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TRANSFERENCE OF Lp-BOUNDEDNESS BETWEEN

HARMONIC ANALYSIS OPERATORS FOR LAGUERRE AND

HERMITE SETTINGS

JORGE J. BETANCOR

Abstract. In this paper we discuss a transference method of Lp-boundedness
properties for harmonic analysis operators in the Hermite setting to the corre-
sponding operators in the Laguerre context. As a byproduct of our procedure
we obtain new characterizations of certain classes of Banach spaces and Köethe
spaces.

1. Introduction

From May 26 to June 6, 2008, was held in La Falda (Córdoba, Argentina) the
congress CIMPA School 2008. In this paper we collect the main results that ap-
peared in the talk presented by the author there. This project research about trans-
ference of Lp boundedness properties for harmonic analysis operators in the Her-
mite and Laguerre setting has been developed jointly with José Luis Torrea, from
the Universidad Autónoma de Madrid, Juan Carlos Fariña, Lourdes Rodŕıguez-
Mesa and Alejandro Sanabria, from the Universidad de La Laguna (Tenerife).
Most of the results with their proofs can be encountered in [2], [3] and [4].

In the monograph of Stein [28] harmonic analysis operators (maximal operators,
multipliers, Riesz transforms, Littlewood-Paley g-functions,...) related to semi-
group of operators are defined. Here we consider the operators associated with
semigroups in the Hermite and Laguerre context.

We denote by H the second order Hermite operator defined by

H = − d2

dx2
+ x2 = −1

2

[(

d

dx
+ x

) (

d

dx
− x

)

+

(

d

dx
− x

) (

d

dx
+ x

)]

, x ∈ R .

(1.1)
This operator is symmetric with respect to the Lebesgue measure on R. For every

n ∈ N, we have that Hhn = (2n + 1)hn, where hn(x) = (
√

π2nn!)−
1
2 e−

x2

2 Hn(x),
x ∈ R, represents the n- th Hermite function and Hn is the n-th Hermite polynomial
(see [33]).
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The heat semigroup {Wt}t≥0 associated with the sequence {hn}n∈N of eigen-
functions for the Hermite operator H is defined by

Wt(f)(x) =

∫ +∞

−∞

Wt(x, y)f(y)dy, x ∈ R, f ∈ L2(R) and t > 0,

being

Wt(x, y) =
∞
∑

n=0

e−(2n+1)thn(x)hn(y)

=
1√
π

(

e−t

1 − e−4t

)
1
2

e
− 1

2
(x2+y2) 1+e−4t

1−e−4t + 2xye−2t

1−e−4t , x, y ∈ R, t > 0.

As usual, the maximal operator W∗ of the heat semigroup {Wt}t≥0 is

W∗(f) = sup
t>0

|Wt(f)|, f ∈ L2(R).

According to the Stein’s ideas ([28]) the factorization (1.1) of H suggests to define
the Riesz transform in the Hermite setting by

R(f)(x) =
( d

dx
+ x

)

H−1/2f(x)

=

∞
∑

n=0

( 2n

2n + 1

)1/2

hn−1(x)an(f), f ∈ Cc(R),

where, for every n ∈ N and f ∈ L2(R), an(f) =
∫ ∞

−∞
f(x)hn(x)dx. Cc(R represents

the space of C∞(R) having compact support. The fractional integral H−1/2 is
defined by using the heat semigroup as follows

H−1/2(f)(x) =
1√
π

∫ ∞

0

Wt(f)(x)t−1/2dt, f ∈ L2(R).

From the results established by Muckenhoupt ([21]) we can deduce that, for every
f ∈ L2(R),

R(f)(x) = lim
ε→0

∫

|x−y|>ε

R(x, y)f(y)dy, a.e. x ∈ R,

being

R(x, y) =
1√
π

∫ ∞

0

( d

dx
+ x

)

Wt(x, y)t−1/2dt, x, y ∈ R.

The subordinated Poisson semigroup associated with {hn}n∈N is given by

Pt(f)(x) =

∫ ∞

−∞

Pt(x, y)f(y)dy, f ∈ L2(R),

being

Pt(x, y) =
t

2
√

π

∫ ∞

0

u−3/2e−t2/(4u)Wu(x, y)du, t ∈ (0,∞), x, y ∈ R.
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For every 1 < q < ∞, we denote by gH
q the Littlewood-Paley function for the

Poisson semigroup for H , that is,

gH
q (f)(x) =

(

∫ ∞

−∞

∣

∣

∣
t
∂

∂t
Pt(f)(x)

∣

∣

∣

q dt

t

)1/q

.

Similar definitions for the heat semigroup for H can be made.
Harmonic analysis associated with the Hermite polynomials was began by Muck-

enhoupt ([20] and [21]). Maximal operators, Riesz transforms and Littlewood-Paley
g-functions in the Hermite setting have been investigated by Torrea and Stempak
([30], [31] and [32]) and Thangavelu ([34]).

For every α > −1 we consider the Laguerre differential operator

Lα =
1

2

(

− d2

dx2
+ x2 +

1

x2

(

α2 − 1

4

))

, x ∈ (0,∞).

This operator can be factorized in the following way

Lα =
1

2
D

∗
αDα + α + 1, (1.2)

where Dαf =

(

−α + 1/2

x
+ x +

d

dx

)

f = xα+ 1
2

d

dx
(x−α− 1

2 f)+xf , and D
∗
α denotes

the formal adjoint of Dα in L2((0,∞), dx). For every n ∈ N, we have that

Lαϕα
n = (2n + α + 1)ϕα

n,

where the Laguerre function ϕα
n is defined by

ϕα
n(x) =

(

2Γ(n + 1)

Γ(n + α + 1)

)
1
2

e−
x2

2 xα+ 1
2 Lα

n(x2), x ∈ (0,∞),

and Lα
n denotes the n-th Laguerre polynomial of type α ([33, p. 100] and [34, p.

7]).
The heat semigroup {Wα

t }t≥0 generated by the operator −Lα takes the form

Wα
t (f)(x) =

∫ ∞

0

Wα
t (x, y)f(y)dy, x ∈ (0,∞), f ∈ L2((0,∞), dx) ,

where, for every t, x, y ∈ (0,∞),

Wα
t (x, y) =

∞
∑

n=0

e−t(2n+α+1)ϕα
n(x)ϕα

n(y)

=

(

2e−t

1 − e−2t

)
1
2

(

2xye−t

1 − e−2t

)
1
2

Iα

(

2xye−t

1 − e−2t

)

e
− 1

2
(x2+y2) 1+e−2t

1−e−2t .

Here Iα represents the modified Bessel function of the first kind and order α.
The maximal operator associated with the heat semigroup {Wα

t }t≥0 is defined by
Wα

∗ (f) = supt>0 |Wα
t (f)|. The Riesz transform in the Laguerre setting is defined

by (see (1.2))

Rα(f) = DαL−1/2
α (f), f ∈ Cc(0,∞).
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42 J. BETANCOR

This operator is actually a principal value integral operator given by

Rα(f)(x) = lim
ε→0

∫ ∞

0, |x−y|>ε

Rα(x, y)f(y)dy, a.e. x ∈ R,

being

Rα(x, y) =
1√
π

∫ ∞

0

Dα,xWα
t (x, y)t−1/2dt, x, y ∈ (0,∞).

The Poisson semigroup {Pα
t }t≥0 generated by −

√
Lα is given in terms of {Wα

t }t≥0

by the subordination formula.
The Littlewood-Paley gLα

q -function, when 1 < q < ∞, for the Poisson semigroup
{Pα

t }t≥0 is defined by

gLα
q (f)(x) =

(

∫ ∞

−∞

∣

∣

∣
t
∂

∂t
Pα

t (f)(x)
∣

∣

∣

q dt

t

)1/q

.

Lp-boundedness properties for maximal operators, Riesz transforms and Little-
wood-Paley functions in the Laguerre setting have been established by [8], [13],
[14], [16], [20], [22], [24], [29], and [34], amongst others.

In [2], [3] and [4] a new method is employed to study Lp boundedness properties
for the harmonic analysis operators in the Laguerre setting by using corresponding
properties for operators in the Hermite context. Our procedure allows to get new
and shorter proofs of known results and also to obtain new results.

The idea of transferring boundedness properties from Hermite to Laguerre set-
tings was used also by Gutiérrez, Incognito, and Torrea [13] (see also [12] and
[16]). They employed formulae relating Hermite polynomials in dimension n with
Laguerre polynomials in dimension 1 and α = n

2 − 1. The procedure developed in
[13] only allows us to obtain boundedness properties for operators in the Laguerre
setting for these special values of α. Then, it is necessary to use some kind of
transplantation result to extend the result to other values of α.

Our method is esentially different to the one considered in [13]. We connect
the harmonic analysis operators in the Laguerre setting for every α > −1 with
the corresponding operators in the Hermite context. More precisely, the kernel of
the operator under consideration is broken in the part close to the diagonal (local
part) and in the part far away from the diagonal (global part). In the local part the
transference between Hermite and Laguerre contexts works. In the global part the
operators can be controlled by positive operators whose Lp-boundedness properties
are wellknown.

In the following sections of this paper we show how our method can be applied
to analyze Lp-boundedness properties for the maximal operator associated with the
heat semigroup, Riesz transform and Littlewood-Paley g functions for the Poisson
semigroup in the Laguerre setting. Moreover, we can obtain new characteriza-
tions of certain geometric properties (UMD, Hardy-Littlewood and Lusin type and
cotype) by using the harmonic analysis operators in the Laguerre context.

Throughout this paper by C we always denote a positive constant that can
change from one line to the other line.
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TRANSFERENCE OF Lp-BOUNDEDNESS 43

2. Maximal operator for the Laguerre heat semigroup.

In this section we analyze the Lp-boundedness properties for the maximal oper-
ator of the heat semigroup in the Laguerre setting. Also we establish new charac-
terizations of certain Banach lattices with the Hardy-Littlewood property.

The key property is the following pointwise estimate involving the kernels of the
heat semigroup for the Hermite and Laguerre operators.

Proposition 2.1. let α > −1. There exists C > 0 such that

(i) Wα
t (x, y) ≤ Cyα+1/2x−α−3/2, t > 0 and 0 < y < x/2.

(ii) Wα
t (x, y) ≤ Cxα+1/2y−α−3/2, t > 0 and 0 < 2x < y.

(iii) |Wα
t (x, y) − Wt/2(x, y)| ≤ Cx−1, t > 0 and x/2 < y < 2x.

Note that the comparison between the kernels Wα
t and Wt/2 for the Laguerre

and Hermite heat semigroups, respectively, is got in the local region (close to the
diagonal), as it is shown in (iii). The estimates obtained in (i) and (ii) say that the
maximal operator Wα

∗ restricted to the global region is controlled by Hardy type
operators. Lp-boundedness properties of the Hardy type operators are wellknown
([22] and [8]). Then, Lp-boundedness of Wα

∗ is implied by the Lp-boundedness of
W∗.

Suppose that B is a Banach space consisting of equivalence classes, modulo
equality almost everywhere, of locally integrable real functions on a complete σ-
finite measure space (Ω, Σ, µ). This class of Banach spaces is named Köethe func-
tion spaces ([18] and [26]) when the following two conditions are satisfied.

(a) If |f(w)| ≤ |g(w)|, a.e. w ∈ Ω, with f measurable and g ∈ B, then f ∈ B
and ‖f‖B ≤ ‖g‖B.

(b) For every A ∈ Σ with µ(A) < ∞ the characteristic function χA of A belongs
to B.

Each Köethe function space is a Banach lattice with the natural order (f ≥ 0 ⇔
f(w) ≥ 0, a.e. w ∈ Ω). This lattice is σ-order complete.

Banach lattices and Köethe function spaces with the Hardy-Littlewood property
were introduced in [10]. If f is a real locally integrable B-valued function, where
B is a Köethe space, and J is a finite subset of Q+, the set of positive rational
numbers, we define

MJ(f)(x) = sup
r∈J

1

|B(x, r)|

∫

B(x,r)

|f(y)|dy, x ∈ Rn.

We say that B has the Hardy-Littlewood property ([10]) when for a certain 1 <
p < ∞ there exists C > 0 such that

‖MJf‖Lp

B
(R) ≤ C‖f‖Lp

B
(R), f ∈ Lp

B(R),

for every finite subset J of Q+. Maximal operators associated with heat semigroup
for the Ornstein-Uhlenbeck operator (in the Hermite polynomial setting) was used
in [15] to characterize Köethe spaces with the Hardy-Littlewood property. The
corresponding properties in the Hermite and Laguerre context is included in the
following proposition. In its proof the pointwise estimates established in Proposi-
tion 2.1 play a fundamental role.
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Proposition 2.2. Let B be a Köethe function space and α > −1. The following
properties are equivalent.

(i) B has the Hardy-Littlewood property.
(ii) The maximal operator W∗ is bounded from Lp

B(R, w(x)dx) into itself, for
every 1 < p < ∞ and w ∈ Ap(R).

(iii) The maximal operator W∗ is bounded from L1
B(R, w(x)dx) into L1,∞

B (R, w(x)dx),
for every w ∈ A1(R).

(iv) The maximal operator Wα
∗ is bounded from Lp

B((0,∞), dx) into itself for
some 1 < p < ∞, when α > −1/2, and for 2/(2α + 3) < p < −2/(2α + 1),
when −1 < α ≤ −1/2.

(v) The maximal operator Wα
∗ is bounded from Lp

B((0,∞), xσdx) into itself for
every 1 < p < ∞ and −1 − p(α + 1/2) < σ < p(α + 3/2) − 1 .

3. Laguerre Riesz transforms

The UMD property for Banach spaces was introduced by Burkholder ([7]) in
a probability setting. For a Banach space B the UMD property is equivalent to
the fact that the Hilbert transform admits a B valued extension to Lp

B(R) as a
bounded operator of Lp

B(R) for some (any) 1 < p < ∞ ([6] and [7]). Recently,
Abu-Falahah and Torrea ([1]) have obtained a characterization of UMD Banach
spaces in terms of the Riesz transform R associated with the Hermite operator. In
[2, Theorem 4.1] we obtain the corresponding result for the Riesz transform in the
Laguerre setting. To prove this property are crucial the next pointwise estimates
involving the kernels for the Laguerre and Hermite Riesz transforms.

Proposition 3.1. Let α > −1. Then

(i) |Rα(x, y)| ≤ Cyα+1/2x−α−3/2, 0 < y < x/2.
(ii) |Rα(x, y)| ≤ Cxα+3/2y−α−5/2, 2x < y.

(iii)
∣

∣

∣
Rα(x, y) −

∫ ∞

0

(
d

dx
+ x)Wt/2(x, y)

∣

∣

∣

dt√
t
≤ C

y

(

1 +
(xy)1/4

|x − y|1/2

)

, 0 < x/2 <

y < 2x.

Note that the Laguerre and Hermite kernels differ in the local part, at most, by
an absolutely integrable function on (0,∞).

By using Proposition 3.1 the following result can be proved.

Proposition 3.2. Let α > −1 and let B be a Banach space. Then the following
statements are equivalent.

(i) B has the UMD property.
(ii) Riesz transform Rα admits a bounded extension from Lp

B((0,∞), dx) into
itself, for some p such that max{1, 2/(2α + 3)} < p < ∞.

(iii) Riesz transform Rα admits a bounded extension from Lp
B((0,∞), xσdx) into

itself, for every 1 < p < ∞ and −p(α + 3/2)− 1 < σ < p(α + 3/2)− 1.
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4. Littlewood-Paley g-functions for the Laguerre Poisson

semigroup.

Xu ([35]) introduced the Lusin cotype and type properties for a Banach space
B as follows. Let f be in L1

B(T), where T denotes the one dimensional torus. We
consider, for every 1 < q < ∞, the generalized Littlewood-Paley g function defined
by

gq(f)(z) =

(
∫ 1

0

(1 − r)q‖∇Pr ∗ f(z)‖q
B

dr

1 − r

)

1
q

,

where Pr(θ) represents the Poisson kernel on T. We say that B has a Lusin cotype
q ≥ 2 when for some p ∈ (1,∞) it has

‖gq(f)‖Lp(T) ≤ C‖f‖Lp

B
(T), f ∈ Lp

B(T ).

It is said that B has a Lusin type 1 ≤ q ≤ 2 when for some p ∈ (1,∞) the following
inequality holds

‖f‖Lp

B
(T) ≤ C

(

‖f̂(0)‖B + ‖gq(f)‖Lp(T)

)

.

The Lusin type and Lusin cotype of B do not depend on p ∈ (1,∞). Moreover Xu
proved in [35, Theorem 3.1] that a Banach space B has Lusin cotype q (Lusin type
q) if and only if B has a martingale cotype q (martingale type q). We recall that
the double inequality

1

Cp
‖f‖Lp

B
(T) ≤ |f̂(0)| + ‖g2(f)‖Lp

B
(T) ≤ Cp‖f‖Lp

P
(T), (4.1)

holds when B = C, that is, when f is a scalar valued function. For a Banach space
B the above double inequality holds if and only if B is isomorphic to a Hilbert
space ([17]). Recently, Mart́ınez, Torrea and Xu [19] have extended the results
obtained by Xu in [35] to subordinated Poisson semigroups of general symmetric
difusion Markovian semigroups. Also, Harboure, Torrea and Viviani [15] charac-
terized the Lusin cotype of a Banach space by using Littlewood-Paley g-function
in the Ornstein-Uhlenbeck setting. In [3] it is shown that our method of compar-
ison between Laguerre and Hermite contexts allows us to describe the martingale
(Lusin) cotype and type in terms of the Littlewood-Paley g functions associated
with the Hermite and Laguerre Poisson semigroups.

Proposition 4.2. Let B a Banach space, q ≥ 2 and α > −1. We denote Ωα =

(1,∞), when α > − 1
2 , and Ωα =

( 2

2α + 3
,

−2

2α + 1

)

, when −1 < α ≤ − 1
2 . The

following assertions are equivalent.
(i) B has q-martingale cotype.
(ii) For every (or, equivalently, for some) p ∈ Ωα there exists Cp > 0 such that

||gα
q (f)||Lp(0,∞) ≤ Cp||f ||Lp

B
(0,∞), f ∈ Lp

B(0,∞).

(iii) For every (or, equivalently, for some) p ∈ Ωα there exists Cp > 0 such that

||gq(f)||Lp(R) ≤ Cp||f ||Lp

B
(R), f ∈ Lp

B(R).
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To establish the above result is fundamental to prove a pointwise estimate in-
volving the kernels of the Laguerre and Hermite Litlewood-Paley functions.

Proposition 4.3. Let B a Banach space, 1 < q ≤ 2 and α > −1. Ωα is defined
as in Theorem 4.2. Then the following assertions are equivalent.

(i) B has q-martingale type.
(ii) For every (or, equivalently, for some) p ∈ Ωα there exists Cp > 0 such that

||f ||Lp

B
(0,∞) ≤ Cp||gα

q (f)||Lp(0,∞).

(iii) For every (or, equivalently, for some) p ∈ Ωα there exists Cp > 0 such that

||f ||Lp

B
(R) ≤ Cp||gq(f)||Lp(R).

5. Other operators in the Laguerre setting.

Our procedure also works for other harmonic analysis operators in the Laguerre
context.

The factorization (1.2) suggests to define (formally), for every k ∈ N, the k-th

Riesz transform R
(k)
α associated with the Laguerre operator by

R(k)
α = Dk

αL−k/2
α .

Here L−β
α , β > 0, denotes the β-th power of the operator Lα defined by

L−β
α (f)(x) =

1

Γ(β)

∫ ∞

0

tβ−1Wα
t (f)(x)dt, x ∈ (0,∞).

In the Laguerre polynomial context, Graczyk, Loeb, López, Nowak and Urbina

[12] investigated the corresponding higher Riesz transform R
(k)
α when k ∈ N and

α = n
2 − 1, n ∈ N. They use the connection between n-dimensional Hermite

polynomial and Laguerre polynomials of order α = n
2 − 1, that had been exploited

by Incognito, Gutiérrez and Torrea [13]. Also, Nowak and Stempak [25] studied

weighted Lp-boundedness properties for R
(k)
α by using Calderón-Zygmund theory.

An application of our method, by comparing R
(k)
α with the corresponding k-th

order Riesz transform in the Hermite setting, allows us to improve the results in
[25] in the one dimensional case. In [4] the following result was established. The
class of weights admitted in Proposition 5.1 bellow is wider than the one considered
in [25] when k is odd. Also it is obtained a representation of the higher order Riesz

transform R
(k)
α as principal value integral operators.

Proposition 5.1. Let α > −1 and k ∈ N. For every φ ∈ C∞
c (0,∞) it has that

R(k)
α φ(x) = wkφ(x) + lim

ε→0+

∫ ∞

0,|x−y|>ε

R(k)
α (x, y)φ(y)dy, x ∈ (0,∞),

where

R(k)
α (x, y) =

1

Γ
(

k
2

)

∫ ∞

0

t
k
2
−1

D
k
αWα

t (x, y)dt, x, y ∈ (0,∞),

and wk = 0, when k is odd and wk = −2
k
2 , when k is even.
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The operator R
(k)
α can be extended, defining it by

R(k)
α f(x) = wkf(x) + lim

ε→0+

∫ ∞

0,|x−y|>ε

R(k)
α (x, y)f(y)dy, a.e. x ∈ (0,∞),

as a bounded operator from Lp((0,∞), xδdx) into itself, for 1 < p < ∞ and

(a) −
(

α + 3
2

)

p − 1 < δ <
(

α + 3
2

)

p − 1, when k is odd;

(b) −
(

α + 1
2

)

p − 1 < δ <
(

α + 3
2

)

p − 1, when k is even;

and as a bounded operator from L1((0,∞), xδdx) into L1,∞((0,∞), xδdx) when
(c) −α − 5

2 ≤ δ ≤ α + 1
2 , when k is odd;

(d) −α − 3
2 ≤ δ ≤ α + 1

2 , for α 6= − 1
2 , and −1 < δ ≤ 1, for α = − 1

2 , when k is
even.

We can use our method also to study Lp-boundedness properties of other Little-
wood-Paley functions in the Laguerre setting. In [5] the behaviour of the area
Littlewood-Paley function for the Poisson and heat semigroups for the Laguerre
operator is studied on weighted Lebesgue spaces. To use our procedure it is needed
in a first step to establish the corresponding results for the area Littlewood-Paley
functions for the Poisson and heat semigroups for the Hermite operator.

Sasso [27] investigated Lp-boundedness properties for the spectral multipliers of
Laguerre expansions when the multiplier is the Laplace transform of a bounded
function. After writing the multiplier operator in terms of the Poisson of heat
kernel, our method can be used to establish weighted Lp-boundedness for that op-
erators by using the corresponding properties for the spectral multiplier associated
with Hermite expansions.

Recently, Garrigós, Harboure, Signes, Torrea and Viviani [11] have studied power
weighted inequalities for Mihlin multipliers associated with Laguerre expansions.
They used the ideas developed in [13] and transplantation theorems. It is an
interesting question to analyze the applicability of our method in the problem
considered in [11] by using the Mihlin-Hormander multiplier theorem for Hermite
expansions (see [34]).
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