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NOTES ON THE SPACES OF BILINEAR MULTIPLIERS

OSCAR BLASCO

ABSTRACT. A locally integrable function m(&,n) defined on R™ x R"™ is said
to be a bilinear multiplier on R™ of type (p1,p2,p3) if

B(f.o)a) = [ [ F@atmm(e,me o dedn

defines a bounded bilinear operator from LP1(R™) x LP2(R™) to LP3 (R™). The
study of the basic properties of such spaces is investigated and several methods
of constructing examples of bilinear multipliers are provided. The special case
where m(&,n) = M (€ —n) for a given M defined on R" is also addressed.

1. INTRODUCTION.

Throughout the paper Cpo(R™) denotes the space of continuous functions defined
in R™ with compact support, S(R™) denotes the Schwartz class on R”, i.e. f: R" —

C such that f € C*°(R") and 2o 2@ _ 5o hounded for any 5 = (f1,...,0n)

9z"1 ...Bxg"
and a = (ay,...,ap) where z% = x‘fl‘l...xg" and |B] = B1 + ... + B, and P(R")
stands for the set of functions in S(R™) such that f € Coo(R™) where f(£) =
Jon f(@)e 2™ g,

We shall use the notation M, ,(R™) (respect. M, ,(R™)), for 1 < p,q < oo, for
the space of distributions u € S'(R™) such that u * ¢ € LY(R") for all ¢ € LP(R™)
(respect. for the space of bounded functions m such that T, defines a bounded
operator from LP(R™) to L%(R™) where m(f) = m(€)f(€).) We endow the
space M, ,(R") with the “norm” of the operator Ty,, that is [|[m||p.q = [|Tm-

Let us start off by mentioning some well known properties of the space of linear
multipliers (see [1, 14]): M, 4(R™) = {0} whenever ¢ < p, My, ((R") = My (R™)
for 1 <p<g<ooandforl<p<2 M 1(R") C Mp,(R") C Mso(R"). We
also have the identifications

Ma2(R™) = L®(R"),
My (R") ={ue S R"):ue LY R}, 1<q< oo,
Mi1(R") ={ueS'R") :u=pe MR")}.

In this paper we shall be dealing with their bilinear analogues.

Key words and phrases. spaces of bilinear multipliers, bilinear Hilbert transform, bilinear
fractional transform.
Partially supported by Proyecto MTM2008-04594/MTM.
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24 OSCAR BLASCO

Definition 1.1. Let 1 < p1,p2 < o0 and 0 < p3 < oo and let m(§,n) be a locally
integrable function on R™ x R™. Define

=[] fQatmene o dcy

for f,g € P(R™).
m is said to be a bilinear multiplier on R™ of type (p1,p2, p3) if there exists C > 0
such that

1B (f,9)llps < Cllllp [lgllp.

forany f,g € P(R™), i.e. By, extends to a bounded bilinear operator from LP* (R™)x
LP2(R™) to LP*(R™) (where we replace L>°(R™) for Co(R™) in the case p; = oo for
i=1,2).

We write BMp, p,.ps) (R™) for the space of bilinear multipliers of type (p1, p2, p3)
and ||m|lp, ps,ps = || Bmll-

The study of bilinear multipliers for smooth symbols (where m(&,n) is a “nice”
regular function) goes back to the work by R.R. Coifman and Y. Meyer in [6].

Particularly simple examples are the following bilinear convolution-type opera-
tors: For a given K € L} (R™) we define

loc

Cx(f9) /f & — )9z + v)K (y)dy (1)

for f and g belonging to Cpo(R™).

If K € LY(R™) then m(&,n) = K (& —n) defines a multiplier in BMp, psps) (R™)
for 1/py +1/p2 = 1/ps if ps > 1 and |[mllp, py ps < [[K1.

Indeed, for f and g € S(R), one has f(z —y) = [z f(&)e*z=v:8) d¢ and
gz +y) = [r. (n)e2 @ Tvm dn. Hence we have

Cr(f,9)(x) = flz—y)g(z +y)K(y)dy

R

= [ [ [ Reatr @iy
n n R

= / f n)( K(y )6_2”“5_”’”dy)e2”i<5+”7”>d§d77
R R»

= [ i@~ pemenaca,

This motivates the introduction of the following class of multipliers.

Definition 1.2. Let 1 < p1,ps < 00 and 0 < p3 < co. We denote by My, py.ps) (R™)
the space of measurable functions M : R™ — C such that m(&,n) = M(§ —n) €
BM (p, p.ps)(R), that is to say

0= [ ] F@amas—memiernagy

extends to a bounded bilinear map from LP*(R™) x LP2(R™) into LP3(R™). We keep
the notation M Iy, s = | Basl.
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NOTES ON THE SPACES OF BILINEAR MULTIPLIERS 25

It was only in the last decade that the cases My(x) = ‘; were shown to define

T 11—«
bilinear multipliers of type (p1, p2, p3) for 1/p3 = 1/p1—|—1/‘]72—a for 1 < p1,p2 <
and 0 < a < 1/p1 + 1/p2 (see (3) in Theorem 1.3) and, in the case n = 1,
M (xz) = —isign(z) was shown to define a bilinear multiplier of type (p1,p2,p3)
for 1/ps = 1/p1 + 1/p2 for 1 < p1,p2 < oo and ps > 2/3 (see (2) in Theorem
1.3). These two main examples correspond to the following bilinear operators: the
bilinear fractional integral defined by

Ia(f79)(w)=4f(x ]j)g(“y)dy, 0<a<l

|17a

and the bilinear Hilbert transform defined by

a1 [z —y)g(z +y)
H(f,g)(z) = lim — e ) dy

respectively.
Let us collect the results about their boundedness which are known nowadays.

Theorem 1.3. Let 1 < p1,p2 <00, 0<a<1/pr+1/ps, 1/qg=1/p1+1/ps —a,
1/ps = 1/p1+ 1/p2 and 2/3 < p3 < co. Then there exist constants A and B such
that

IH(f, 9)lps < Allfllp: llg]lp (Lacey-Thiele, [12, 13]), (2)
o (f, 9)llg < Bllfllp:llgllps- (Kenig-Stein [11], Grafakos-Kalton [10]). (3)

Our objective is to study the basic properties of the classes BM;, p, ps)(R) and
Mo, ps.ps (R), to find examples of bilinear multipliers in these classes and to get
methods to produce new ones.

As usual, if f € L'(R") we denote by 7., M, and D! the translation 7, f(y) =
f(y — x) for z € R", the modulation M,f(y) = > **¥) f(y) and the dilation
DY f(z) =t~Pf(%) for 0 < p,t < oc.

With this notation out of the way one has, for 1 <p <oocand 1/p+1/p’ =1,

(e £)(§) = My f(&), (Mzf)(&) =7f(&), (D& =Dy f(€). (4

Clearly 7., M, and DY are isometries on LP(R"™) for any 0 < p < cc.

Although most of the results presented in what follows have a formulation in
n > 1 we shall restrict ourselves to the case n = 1 for simplicity. The reader is

referred to [2, 3, 4, 5, 7] for several similar results on other groups, and to find
same methods of transference.

2. BILINEAR MULTIPLIERS: THE BASICS

Let us start by pointing out a characterization, for p3 > 1, in terms of the
duality, whose elementary proof is left to the reader.

Proposition 2.1. Let 1 < p3 < 0co. Then m € BMp, p, ps)(R) if and only if there
exists C' > 0 such that

|, F©ah( +mym(E mydedn| < CIS o lglles 1Az
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26 OSCAR BLASCO

for all f,g,h € P(R).

We now present a basic example of a bilinear multiplier. For a Borel regular
measure in Ry we denote fi(€) = [ e"*™*¢du(x) its Fourier transform.

Proposition 2.2. Let ps > 1 and 1/p1+1/p2 = 1/p3 and let m(&,n) = (o + Fn)
where yu is a Borel regular measure in R and (a, B) € R*. Thenm € BMy, p, ps)(R)

and [[mllpy,ps.ps < llpall1-

Proof. Let us first rewrite the value B,,(f, g) as follows:

Bu(fog)(x) = / F©amalat + Br)™ €0 dedy
- / F©)am)( / 2RO gy (1)) THERE gy
]RQ

= [ H©atmemietsenite g dute
R JR2

- / f(z — at)g(w - B)du(t).

Hence, using Minkowski’s inequality, one has

1 Bm (£, 9)llps < /RHf('—at)g(-—ﬁt)Hmdlul(t)

A

IN

/}R 1£( =)l llg(- = Bl podlpl ()

= HprlllgHm/Rdlul(t)= [l £ llp: llgllp-
|

Let us start with some elementary properties of the bilinear multipliers when
composing with translations, modulations and dilations.

Proposition 2.3. Let m € BMp, p, ps)(R).

(a) Ifmi € Msl,m (R) and ma € MSQ,m (R) then ’I’rh({)m(ﬁ,?])mg(?]) € BM(Sl,SQ,p;})(R)'
Moreover

[mimma|ls, s0,ps < I lls1,00 (172 p1pa.ps [M22]] 52,2
(B) T(eo,m0)™ € BMpy pyps) (R) for each (§9,m0) € R? and
I17(e0,m0) Ml p1 ,p2ips = 2llp1 o ps-
(¢) Mgy noym € BMpy po.ps)(R) for each (&9,m0) € R? and

||M(§07770)m||p1,p2,p3 = ”mel,szm

(d) If% = p% + p% - p% and 0 <t < oo then Dim € BM, p, ps)(R) and

”ng”pl,pz,ps = |lm|lp1.p2.ps-
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NOTES ON THE SPACES OF BILINEAR MULTIPLIERS 27

Proof. Use (4) to deduce the following formulas
Bnimms (f,9) = BT, f, T 9)-
Bricyngym (f>9) = Meoyny B (Mg, f, M_1,9)-
BM(go,nO)m(.f’ 9) = B (g0 fs 7o 9)-
B (D} f, Di*g) = DY Bpgm(f. 9)-

Let us check only the validity of last one. The other ones follow easily from the
previous facts.

5

6

(5)
(6)
(7)
(8)

B (D} f, Di*g)(x) =

) 27i( £+n)tt 2d§d’l7

7L7é+im(§, g)eQTri(f-H?)%dfdn

I I
U ~
T =
D:J w
S %\
'“ N
A ~~»
}h ™
S~—
>
\-/ —~
/-\ 3
S~—"
\_/ ~
=

From (8) we can see that the condition 1/p; + 1/p2 = 1/ps is also connected to
the homogeneity of the symbol.

Proposition 2.4. Let m € BMy, p, py)(R) such that m(t€,tn) = m(&,n) for any
t>0. Then—+p—2—pi3,
Proof. From assumption D{°m = m. Using (8) we have

By (DY f, Di?g) = t/pe=(/pitl/p) D B (f, g)

and therefore

1B (f, Dllps = 1D B (f,9)lIps
t—l/p3+(1/p1+1/102)||Bm(Dp1 1, szg)”pg
< Vst Bl £l 9]
For this to hold for any 0 < ¢t < oo one needs 1/p1 + 1/p2 = 1/ps. |

Let us combine the previous results to get new bilinear multipliers from a given
one.

Proposition 2.5. Let p3 > 1 and m € BMy, py.ps)(R).

(a) If @ = [a,b] X [c,d] and 1 < p1,pa < oo then mxq € BM(p, py.ps)(R) and

HmXQHpi,m,st < Clmllpy,po.ps-
(b) Ifeel (R ) then ®xm € BM(Fth»Ps)(R) and ||(I)*mHPl»P2!P3 < ||(I)H1HmHPl!P2»P3'

(c) If®e L (Rg) then om 6 BMp, pa.ps) (R) and ||‘i)m||p1 w203 < @1 [Imlp1,p.ps-

L
(d) Ify € L'(RT, tps = Gort ) then my(&,m) = [;° m(t&, tn)¢(t)dt € BM (p, py.pa) (R).
Moreover Hmepl,m,ps < ||¢H ||m||p1 ,p2,P3 "
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28 OSCAR BLASCO

Proof. (a) Use that x[q € /\;lphp1 for 1 < p1 < oo and x| q € /\;lpz,p2 for
1 < pa < 0o together with Proposition 2.3 part (a).
(b) Note that

B<I>*m(f; g)(x) = /]R2 f(f)ﬁ(n)(/w m(§ —u,n — p)(I)(u’ v)dudv)e%ri(EJrn)xdfdn
= /R , (L, F©Om( = um = 0)e* D2 dgdn) @(u, v)dudy
[ BrnlF 9@ oduds

From the vector-valued Minkowski inequality and Proposition 2.3 part (b), we
have

HB@*m(fa g)”p:s

IN

1B (£l () e

1172{lps 92,95 | 1l 19112 121l

IN

(¢) Observe that

B, (f.9)(x)

F©)am)( / M —oym(&, m)®(u, v) dudv)e>™ € dedy
R2 R2

B, _ym(f59)(x)®(u, v)dudv.
R2

Argue as above, using now Proposition 2.3 part (c), to conclude the result.

(d) Use now Proposition 2.3 part (d), for p% - (p—l1 + p%) = —%,

B, (f,9)(x)

FOI [~ DL mi /ey dedy

RZ
/O Bos () @)t (1)t

With all these procedures we have several useful methods to produce multipliers
in BMp, ps.ps)(R). Let us mention one application of each of them.

Example 2.6. (1) If p% + piz = pis, my € M(pl,pl) and my € ./\;l(pz’pz) then

m(fa 77) =my (f)m2(7l) € BMPl,pzyps'
(2) If m € BM(p, pops)(R), p3 > 1 and Q1,Q2 are bounded measurable sets in
R then

1
|Q1||Q2| Q1XQ2

(3) If ® € LY(R?) then & € BMp, pypy)(R) for 2+ L =L pg>1.

m(f +u,n+ 'U)dUdv € BM(m,szps)(R)'
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(4) If m € BMp, py.ps)(R), |pi1 + L - p%| <1 then

P2

A combination of the previous results gives the following examples of bilinear
multipliers in BM (11 ,)(R) whose proof is left to the reader.

Corollary 2.7. Let ® € L*(R?), ¢; € LP*(R) and 15 € LP*(R) and p% + p% =
p% <1 then

1 + t2 € BM(Pl,pzypS)(R)

m(&,n) = b1 ()D& m)da(n) € BM11 ) (R).

Let us use Proposition 2.1 and interpolation to get a sufficient integrability
condition to guarantee that m € BMp, 1, ps)(R).

Theorem 2.8. Let 1 < p1,p2 < p <2 and p3 > p' such that _+p_2 - % = p%' If
m € LP(R?) then m € BMp, py ps)(R).

Proof. Let us show first that m € BM, , «)(R). Let f,g € LP(R) and h € L'(R).
Using Holder and Hausdorff-Young’s inequalities one gets

FE)gm)h(& +n)m(€, n)dedn | o ey 1Bl oo | F 1l 111

IN

‘Rz

IN

[l ey Al 1Lf[]pllgllp-
Similarly, changing the variables £ +n = u, £ = —v, one has

- F©g(m)h(€ +n)m(&, n)dédn —/ F(=0)g(u + v)h(w)m(—v, u + v)dvdu.

An argument as above gives also the estimate

< lmllze@2) gl ll f 1ol Allp-

, F(=0)g(u + v)h(w)m(—v, u + v)dvdu

This shows that m € BM, ;) (R). A similar argument shows also that m €
BM (1,p,p") (R)

leenl <p1 <pandp <p3 < oo with 2 _1_p_3 = % we have 0 < 6 < 1 such that
= 1p9 + T and 53 =120 p,. Hence, by interpolation, m € BM g, 5 5.)(R).

o0
Similarly m € BM, 5,.4,)(R) whenever 1 < p < p and p’ < g3 < oo with
1 1 _1

p

1
P1

2 qs3 p’
To finish the proof we observe that if 1 < p; < p and 1 < ps < p then for each
0 <6 <1 thereexist 1 <p; <p; <pand1l<py <py < psuch that

1 1 1 1 1 1 1 1
(-0 ), =0 o),
pr P pr P p2 P p2 P
Denoting ps, Gs the values such that &+ — X = L and = —1 = L one obtains that
P2 P B3 P2 P a3
1 1-0 0 1 1-60 0 1 1-06 0
—:(~—)+—, _:Q_‘_T, —:(~—)+~—-
p1 p1 p D2 p p1 b3 b3 as
Hence the result follows again from interpolation between the last ones. |
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30 OSCAR BLASCO

3. BILINEAR MULTIPLIERS DEFINED BY FUNCTIONS IN ONE VARIABLE

Let us restrict ourselves to a smaller family of multipliers where m(§,n) = M (§—
n) for some M defined in R. These multipliers satisfy

Bm(fo; ng) = MQme(fa g)' (9)

As in the introduction we use the notation My, ,, »,(R) for the space of functions
M : R — C such that m(&,n) = M( —n) € BMp, p,.ps)(R), that is to say

/ FOGM(E — )&= aean

defined for f and g compactly supported, extends to a bounded bilinear map from
LP1(R) x LP?(R) into LP3(R). We keep the notation || M ||p; ps.ps = || Barll-

The reader should be aware that the starting assumption on the function M is
only relevant for the definition of the bilinear mapping to make sense when acting
on certain classes of “nice” functions. Then a density argument allows to extend
functions belonging to Lebesgue spaces. We would like to point out the following
observation.

Remark 3.1. If M,, € ./\;l(phpzypg)(R) are functions such that M, (x) — M(z) a.e

and Supn ”Mn” < o0 thenM € M(;thmps)(R) and HM”;Dl,pz,ps S Supn HMn”pl,szm'
Indeed, this fact follows from Fatou’s lemma, since

1B (f; 9)llps < liminf | Bar, (f, 9)llps < sup [[Mnllp1 ps s [ 111 191, -
n

Remark 3.2. The case M(z) = le%“ (and even the n-dimensional case) corre-
sponds to the bilinear fractional integral. This was first shown by C. Kenig and
E. Stein in [11] to belong to ./\;l(phpzypg)(R) for any 1 < p1,p2 < 00, 0 < o <
1/p1 4+ 1/p2 and 1/p1 + 1/p2 = 1/p3 — a. Another very important and non trivial
example is the bilinear Hilbert transform, given by M(x) = —isign(x), which was
shown by M. Lacey and C.Thiele in [12, 13] to belong to /\;l(p17p27p3)(R) for any
1 <p1,p2 < oo, 1/p1 +1/p2 = 1/ps and ps > 2/3. These results were extended to
other cases in [10] and [3, 9] respectively.

We start reformulating the definition of this class of bilinear multipliers.

Proposition 3.3. Let M € Lloc( ), [,9 € P(R). Then

u+v U—v

ulf.o)@) =5 [ FC M ) dudo (10)
Bu(f.9)(~) = / (7o + M) (E)ma T (€)de. (11)
Ba(F.9)(x) = 50n(D} o1, DL o)), (12)
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Proof. (10) follows changing variables.
To show (11) observe that

Bu(f,9)(~=x)

| mr©mam M€~ nydsan
/ ( / I )M (E — n)dn)a F(€)de
R JR

—

_ /}R (7og * M)(€) 7o F(€)dE

Finally, using (10), we have
uto@ = 5 [ ([ FEGPaEGM @)

- / Car (D2, f, DE%,3) (u) ¥ du.

This implies (12). [ |

For symbols M which are integrable we can write By; in terms Ck for some
kernel K.

Proposition 3.4. Let M € L'(R) and set K(t) = M(—t). Then By = Ck, i.e
/f (@ — t)g(e + O K(6)dt
Proof.

Cr(f,9)(x) = (aj —t)g(x + )M (~t)dt

< (©gmerm e Dm0 dgdn) M (—t)dt

f g /M 27\'1 (&—n tdt) 2mi(€+m) Idfd?’]
= ( 9)(x).

Il
\%\\

This class does have much richer properties than BM,,, ., ».)(R). As above use
the notation fy(z) = D} f(z) = 1 f(£) for a function f defined in R. The following
facts are immediate.

TyBu(f.9) = Bu(tyf.7y9),y € R. (13)
Moy B (f,9) = By (Myf, Myg),y € R. (14)

(Bum(f,9)) = BD: wm(fe,9¢),t > 0. (15)

-1
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32 OSCAR BLASCO

When specializing the properties obtained for m(&,n) to the case M (€ —n) we
get the following facts:

BM(T—yfvag) = BMUM(f7g)7y cR. (16)
BM(Myfa M—yg) 7-21, (f7 ) yeR. (17)
Fori =1L 4+ L _ L wehave
¢ p1 " p2 p3
By (DY f, Dy*g) = DY* Bpan(f, 9),t > 0. (18)

As in the previous section we can generate new multipliers in ./\;l(phpzypg)(]R).

Proposition 3.5. Let p3 > 1, ¢ € LY(R) and M € My, p, py)(R). Then

(a) ? * M E~M(p1,pz,ps)(R) andAH(ﬁ * M|lpypaps < NI@INlIM|]py,p2,ps-

(W¢M€Mmmmﬂ)WMWMMWMJWMHMMMM

(c) Ify € LMNRF, 175~ i ¥32)) then My (€) = [° MEE)W(1)dt € My, py p) (R).
Moreover || My|lpy psps < %11 ||M||p17p27p3

Proof. (a) Apply Minkowski’s inequality to the following fact:
Bou(fo) = [ F@an / M€~ — u)o(u)du)e?™ D7 dedn

/ / M_o J(€)§(m)M (€ — n)e*™ EHDT dedn) ™ g(u)du

= [ MBS g) @0t
(b) Observe that

Bo(foo)@) = [ HOa0( [ (M€ ()= dsay

/]Ra B, m(f, 9)(@)p(u)du.

Use now Minkowski’s again and (17).

(c) Write p% - (pi1 + p12) = 1

B, (f9)(x) = / DI M€ - )t~ 1y(t)dt) e D2 dedy
- / Boo ai(f. ) @)t~ /(e

The result follows from (18) and Minkowski’s again. |

M(§—n)
Proposition 3.6. Letpz > 1, ¢ € L'(R) and M € M(pl,pz,m)(R)- Thenm(&,n) =
M(E—-n)o(+n) € BM(phm,ps)(R) and ||me17p27p3 < ||¢H1||M||p1,pz,p3'
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Proof. Apply Young’s inequality to the following fact:

Bn(f,9)(z) = /f M(¢—n) /¢ —2miERY gy 2THER T G gy
= [ F@atme - aginoiy
= 6 Bu(f.0)()
|

Let us show that the classes ./\;l(phpzypg)(R) are reduced to {0} for some values
of the parameters.

Theorem 3.7. Let ps > 1 such that - —|— o < —, Then /\;l(pl,p%m)(R) = {0}.

Proof. Let M € M(m,m,ps)(R)' Using Proposition 3.5 we have that ¢ « M €
/\;l(pl,p%m)(R) for any ¢ continuous with compact support. Hence we may assume
that M € L'(R). Using Proposition 3.4 one has that

wi(fog)(x) = / f( — t)gle + ONI(~t)dt
(z+Bgr)N(—z+BRr)

for any f and g continuous functions supported in a ball Bg = {|z| < R}. Therefore
one concludes that supp(Bp(f,9)) C Bag in such a case. On the other hand for
any compactly supported function h, 0 < p < oo and y big enough one can say
that [|h £ 7y £}, = 27 ]

Consider {rj} the Rademacher system in [0, 1] and observe that, for each N € N
and y € R, the orthonormality of the system gives

N N N

1
/0 By (D k() iy £, (8 Thy £)dt =Y Bar(Thy f1 Thy9)

k=0 k=0 k=0

Therefore, since szvzo B (Ty fr Thyg) = Elkvzo Ty B (f, g), we conclude that for
y big enough

N
k=0
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On the other hand, for p3 > 1,

1 N N
WA= SERCENS SERUE WO
0 k=0 k=0

1 N N
< / 1Ba (> i £, 3 ()70 s
0 k=0 k=0
N N
< / 1Bl S ey Fllpn | S 757y )
k=0 k=0
N N
< ||B sup 7 (8) 7 , sup 71 (8) 7]
1Bl sup, 13 ru(tr sl s |3 el
< BMI + DY2 [l (N + 1)Y72 g

This implies that (N + 1)Y/73|By(f, g)|[P* < C(N + DYPrr/e2| £, | gllp,.-
Hence 1/p1 + 1/pa > 1/ps. [ ]

The following elementary lemma is quite useful to get necessary conditions on
multipliers.

Lemma 3.8. Let M € My, p, ps)(R). If% = p% + p% — p% then there exists C' > 0
such that

_y2¢2 1
[ Mg < Cllp gt
for any X > 0.

Proof. Let A > 0 and denote Gy such that G(€) = e~22°€* . Using (10) one
concludes that

1 2,2 2,2 -
By (G, Gy)(z) = 5/ e N e M ()P dudy
R2
1

2 2 1 2 -
= —(/ e A M(v)dv)(—/e_“ 2™ du)
2 Jr AJr

1 22
= C—e_ﬁzﬁ(/ e_”\ZUQM(v)dv).
A R
Since ||Gallp = Cp)\%_l and M € M(mma,ps)(R) one gets that

Al < Ol|M P
8 — H thp%ps ! 2 .

1Bat(G Gl = C \ [ e mwa
R

Therefore | [, e NE M (€)dE| < C||M||py pps A7 [ ]

Theorem 3.9. If there exists a non-zero continuous and integrable function M
belonging to My, p, ps)(R) then
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Proof. Assume first that p% + p% < p%' Use Lemma 3.8 applied to 7_o, M for any

y € R together with (17) to obtain

2.2 1
‘A / oA M<s+2y)ds\ < ClM]lpr papoAh.

Therefore, using the continuity of M and ¢ < 0 one gets

1m,A/e*?M@+%mg=mﬂ%ﬂ:o
A—o00 R
Hence M = 0.
Assume now that p_1 + = p2 — i > 1. Using again Lemma 3.8, applied to M, M,
together with (17) we obtain
\ / M Mﬁdf\ < CIM gy A"

Therefore, taking limits again as A — 0, since 1/¢ — 1 > 0 we get |M(y)| =0
Hence M = 0. |

Corollary 3 10. (see [16, Prop 3.1]) Let ps = 1 such that - + _- < p% or
p1 + D2 > P3 + L. Then M(p1,p2,p3)( ) {0}

Proof. Let M € M(pl’pzypg)(R). From Proposition 3.5 we have that ¢ + M €

./\;l(plypzypg)(R) for any ¢ compactly supported and continuous. Now use Theorem
3.9 to conclude that ¢ x M = 0 for any compactly supported and continuous ¢.
This implies that M = 0. u

Let us now use some interpolation methods to get more examples of multipliers
in My, py.ps) (R). First note that, selecting o = 1 and 3 = —1 in Proposition 2.2
we obtain the following simple example.

Proposition 3.11. If y € M(R) then M = [ € M(p17p27p3)(R) for p% + p% =1l<
Land [[M] < lpf-

Theorem 3.12. Let - < p1 + pi mm{2 —|— 1}. If M € L'(R) and M = K
Jor some K € LY(R) where - + -~ — - = 1 — = then M e M(m pa.ps) (R) with

ps
1M ]|py.ps.ps < ClIE]lq-

Proof. Consider the trilinear form
T(K,f,9) /fx—t (x 4+ t)K(t)dt.

From Proposition 3.4 we have By (f,g9) = T(K, f, g) for M = K. Now use Propo-
sition 3.11 to conclude that T is bounded in L'(R) x L% (R) x L% (R) — L*(R)

where qil + q% = % < 1 and it has norm bounded by 1.

Assume ﬁrst that 1 -+ p% < 1. Hence T is bounded in L*(R)x LP* (R) x LP?(R) —
LP(R) for - —|— — I—lj
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On the other hand, using Hélder’s inequality

Slipl/Rf(x — gz + ) K(E)dt] < [[fllpllgllpa 1]

This shows that 7" is also bounded in L?' (R) x LP!(R) x LP?(R) — L°°(R). There-
fore, by interpolation, selecting 0 < 6 < 1 such that p% = %, one obtains that T’
is bounded in L9(R) x LP*(R) x LP*(R) — LP(R) for - + - — - =1— L.
Assume now that 1 < p% + p% < 2.
Using that fR fl@—=t)g(x +t)dt = [ = g(2z), Young’s inequality implies that

I Af(x—t)g(x+t)K(t)dtllr3 < Koo 1DT7 (11 [gDllrs < CllF Nl llgllra 1K oo

whenever%—i—%Zland%—l—%—l:%.

Hence T is bounded in L*°(R) x LP*(R) x LP2(R) — LP(R) where pll + p% —-1=
S <L

Using duality, (T'(K, f,q),h) = (T'(h, f,g), K), where f(z) = f(—=z, that is

flz—t)g(x +t)K(t)h(x)dtde = /( f(t —x)g(z + t)h(z)dx) K (t)dt.
R? R JR

Therefore T is also bounded in L?' (R) x LP*(R) x L??(R) — L*(R).

Select 0 < 6 < 1 such that pis = Il) + 1%' Now using interpolation T will be

1 160 _ 1 1 1 1 1
bOundedln Lq(R)XLPI (R)XLP2(R) — LPS(R) fOI' E = 17 = p—S—E = 17_3_17_1_17_2+1
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