i=1

ρ(αi(γ))
−1ω ◦ αi(γ) = ρ(γ)T (α)ω

for all γ ∈ Γ; hence it follows that T (α)ω ∈ Ep(D,Γ, ρ). �

By Lemma 4.12 for each α ∈ Γ̃ there is a linear map

T (α) : Eq(D,Γ, ρ) → Eq(D,Γ, ρ).

However, since T (α) commutes with d, the same operator induces the operator

T (α) : Hq(D,Γ, ρ) → Hq(D,Γ, ρ) (4.21)

on Hq(D,Γ, ρ). Thus, using the canonical isomorphism (4.17), we obtain the op-
erator

T (α) : Hq(X,Vρ) → Hq(X,Vρ)

for each q, which is a Hecke operator on Hq(X,Vρ) determined by α ∈ Γ̃.

5. Cohomology with local coefficients

In this section we discuss the cohomology of a topological space X with co-
efficients in a system of local groups as well as Hecke operators acting on such
cohomology. Section 5.1 contains the description of a system of local groups Lρ as-
sociated to a representation ρ of the fundamental group ofX in a finite-dimensional
real vector space. When X is a differentiable manifold, we show that the cohomol-
ogy of X with coefficients in the sheaf of sections of Lρ is canonically isomorphic
to the de Rham cohomology of the universal covering space D of X associated to ρ
introduced in Section 4.3. In Section 5.2 we discuss the homology and cohomology
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of X with coefficients in a general system of local groups. We introduce Hecke
operators in Section 5.3 acting on de Rham cohomology of X with coefficients in
the vector bundle Vρ considered in Section 4.2.

5.1. Local systems. Let X be an arcwise connected topological space with funda-
mental group Γ = π1(X), and let D be its universal covering space. Thus X can be
identified with the quotient space Γ\D. Given x, y ∈ X , we denote by αxy ∈ Γ the
homotopy class of curves from x to y. The homotopy class containing the inverse
of a curve belonging to αxy is denoted by α−1

xy , and the symbol αxyαyz ∈ Γ denotes
the homotopy class obtained by traversing first a path in the class αxy followed by
a path in the class αyz. We fix a base point x0 ∈ X , and denote the class αx0x

simply by αx. We also use α to denote the class αx0x0 of closed paths.

Definition 5.1. A system of local groups on X is a collection Ã = {Ax}x∈X of
groups Ax for x ∈ X satisfying the following conditions:

(i) For each class αxy of paths in X there is an isomorphism Ax → Ay.
(ii) If the transform of a ∈ Ax under the isomorphism in (i) is denoted by

aαxy ∈ Ay , then we have (aαxy)αyz = a(αxyαyz) for all x, y, z ∈ X and a ∈ Ax.

The group Ax0 , where x0 is the base point of X , will be denoted simply by A.
Then each element α ∈ Γ = π1(X) determines an endomorphism a 7→ aα = αx0x0

of A; hence Γ acts on A on the right.
Let ρ be a representation of Γ in a finite-dimensional real vector space F . We

denote by Fd the vector space F equipped with the discrete topology, and set

Lρ = Γ\D × Fd

where the quotient is taken with respect to the action in (4.5) with F replaced
with Fd. Then the natural projection map D × Fd → D induces a surjective map
π : Lρ → X = Γ\D.

Proposition 5.2. For each x ∈ X, let Lρ,x = π−1(x) be the fiber of Lρ over x.
Then the space Lρ, regarded as the collection {Lρ,x}x∈X of its fibers is a system of
local groups on X.

Proof. For each x ∈ X the fiber Lρ,x of Lρ over x is isomorphic to the discrete
additive group Fd. There exist an open covering {Uα}α∈A of X and a homeomor-
phism

ψα : Uα × Fd → π−1(Uα) (5.1)

for each α ∈ A such that ψα(z, v) = π(z) for all (z, v) ∈ Uα × Fd and ψα induces
an isomorphism {z}×Fd ∼= Lρ,π(z) for each z ∈ Uα. If x, y ∈ X , since Fd is totally
disconnected, any curve αxy from x to y determines uniquely an isomorphism
Lρ,x ∼= Lρ,y which depends only on the homotopy class of αxy (see [16, Section
13]). Thus the collection {Lρ,x}x∈X is a system of local groups on X . �

We now assume that X is a differentiable manifold and denote by Vρ = Γ\D×F
the vector bundle over X given by (4.6), where F is equipped with the Euclidean

topology. We denote by Ẽp(X,Vρ) the sheaf of germs of Vρ-valued p-forms on X .
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If Γ(Ẽp(X,Vρ)) denotes the space of sections of Ẽp(X,Vρ), we obtain the cochain

complex Γ(Ẽ•(X,Vρ)) = {Γ(Ẽp(X,Vρ))}p≥0 whose coboundary map

d : Γ(Ẽp(X,Vρ)) → Γ(Ẽp+1(X,Vρ))

is induced by the exterior differentiation map. Since the natural isomorphism

Γ(Ẽp(X,Vρ)) ∼= Ep(X,Vρ)

commutes with d, it determines a canonical isomorphism

Hp(Γ(Ẽ•(X,Vρ)) ∼= Hp(X,Vρ) (5.2)

for each p ≥ 0.

Proposition 5.3. Let L̃ρ be the sheaf of germs of continuous sections of the local
system Lρ in Proposition 5.2. Then for each q ≥ 0 there are canonical isomor-
phisms

Hq(X, L̃ρ) ∼= Hq(X,Vρ) ∼= Hq(D,Γ, ρ)

between the q-th cohomology group Hq(X,Vρ) of the complex E•(X,Vρ) and the

q-th cohomology group Hq(X, L̃ρ) of X with coefficients in L̃ρ.

Proof. The second isomorphism was proved in Proposition 4.11. As for the first

isomorphism, by using the Poincaré lemma it can be shown that the sheaf L̃ρ is
locally constant and that the sequence

0 → L̃ρ → Ẽ0(X,Vρ)
d
−→ Ẽ1(X,Vρ)

d
−→ · · ·

is exact. Hence by Theorem 4.6 there is a canonical isomorphism

Hq(X, L̃ρ) ∼= Hq(Γ(Ẽ•(X,Vρ)).

Thus the lemma follows from this and (5.2). �

5.2. Homology and cohomology with local coefficients. Let X , D and Γ =
π1(X) be as in Section 5.1, so that X can be identified with the quotient space

Γ\D. We consider a local system Ã = {Ax} on X . If s = 〈p0, . . . , pq〉 is a Euclidean
simplex and η : s → X is a singular q-simplex in X , we set Aη = Aη(p0). Since

the leading vertex of the i-th face η(i) for 1 ≤ i ≤ q coincides with that of η, we
see that Aη = Aη(i) . For i = 0, however, the 0-th face η(0) has η(p1) as its leading
vertex and is not connected with η(p0). In this case the leading edge

λη = η(p0p1) (5.3)

of η is a path in X from η(p0) to η(p1) and yields an isomorphism a 7→ aλη of
Aη = Aη(p0) onto Aη(p1) = Aη(0) .

Given x, y ∈ X and a path αxy from x to y, we define an isomorphism αxy :
Ay → Ax by

αxy(a) = aα−1
xy (5.4)

for all a ∈ Ay . We assume that the groups Ax are topological and that the isomor-
phisms a 7→ αxy(a) of Ay onto Ax are continuous.
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We now introduce a cochain complex C•(X, Ã) = {Cq(X, Ã)}q≥0 defined as

follows. Given q ≥ 0, a q-cochain on X over Ã belonging to Cq(X, Ã) is a function
f which assigns an element f(η) ∈ Aη to each singular q-simplex η in X . We define

the homomorphism δ : Cq(X, Ã) → Cq+1(X, Ã) by

(δf)(η) = λη(f(η(0))) +

q+1∑

i=1

(−1)if(η(i)) (5.5)

for each (q+1)-simplex η and f ∈ Cq(X, Ã), where λη is as in (5.3). Then it can be
shown that the homomorphism δ satisfies δ2 = 0 and therefore is a coboundary map

for the cochain complex C•(X, Ã). Thus we obtain the associated q-th cohomology
group

Hq(X, Ã) =
Ker(δ : Cq(X, Ã) → Cq+1(X, Ã))

δCq(X, Ã)

of X with coefficients in Ã.
Let x0 ∈ X be a base point, so that the fundamental group of X can be written

as Γ = π1(X,x0), and set A = Ax0 ∈ Ã. Then A is an abelian group, and by (5.4)
the group Γ acts on A on the left. Let KD be the singular complex in D, and for
each q ≥ 0 let Cq(D) = Cq(KD) denote the group of singular q-chains in D. Then
Cq(D) is the free abelian group generated by the singular q-simplexes in D, and
there is a boundary map ∂D : Cq(D) → Cq−1(D) given by

∂Dη〈p0, . . . , pq〉 =

q∑

i=0

(−1)iη〈p0, . . . , p̂i, . . . , pq〉

for a singular q-simplex η in D associated to a Euclidean singular q-simplex 〈p0, . . . , pq〉.
Then the group of singular q-cochains with coefficients in A is given by

Cq(D, A) = Cq(KD, A) = Hom(Cq(D), A),

and its coboundary operator δD is defined by

δDfη = f∂Dη

for all f ∈ Cq(KD, A) and η ∈ Cq(KD). By (3.10) a q-cochain f ∈ Cq(D, A) is
equivariant with respect to Γ if

f(γc) = γf(c)

for all γ ∈ Γ and c ∈ Cq(D, A). We denote by CqE(D, A) the subgroup of Cq(D, A)
consisting of the equivariant cochains. If δD is the coboundary map, by (3.12) the
equivariant q-th singular cohomology group of D over A is given by

Hq
E(D, A) =

(Zq(D, A) ∩ CqE(D, A))

δDC
q−1
E (D, A)

,

where Zq(D, A) denotes the kernel of the map δD : Cq(D, A) → Cq+1(D, A).

Rev. Un. Mat. Argentina, Vol 50-1



HECKE OPERATORS ON COHOMOLOGY 129

Theorem 5.4. There is a canonical isomorphism

Hq(X, Ã) ∼= Hq
E(D, A)

for each q ≥ 0.

Proof. In this proof we shall regard an element z ∈ D as the homotopy class of
paths in X joining the base point x0 with πz, where π : D → X is the natural
projection map. Then for each a ∈ Aπz the element za = az−1 ∈ Ax0 = A is
well-defined, and we have

z(αa) = (zα)a

for each α ∈ Γ. If f ∈ Cq(X, Ã), we define the cochain πEf ∈ Cq(D, A) by

πEf(η) = zf(πη) (5.6)

for all q-simplex η in D, where z ∈ D is the leading vertex of η. Since f(πη) ∈ Aπη =
Aπz, the element zf(πη) belongs to A, and therefore πEf is a cochain belonging

to Cq(D, A). Thus (5.6) determines a homomorphism πE : Cq(X, Ã) → Cq(D, A).
If ∂ denotes the coboundary map for Cq(D, A), then by using (5.6) we have

∂(πEf)(η) =

q+1∑

i=0

(−1)iπEf(η(i)) =

q+1∑

i=0

(−1)iz(i)f(πη(i)),

where η(i) is the i-th face of η and z(i) ∈ D is the leading vertex of η(i). Since z is
the leading vertex of η, for 1 ≤ i ≤ q + 1 we see that z(i) = z. For i = 0, however,
we have z(0)f(πη(0)) = zλπηf(πη(0)), where λπη is the leading edge of the simplex
πη in D. Hence we obtain

∂(πEf)(η) = zλπηf(πη(0)) +

q+1∑

i=1

(−1)izf(πη(i))

= z

(
λπηf(πη(0)) +

q+1∑

i=1

(−1)if(πη(i))

)

= z(δf)(πη) = (πEδf)(η),

where we used (5.5) and (5.6). Thus we see that ∂πE = πEδ. We shall now show

that the map πE is an isomorphism. First, if f is a nonzero element of Cq(X, Ã),
then f(η) 6= 0 for some q-simplex η in X . Hence there is a simplex η̃ in D such
that πη̃ = η and πEf(η̃) = zf(η) 6= 0, and therefore πE is injective. To consider
the surjectivity of πE we note that, if η is a q-simplex in D with leading vertex z
and if γ ∈ Γ, then γz is the leading vertex of γη and

πEf(γη) = γzf(πγη) = γ(zf(πη)) = γπEf(η);

hence the cochain πEf is equivariant. Now, let h be an equivariant q-cochain in
X over G. Given a q-simplex η in X , we choose a q-simplex η̃ in D with πη̃ = η
and consider the element z−1h(η̃) of Aη, where z is the leading vertex of η̃. If η̃ is
replaced by γη̃ with γ ∈ Γ, then we have

(γz)−1h(γη̃) = z−1γ−1γh(η̃) = z−1h(η̃),
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where we used the fact that h is equivariant. Hence the element z−1h(η̃) of Aη is

independent of the choice of η̃. We now define a cochain f ∈ Cq(X, Ã) by

f(η) = z−1h(η̃).

Then we see that

(πEf)(η) = zf(πη̃) = zf(η) = zz−1h(η) = h(η),

and therefore πEf = h, which implies the surjectivity of πE . We have thus shown

that π is an isomorphic mapping of the group of cochains Cq(X, Ã) onto the group
CqE(D, A) of equivariant cochains. Since in addition ∂πE = πEδ, it follows that

Zq(X, Ã) and Bq(X, Ã) are mapped isomorphically onto the groups ZqE(D, A) and
BqE(D, A), respectively. This proves that the map πE determines the isomorphism

Hq(X, Ã) ∼= Hq
E(D, A). �

5.3. Hecke operators. Let D, Γ and X = Γ\D be as in Section 5.1, and let Vρ
be the vector bundle over X given by (4.6) associated to a representation ρ : Γ →
GL(F ) of Γ in a finite-dimensional vector space F over R.

We consider another manifold X ′ = Γ′\D′, where Γ′ is the fundamental group
and D′ is the universal covering space of X ′. Let σ : Γ′ → Γ be a group homo-
morphism, and let τ̃ : D′ → D be a C∞ map that is equivariant with respect to σ,
which means that

τ̃ (γ′z′) = σ(γ′)τ̃ (z′)

for all γ′ ∈ Γ′ and z′ ∈ D′. Then τ̃ induces a C∞ map τ : X ′ → X . We now define
an action of Γ′ on D′ × F by

γ′ · (z′, v) = (γ′z′, ρ(σ(γ′))v)

for all γ′ ∈ Γ′, z′ ∈ D′ and v ∈ F . Then the corresponding quotient space

V ′
ρ◦σ = Γ′\D′ × F (5.7)

is a vector bundle overX ′ with fiber F , whose fibration π′ : V ′
ρ◦σ → X ′ is induced by

the natural projection map D′ ×F → D′. The next lemma shows that this bundle
is essentially the same as the vector bundle τ∗Vρ over X ′ obtained by pulling Vρ
back via τ .

Lemma 5.5. The bundle V ′
ρ◦σ over X ′ in (5.7) is canonically isomorphic to the

pullback bundle τ∗Vρ.

Proof. We note that the pullback bundle τ∗Vρ over X ′ is given by

τ∗Vρ = {(x′, ξ) ∈ X ′ × Vρ | τ(x
′) = π(ξ)}, (5.8)

where π : Vρ → X is the fibration for the bundle Vρ. We introduce the notations

p : D → Γ\D = X, q : D × V → Γ\D × V = Vρ,

p′ : D′ → Γ′\D′ = X ′, q′ : D′ × V → Γ′\D′ × V = V ′
ρ◦σ

for the respective natural projection maps. Then (5.8) can be written in the form

τ∗Vρ = {(p′(z′), q(z, v)) | z′ ∈ D′, z ∈ D, v ∈ F, τ(p′(z′)) = π(q(z, v))}.
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Since τ(p′(z′)) = p(τ̃ (z′)) and π(q(z, v)) = p(z), the condition τ(p′(z′)) = π(q(z, v))
is equivalent to the relation z = γτ̃ (z′) for some γ ∈ Γ. Using this and the fact
that q(γτ̃(z′), v) = q(τ̃ (z′), ρ(γ)−1v), we see that

τ∗Vρ = {(p′(z′), q(τ̃ (z′), v)) | z′ ∈ D′, v ∈ F}.

Thus we may define a map φ : V ′
ρ◦σ → τ∗Vρ by

φ(q′(z′, v)) = (p′(z′), q(τ̃ (z′), v))

for all z′ ∈ D′ and v ∈ F . If γ′ ∈ Γ′, we have

φ(q′(γ′z′, ρ(σ(γ′))v)) = (p′(γ′z′), q(τ̃ (γ′z′), ρ(σ(γ′))v))

= (p′(γ′z′), q(σ(γ′)τ̃ (z′), ρ(σ(γ′))v))

= (p′(γ′z′), q(τ̃ (z′), v)) = φ(q′(z′, v));

hence φ is a well-defined surjective map. To verify the injectivity of φ we consider
elements z′, z′1 ∈ D′ and v, v1 ∈ F satisfying

(p′(z′), q(τ̃ (z′), v)) = (p′(z′1), q(τ̃ (z
′
1), v1)).

Then we have

z′1 = γ′z′, τ̃ (z′1) = τ̃ (γ′z′) = σ(γ′)τ̃ (z′), v1 = ρ(σ(γ′))v

for some γ′ ∈ Γ′. Thus we obtain

q′(z′1, v1) = q′(γ′z′, ρ(σ(γ′))v) = q′(z′, v),

and therefore φ is injective and the proof of the lemma is complete. �

LetHr(X,Vρ) be the r-th cohomology group for the cochain complex {E•(X,Vρ)}
for each r ≥ 0 considered in Section 4.2. If Hr(X,Vρ)∗ denotes the dual space of
Hr(X,Vρ), then we have the natural identification

Hr(X,Vρ)
∗ = Hr(X,Vρ∗),

where ρ∗ denotes the contragredient of ρ.
We assume that τ : X ′ → X is a smooth ℓ-sheeted covering map for some pos-

itive integer ℓ. Then the associated pull-back map τ∗ : Er(X,Vρ) → Er(X ′,V ′
ρ◦σ)

determines the homomorphism

τ∗ : Hr(X,Vρ) → Hr(X ′,V ′
ρ◦σ)

of cohomology groups. On the other hand, according to the Poincaré duality, there
are canonical isomorphisms

P : Hr(X,Vρ) → Hn−r(X,Vρ)
∗,

P ′ : Hr(X ′,V ′
ρ◦σ) → Hn−r(X ′,V ′

ρ◦σ)
∗,

where (·)∗ denotes the dual space of (·). Then the Gysin map associated to τ is
the linear map

τ! : Hr(X ′,V ′
ρ◦σ) → Hr(X,Vρ)
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such that the diagram

Hr(X ′,V ′
ρ◦σ)

τ!−−−−→ Hr(X,Vρ)

P ′

y
yP

Hn−r(X ′,V ′
ρ◦σ)

∗
tτ∗

−−−−→ Hn−r(X,Vρ)∗

is commutative; here tτ∗ is the dual of the linear map

τ∗ : Hn−r(X,Vρ) → Hn−r(X ′,V ′
ρ◦σ).

Thus the Gysin map is characterized by the condition
∫

X

τ!(ω) ∧ ξ =

∫

X′

ω ∧ τ∗(ξ) (5.9)

for all ω ∈ Er(X ′,V ′
ρ◦σ) and ξ ∈ En−r(X,Vρ∗). In order to discuss Hecke operators

on Hr(X,Vρ) we now consider a pair (τ, µ) of smooth ℓ-sheeted covering maps
τ, µ : X ′ → X .

Definition 5.6. For 0 ≤ r ≤ n the Hecke operator on Hr(X,Vρ) associated to the
pair (τ, µ) is the map

T r(τ, µ) : Hr(X,Vρ) → Hr(X,Vρ)

given by

T r(τ, µ) = µ! ◦ τ
∗. (5.10)

We now consider the case where D′ is equal to D and Γ′ is a subgroup of Γ with
[Γ : Γ′] = ℓ. Let {ε1, . . . , εℓ} be the set of coset representatives of Γ′ in Γ, so that
we have

Γ =
ℓ∐

i=1

Γ′εi. (5.11)

If γ ∈ Γ, we shall use the same symbol to denote either the map

γ : D → D

sending z ∈ D to γz ∈ D or the map

γ : X ′ → X

which it induces.

Theorem 5.7. Let τ, µ : X ′ → X be covering maps, and assume that µ is induced
by the identity map on D. Then for 1 ≤ r ≤ n the associated Hecke operator on
Hr(X,Vρ) is given by

T r(τ, µ)ω =

ℓ∑

i=1

ρ(εi)
−1(τ ◦ εi)

∗ω

for all Er(X,Vρ).
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Proof. First, we shall determine µ!η for η ∈ Er(X ′,V ′
ρ◦σ), where σ : Γ′ → Γ is the

inclusion map. By (5.9) we have

∫

X′

η ∧ µ∗(ξ) =

∫

X

µ!(η) ∧ ξ

for all ξ ∈ En−r(X,Vρ∗). Let ξ̃ ∈ En−r(D,Γ, ρ∗) and η̃ ∈ Er(D,Γ′, ρ ◦ σ) with
ρ ◦ σ = ρ |Γ′ be the differential forms on D corresponding to ξ and η, respectively.
If F and F ′ are fundamental domains of Γ and Γ′, respectively, then by (5.11) the
domain F ′ can be written as a disjoint union of the form

F ′ =

ℓ∐

i=1

εiF .

Using this and the fact that the lifting of µ is the identity map on D, we have

∫

X′

η ∧ µ∗(ξ) =

∫

F ′

η̃ ∧ ξ̃ =

ℓ∑

i=1

∫

εiF

η̃ ∧ ξ̃ =

ℓ∑

i=1

∫

F

η̃ ◦ εi ∧ ξ̃ ◦ εi

=
ℓ∑

i=1

∫

F

η̃ ◦ εi ∧ ρ
∗(εi)ξ̃ =

ℓ∑

i=1

∫

F

ρ(εi)
−1η̃ ◦ εi ∧ ξ̃.

Thus, if Φη denotes the r-form on D defined by

Φη =

ℓ∑

i=1

ρ(εi)
−1ε∗i η̃ =

ℓ∑

i=1

ρ(εi)
−1η̃ ◦ εi ∈ Er(D), (5.12)

then we have

∫

X′

η ∧ µ∗(ξ) =

∫

F

Φη ∧ ξ̃.

We now need to show that Φη is an element of Er(D,Γ, ρ). Given γ ∈ Γ and a
positive integer i ≤ ℓ, using (5.11), we see that

Γ′εiγ = Γ′εiγ

for some iγ ∈ {1, . . . , ℓ}. Thus there is an element δi ∈ Γ′ such that

εiγ = δiεiγ .
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Using this and (5.12), we see that

Φη ◦ γ =

ℓ∑

i=1

ρ(εi)
−1(η̃ ◦ εi) ◦ γ =

ℓ∑

i=1

ρ(εi)
−1η̃ ◦ (εiγ)

=

ℓ∑

i=1

ρ(εi)
−1η̃ ◦ (δiεiγ ) =

ℓ∑

i=1

ρ(εi)
−1(η̃ ◦ δi) ◦ εiγ

=

ℓ∑

i=1

ρ(ε−1
i δi)η̃ ◦ εiγ =

ℓ∑

i=1

ρ(γε−1
iγ

)η̃ ◦ εiγ

= ρ(γ)

ℓ∑

i=1

ρ(ε−1
iγ

)η̃ ◦ εiγ = ρ(γ)Φη,

which shows that Φη belongs to Er(D,Γ, ρ). Hence it follows that µ!(η) is the
element of Er(X,Vρ) corresponding to Φη ∈ Er(D,Γ, ρ) under the canonical iso-
morphism (4.17). Therefore we obtain

T r(τ, µ)ω =

ℓ∑

i=1

ρ(εi)
−1ε∗i (τ

∗ω) =

ℓ∑

i=1

ρ(εi)
−1(τ ◦ εi)

∗ω

for all ω ∈ Er(X,Vρ), and hence the proof of the theorem is complete. �

6. Compatibility of Hecke operators

The goal of this section is to establish the compatibility among the Hecke op-
erators acting on various types of cohomology groups. Given a discrete group Γ
acting on a Riemannian symmetric space D and a representation ρ : Γ → GL(F )
of Γ in a finite-dimensional vector space F , Section 6.1 describes the canonical iso-
morphisms among the de Rham cohomology of D associated to ρ, the cohomology
of Γ with coefficients in F , and the equivariant C∞ singular cohomology of D. The
compatibility between Hecke operators on singular cohomology and the ones on de
Rham cohomology is discussed in Section 6.2. In Section 6.3 it is shown that the
Hecke operators on the de Rham cohomology and those on the group cohomology
are compatible under the canonical isomorphism obtained in Section 6.1.

6.1. De Rham, singular and group cohomology. Let D be a Riemannian sym-
metric space, and let Γ be a discrete group acting on D properly discontinuously.
We regard the associated quotient space X = Γ\D as a subset of D consisting of
the set of representatives of the orbits of Γ in D. We shall review relations between
singular and group cohomology discussed by Eilenberg in [4].

Let Ξ : s→ D be a singular q-simplex in D, where s = 〈p0, . . . , pq〉 is a Euclidean
simplex with ordered vertices p0 < · · · < pq. Then the vertices Ξ(p0), . . . ,Ξ(pq) of
Ξ in D can be written uniquely in the form

Ξ(p0) = δ0x0, . . . ,Ξ(pq) = δqxq (6.1)
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for some x0, . . . , xq ∈ X . Let KD be the singular complex in D as in Section 5.2,
and let KΓ be the complex for the cohomology of the group Γ considered in Section
3.2. If Ξ is as in (6.1), we define τqΞ to be the q-cell of KΓ given by

τqΞ = 〈δ0, . . . , δq〉.

Thus τq maps the singular simplexes in D into cells of KΓ and induces a homomor-
phism

τq : Cq(D) = Cq(KD) → Cq(KΓ) (6.2)

of groups of q-chains. We also see that

∂Γ ◦ τq = τq−1 ◦ ∂D (6.3)

for all q ≥ 1.

Definition 6.1. (i) A q-cell cq in KΓ is said to be basic if its first vertex is the
identity element of Γ, that is, if cq = (1, γ1, . . . , γq) for some γ1, . . . , γq ∈ Γ.

(ii) A simplex Ξ in D is called basic if its leading vertex is one of the points in
X , where X is regarded as a subset of D consisting of the set of representatives of
Γ-orbits in D as above.

Lemma 6.2. If n = dimD, then for each integer q with 0 ≤ q ≤ n there is a
homomorphism

νq : Cq(KΓ) → Cq(D) (6.4)

satisfying
∂D ◦ νq = νq−1 ◦ ∂Γ, γνq = νqγ (6.5)

for all γ ∈ Γ with ν−1 = 0.

Proof. First, we choose a point x0 ∈ D, and define ν0 : C0(KΓ) → C0(D) by

ν0(1) = x0, ν0(γ) = γx0

for all γ ∈ Γ, where (1) is the basic 0-cell. Then we see that

∂D(ν0(γ)) = ∂D(γx0) = 0 = ν−1(∂Γ(γ)), γ′ν0(γ) = γ′γx0 = ν(γ′γ)

for γ, γ′ ∈ Γ; hence ν0 satisfies (6.5). In order to define νq for 0 < q ≤ n by
induction, we assume that the maps νj have been defined for all j with 0 ≤ j < q
and they satisfy

∂D ◦ νj = νj−1 ◦ ∂Γ, γνj = νjγ (6.6)

for all γ ∈ Γ. Given a basic cell σq in KΓ, its image νq−1∂Γσq under νq−1 ◦ ∂Γ is an
integral chain in D of dimension q− 1, and therefore by the first condition in (6.6)
it is a cycle in D, that is,

∂Dνq−1∂Γσq = ∂2
Dνqσq = 0.

Since the space D is acyclic in dimensions less than n and q − 1 < n, there is an
element of Cq(D), which we denote by νqσq, such that

∂Dνqσq = νq−1∂Γσq.

We now obtain the homomorphism

νq : Cq(KΓ) → Cq(D)
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by extending the map σq 7→ νqσq to all the q-chains belonging to Cq(KΓ). �

Lemma 6.3. Given integers q and r with 0 ≤ q ≤ n−1 and 0 ≤ r ≤ n, there exist
homomorphisms

Pq : Cq(D) → Cq+1(D), Qr : Cr(KΓ) → Cr+1(KΓ)

satisfying the relations

γPq = Pqγ, ∂DPqc = c− νqτqc− Pq∂Dc, (6.7)

γQr = Qrγ, ∂ΓQrc
′ = c′ − τqνqc

′ −Qr∂Γc
′ (6.8)

for all c ∈ Cq(D), c′ ∈ Cq(KΓ) and γ ∈ Γ.

Proof. Given a basic 0-cell x in D, we consider the 0-cycle x−νqτqx. Since νqτqx =
νq(1) is a point in D and since D is pathwise connected, there is an integral 1-chain
P0x such that ∂DP0x = x− νqτqx. We extend this to the nonbasic 0-cells by

P0(γx) = γP0(x)

for all γ ∈ Γ, and use induction for general Pq as follows. Assume that Pj has been
defined for all j-cells with j < q < n and that the relations in (6.7) hold. Given a
basic q-simplex η of D, consider the q-chain

c = η − νqτqη − Pq−1∂Dη

in D. Then we have

∂Dc = ∂Dη − ∂Dνqτqη − ∂DPq−1∂η

= ∂Dη − νqτq∂Dη − (∂Dη − νqτq∂Dη − Pq−1∂
2
Dη) = 0,

and hence the chain c is an q-cycle in D. Since Hq(D) = 0, there is an (q+1)-chain
Pqη such that ∂DPqη = c. We now extend the map Pq to all the q-chains in Cq(D)
including nonbasic ones by using the first condition in (6.7). The construction of
Q can be obtained in a similar manner. �

Theorem 6.4. Let D be a topological space that is acyclic in dimensions less than
n, and let Γ be a group acting on D without fixed points. If A is a left Γ-module,
then we have

Hq(Γ, A) ∼= Hq
E(D, A) (6.9)

for 1 ≤ q ≤ n− 1, and

Hn(Γ, A) ∼= Ker[φ : Hn
E(D, A) → Hn(D, A)], (6.10)

where the homomorphism φ is from the exact sequence (3.14) for the complex KD.

Proof. Since the map τn : Cn(D) → Cn(KΓ) in (6.2) satisfies (6.3), it induces the
homomorphism

τqE : Hq
E(KΓ, A) → Hq

E(D, A) (6.11)

for each q. From (6.7) and (6.8) we see that the maps νqτq and τqνq are chain
homotopic to the identity maps 1 : Cq(D) → Cq(D) and 1 : Cq(KΓ) → Cq(KΓ),
respectively. Since the maps νq, Pq and Qq are equivariant, for q < n the homo-
morphisms in (6.11) are isomorphisms. Hence we obtain (6.9) by combining the
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isomorphism τqE with the relation (3.17). In order to prove (6.10) we consider the
commutative diagram

Hn−1(D, A)
ψD

−−−−→ Hn−1
R (D, A)

δD−−−−→ Hn
E(D, A)

φD

−−−−→ Hn(D, A)
y τ

n−1
R

y τn
E

y
y

Hn−1(KΓ, A)
ψΓ

−−−−→ Hn−1
R (KΓ, A)

δΓ−−−−→ Hn
E(KΓ, A)

φΓ
−−−−→ Hn(KΓ, A)

induced by τ and the exact sequence (3.14). Since Hn−1(KΓ, A) = Hn(KΓ, A) = 0
(see [4, p. 47]), the map δΓ is an isomorphism. On the other hand, δ is injective
because Hn−1(KΓ, A) = 0. Using the relation δΓτ

n
E = τn−1

R δ and the fact that

both τn−1
R and δΓ are isomorphisms, we see that τnR is injective and has the same

image as δ. However, we have

δHn−1
R (D, A) = Kerφ = Kn

E(D, A);

hence we obtain (6.10). �

Let ρ : Γ → GL(F ) be a representation of Γ in a finite-dimensional vector space
F over R as in Section 5.3, so that F can be regarded as a left Γ-module.

Proposition 6.5. There is a canonical isomorphism

Hq(D,Γ, ρ) ∼= Hq
∞,E(D, F ) (6.12)

for each q ≥ 0.

Proof. If fω with ω ∈ Ep(D, F ) is as in (4.15), then by Theorem 4.8 the map
ω 7→ fω determines an isomorphism between Hq

DR(D, F ) and Hq
∞(D, F ). On the

other hand, if ω ∈ Eq(D,Γ, ρ), we have

fω(γc) =

∫

γc

ω =

∫

c

γ∗ω =

∫

c

ω ◦ γ =

∫

c

ρ(γ)ω = ρ(γ)

∫

c

ω = ρ(γ)fω(c)

for all γ ∈ Γ and c ∈ S∞
q . Thus it follows that fω is equivariant, and therefore the

map ω 7→ fω determines an isomorphism (6.12). �

Corollary 6.6. If D is contractible, there is a canonical isomorphism

Hq(D,Γ, ρ) ∼= Hq(Γ, F )

for each q ≥ 0, where F is regarded as a Γ-module via the representation ρ.

Proof. This follows from the isomorphisms (6.9) and (6.12). �

6.2. Singular and de Rham cohomology. LetG be a semisimple Lie group, and
let D be the associated symmetric space, which can be identified with the quotient
G/K of G by a maximal compact subgroup. Let Γ be a discrete subgroup of G,
and let X = Γ\D be the associated locally symmetric space. Let ρ : G → GL(F )
be a representation of G in a finite-dimensional real vector space F .

Given q ≥ 0, the group Cq∞(D, F ) of C∞ q-cochains in D with coefficients in F
can be written as

Cq∞(D, F ) = Hom(C∞
q , F ),

Rev. Un. Mat. Argentina, Vol 50-1



138 MIN HO LEE

where C∞
q denotes the group of C∞ q-chains in D. If α ∈ Γ̃ with

ΓαΓ =

d∐

i=1

Γαi, (6.13)

we define the map Ts(α) : Cq∞(D, F ) → Cq∞(D, F ) by

(Ts(α)f)(c) =

d∑

i=1

ρ(αi)
−1f(αic) (6.14)

for all f ∈ Cq∞(D, F ) and c ∈ C∞
q (D). Since clearly Ts(α) commutes with the

boundary operator for the complex C•
∞(D, F ), it induces the map

Ts(α) : Hq
∞(D, F ) → Hq

∞(D, F ), (6.15)

which is the Hecke operator on the q-th C∞ singular cohomology group Hq
∞(D, F )

with coefficients in F .

Lemma 6.7. The map Ts(α) : Cq∞(D, F ) → Cq∞(D, F ) given by (6.14) sends
Γ-equivariant q-cochains to Γ-equivariant q-cochains.

Proof. Let α be an element of Γ̃ such that the corresponding double coset has a
decomposition given by (6.13). Then, as in (3.21), for each i ∈ {1, . . . , d} and γ ∈ Γ
there are elements i(γ) ∈ {1, . . . , d} and ξi(γ) ∈ Γ such that

αiγ = ξi(γ) · αi(γ). (6.16)

Furthermore, the set {α1(γ), . . . , αd(γ)} is a permutation of {α1, . . . , αd} for each
γ ∈ Γ. Let f ∈ CqE,∞(D, F ) and c ∈ C∞

q (D), where CqE,∞(D, F ) is the subspace of

Cq∞(D, F ) consisting of Γ-equivariant cochains. Then, since f is Γ-equivariant, we
have

f(δc) = ρ(δ)f(c)

for all δ ∈ Γ. Using this, (6.14) and (6.16), we obtain

(Ts(α)f)(γc) =
d∑

i=1

ρ(αi)
−1f(αiγc)

=
d∑

i=1

ρ(ξi(γ)αi(γ)γ
−1)−1f(ξi(γ)αi(γ)c)

=

d∑

i=1

ρ(γ)ρ(αi(γ))
−1ρ(ξi(γ))

−1ρ(ξi(γ))f(αi(γ)c)

= ρ(γ)

d∑

i=1

ρ(αi(γ))
−1f(αi(γ)γc) = ρ(γ)(T (α)f)(c)

for all γ ∈ Γ. Thus it follows that T (α)f ∈ CqE,∞(D, F ). �
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Given α ∈ Γ̃, we denote by Γ(α) the subgroup of Γ defined by

Γ(α) = Γ ∩ α−1Γα, (6.17)

and set

X(α) = Γ(α)\D.

We assume that [Γ : Γ(α)] = d and that

Γ =

d∐

i=1

Γ(α)δi (6.18)

with δ1, . . . , δs ∈ Γ. Then by Lemma 2.4 we have

ΓαΓ =

d∐

i=1

Γαδi. (6.19)

If γ′ ∈ Γ(α), then αγ′α−1 ∈ Γ; hence for each z ∈ D we have

α(γ′z) = (αγ′α−1)αz ∈ Γ(αz).

Thus it follows that α(Γ(α)z) ⊂ Γ(αz), and therefore the map α : D → D, z 7→ αz
induces a map µα : X(α) → X . However, since Γ(α) ⊂ Γ, there is another map
µ1 : X(α) → X induced by the identity map on D. Thus the maps µ1 and µα
are d-sheeted covering maps of X , and by Definition 5.6 they determine the Hecke
operator T r(µ1, µα) on Hr(X,Vρ) for each r ≥ 0. By identifying Hr(X,Vρ) with
Hr(D,Γ, ρ) using the canonical isomorphism (4.17) we obtain the Hecke operator

T r(µ1, µα) : Hr(D,Γ, ρ) → Hr(D,Γ, ρ)

for each r ≥ 0. On the other hand, by Lemma 6.7 the Hecke operator (6.15) induces
the Hecke operator

Ts(α) : Hq
E,∞(D, F ) → Hq

E,∞(D, F )

on the C∞ q-th equivariant cohomology group with coefficients in F . We denote
by

φ : Hq(D,Γ, ρ) → Hq
E,∞(D, F )

the canonical isomorphism (6.12).

Theorem 6.8. Given α ∈ Γ̃ and q ≥ 0, we have

φ(T q(µ1, µα)[ω]) = Ts(α)φ([ω])

for all ω ∈ Cq(D,Γ, ρ), where [ω] denotes the cohomology class of ω in Hq(D,Γ, ρ).

Rev. Un. Mat. Argentina, Vol 50-1



140 MIN HO LEE

Proof. Let ω ∈ Cq(D,Γ, ρ), and let α be an element of Γ̃ satisfying (6.13) and
(6.19). Then, using (6.14) and Theorem 5.7, we have

φ(T q(µ1, µα)[ω])(c) =

∫

c

T q(µ1, µα)ω =
d∑

i=1

∫

c

ρ(αδi)
−1ω ◦ (αδi)

=

d∑

i=1

∫

αδic

ρ(αδi)
−1ω =

d∑

i=1

ρ(αδi)
−1φ(ω)(αδic)

= (Ts(α)φ([ω]))(c)

for all c ∈ C∞
q (D); hence the theorem follows. �

6.3. De Rham and group cohomology. Let G, K, D = G/K and the repre-
sentation ρ : Γ → GL(F ) of a discrete subgroup Γ of G in F be as in Section
6.2.

Let Cq(D) be the group of singular q-chains as in Section 5.2, and let Ξ : s→ D
be a singular q-simplex belonging to Cq(D), where s = 〈p0, . . . , pq〉 is a Euclidean
simplex with ordered vertices p0 < · · · < pq. Then, as in Section 6.1, the vertices
Ξ(p0), . . . ,Ξ(pq) of Ξ can be written uniquely in the form

Ξ(p0) = δ0x0, . . . ,Ξ(pq) = δqxq

for some x0, . . . , xq ∈ X , where X = Γ\D is regarded as a subset of D consisting
of representatives of the orbits of Γ. Given a q-form ω ∈ Eq(D) on D, we define
the associated map F(ω) : Γq+1 → F by

F(ω)(γ0, . . . , γq) =

∫

νq(γ0,...,γq)

ω (6.20)

for all γ0, . . . , γq ∈ Γ, where νq : Cq(KΓ) → Cq(D) is as in (6.4).

Lemma 6.9. If ω ∈ Eq(D,Γ, ρ), then we have

F(ω)(γγ0, . . . , γγq) = ρ(γ)−1F(ω)(γ0, . . . , γq) (6.21)

for all γ, γ0, . . . , γq ∈ Γ.

Proof. Given γ0, . . . , γq ∈ Γ, using the construction of νq in the proof of Lemma
(4.8), we see easily that

νq(γγ0, . . . , γγq) = γνq(γ0, . . . , γq)

for all γ ∈ Γ. Hence by using (4.16) we obtain

F(ω)(γγ0, . . . , γγq) =

∫

γνq(γ0,...,γq)

ω =

∫

νq(γ0,...,γq)

ω ◦ γ

=

∫

νq(γ0,...,γq)

ρ(γ)−1ω

= ρ(γ)−1F(ω)(γ0, . . . , γq)

for all ω ∈ Eq(D,Γ, ρ). �
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By Lemma 6.9 the map F(ω) : Γq+1 → F given by (6.20) is a homogeneous
q-cochain for the cohomology of Γ described in Section 3.1. Thus we have

F(ω) ∈ Cq(Γ, F )

for all ω ∈ Eq(D,Γ, ρ), where F is regarded as a Γ-module via the representation
ρ. We denote by δ and ∂ the coboundary maps for the complexes E•(D,Γ, ρ) and
C•(Γ, F ), respectively.

Lemma 6.10. The map ω 7→ F(ω) given by (6.20) satisfies

δF(ω) = F(dω)

for all ω ∈ Eq(D,Γ, ρ).

Proof. Given γ0, . . . , γq+1 ∈ Γ and ω ∈ Eq(D,Γ, ρ), using (6.20), we see that

F(dω)(γ0, . . . , γq+1) =

∫

νq+1(γ0,...,γq+1)

dω =

∫

∂Dνq+1(γ0,...,γq+1)

ω

=

∫

νq∂Γ(γ0,...,γq+1)

ω = F(ω)(∂Γ(γ0, . . . , γq+1)),

where we used the relation ∂D ◦ νq+1 = νq ◦ ∂Γ from (6.5). However, since the
boundary operator ∂Γ and the coboundary operator ∂Γ are given by (3.15) and
(3.2), respectively, we have

F(ω)(∂Γ(γ0, . . . , γq+1)) =

q+1∑

i=0

(−1)iF(ω)(γ0, . . . , γ̂i, . . . , γq+1)

= (δF(ω))(γ0, . . . , γq+1);

hence the lemma follows. �

By Lemma 6.10 the map F : Eq(D,Γ, ρ) → Cq(Γ, F ) given by (6.20) induces the
canonical isomorphism

F : Hq(D,Γ, ρ) → Hq(Γ, F ) (6.22)

for each q ≥ 0.

Lemma 6.11. Let (γ0, . . . , γq) ∈ Cq(KΓ), and let c ∈ Cq(D) be a q-cycle such that
τq(c) = (γ0, . . . , γq), where τq : Cq(D) → C1(KΓ) is as in (6.2). Then we have

F(ω)(γ0, . . . , γq) =

∫

c

ω

for all closed q-forms ω ∈ Eq(D.

Proof. If τq(c) = (γ0, . . . , γq), by using (6.7) we see that

νq(γ0, . . . , γq) = νqτqc = c− Pq∂Dc− ∂DPqc = c− ∂DPqc,

where we used the fact that c is a cycle. Thus the formula (6.20) can be written
in the form

F(ω)(γ0, . . . , γq) =

∫

c−∂DPqc

ω =

∫

c

ω −

∫

Pqc

dω =

∫

c

ω,
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since ω is a closed form. �

Let G be a reductive group containing Γ, and let Γ̃ ⊂ G be the commensurability

group of Γ. Given α ∈ Γ̃ and q ≥ 0, let T(α) : Hq(Γ, F ) → Hq(Γ, F ) be the Hecke
operator on group cohomology described in Section 3.3. Let T (α) : Hq(D,Γ, ρ) →
Hq(D,Γ, ρ) be the Hecke operator in (4.21), which may be regarded as a Hecke
operator on Hq(X,Vρ) by using the canonical isomorphism

Hq(X,Vρ) ∼= Hq(D,Γ, ρ)

considered in (4.17).

Theorem 6.12. Let F be the isomorphism in (6.22). Then we have

T(α) ◦ F = F ◦ T (α)

for all α ∈ Γ̃.

Proof. Assume that the double coset containing α ∈ Γ̃ has a decomposition of the
form

ΓαΓ =
∐

1≤i≤d

Γαi

for some elements α1, . . . , αd ∈ Γ̃. If γ ∈ Γ and 1 ≤ i ≤ d, as was described in
(3.21), we have

αiγ = ξi(γ) · αi(γ)

for some element ξi(γ) ∈ Γ, where {α1(γ), . . . , αd(γ)} is a permutation of {α1, . . . , αd}.
Since F is a Γ-module via the representation ρ, the formula (3.24) can be written
in the form

(T(α)f)(γ0, . . . , γq) =

d∑

i=1

ρ(αi)
−1f(ξi(γ0), . . . , ξi(γq))

for each q-cocycle f ∈ Z(Γ, F ) and γ0, . . . , γq ∈ Γ. Thus we have

(T(α)F(ω))(γ0, . . . , γq) =

d∑

i=1

ρ(αi)
−1F(ω)(ξi(γ0), . . . , ξi(γq)) (6.23)

for all ω ∈ Eq(D,Γ, ρ). We now fix a point x0 ∈ D and choose the set X of
representatives of Γ-orbits in such a way that

x0, α
−1
1 x0, . . . , α

−1
d x0 ∈ X. (6.24)

Then, if τq : Cq(D) → C1(KΓ) is as in (6.2), we see that

τq〈ξi(γ0)x0, . . . , ξi(γq)x0〉 = (ξi(γ0), . . . , ξi(γq))

for 1 ≤ i ≤ d. From this and Lemma 6.11, we obtain

F(ω)(ξi(γ0), . . . , ξi(γq)) =

∫

〈ξ(γ0)x0,...,ξ(γq)x0〉

ω.

Rev. Un. Mat. Argentina, Vol 50-1



HECKE OPERATORS ON COHOMOLOGY 143

Using this, (6.23), and the relation ξi(γ) = αiγα
−1
i(γ) for 1 ≤ i ≤ d, we have

(T(α)F(ω))(γ0, . . . , γq) =

d∑

i=1

ρ(αi)
−1

∫

αi〈γ0ex0,...,γq exq〉

ω

=

d∑

i=1

∫

〈γ0ex0,...,γqexq〉

ρ(αi)
−1ω ◦ αi

where x̃j = α−1
i(γj)

x for each j. However, since {α1(γj), . . . , αd(γj)} is a permutation

of {α1, . . . , αd}, the condition (6.24) implies that x̃j ∈ X for each j ∈ {0, 1, . . . , q}.
Hence we have

〈γ0x̃0, . . . , γqx̃q〉 = τq(γ0, . . . , γq),

and therefore it follows that

(T(α)F(ω))(γ0, . . . , γq) =
d∑

i=1

(F(ρ(αi)
−1ω ◦ αi))(γ0, . . . , γq)

= (F(T (α)ω))(γ0, . . . , γq).

Thus we obtain T(α)◦F = F ◦T (α), and the proof of the theorem is complete. �
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