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MIXED WEAK TYPE INEQUALITIES FOR ONE-SIDED

OPERATORS AND ERGODIC THEOREMS

F.J. MARTÍN-REYES

This paper is essentially the talk I addressed in the CIMPA-UNESCO Argentina
School 2008. It is about mixed weak type inequalities and it is based on a joint
paper with S. Ombrosi [6]. The paper is organized in the following way: first, we
introduce what mixed inequalities are for general operators and we state known
results. Then we state the main question for us, the mixed inequalities for one-
sided Hardy-Littlewood maximal operators, and we establish a conjecture. The
next section is devoted to stating and commenting the results in [6] for the Hardy
operator. Finally, we see the connection of this topic with ergodic theorems.

1. Mixed weak type inequalities: known results

In order to introduce what Andersen and Muckenhoupt [1] called mixed weak
type inequalities, we consider sublinear operators T acting on spaces of measurable
functions on R

n with the basic properties of subadditivity and homogeneity:

|T (f + g)| ≤ |Tf |+ |Tg|, |T (λf)| = |λ||Tf |,

where f and g are measurable functions and λ ∈ R. We shall use in this paper
the following definition: Given weights u and v, that is, nonnegative measurable
functions on R

n, it is said that T satisfies the weighted mixed weak type inequality
if there exists C such that

∫

{x:|Tf(x)|>v(x)}

u(x)v(x) dx ≤ C

∫
|f(x)|u(x) dx

for all functions f ∈ L1(u(x) dx). Notice that the constant is independent of f but
it may depend on u and v. Observe the following particular case: if v ≡ 1 and
f = g/λ, λ > 0, then the last inequality becomes

∫

{x:|Tg(x)|>λ}

u(x) dx ≤
C

λ

∫
|g(x)|u(x) dx,
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52 F. J. MARTÍN–REYES

or, in other words, this inequality means exactly that T is of weak type (1, 1) with
respect to the measure with density u. Once we have the kind of weighted in-
equality we are interested in, we introduce the concrete operators we are going to
consider.

First, the Hardy-Littlewood maximal operator defined by

Mf(x) = sup
Q:x∈Q

1

|Q|

∫

Q

|f |,

where the supremum is taken over all the cubes with sides parallel to the axis and
such that x belongs to Q. We remind that the weighted weak type (1, 1) inequality

∫

{x:Mf(x)>λ}

u(x) dx ≤
C

λ

∫
|f(x)|u(x) dx

holds if and only if u satisfies the A1 Muckenhoupt condition, that is, there exists
C > 0 such that

Mu(x) ≤ Cu(x) a.e.

In 1982, Andersen and Muckenhoupt [1] proved a mixed weak type inequality
with power weights in R (n = 1).

Theorem 1.1. If n = 1, d 6= 1 and u ∈ A1 then there exists C > 0 such that
∫

{x:Mf(x)>|x|−d}

|x|−du(x) dx ≤ C

∫
|f(x)|u(x) dx,

for all measurable functions f ∈ L1(u(x) dx).

They proved also that the same result holds for the Hilbert transform:

Hf(x) = P.V.

∫

R

f(x − y

y
dy.

This result was generalized for singular integrals in R
n in 1990 [7].

In 1985, Eric Sawyer [10] proved a mixed weak type inequality for M in dimen-
sion 1, assuming that the weights are in the Muckenhoupt class A1.

Theorem 1.2. If n = 1, u ∈ A1 and v ∈ A1 then there exists C > 0 such that
∫

{x:Mf(x)>v(x)}

v(x)u(x) dx ≤ C

∫
|f(x)|u(x) dx,

for all measurable functions f ∈ L1(u(x) dx).

In the same paper, it was conjectured the corresponding result for the Hilbert
transform. This conjecture was proved in 2005 by Cruz-Uribe, Martell and Pérez
[2]. Furthermore, they also proved the result for Calderón-Zygmund singular in-
tegrals in dimension greater than one (and obviously for the Hardy-Littlewood
maximal operator in dimension n greater than 1).
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2. One-Sided Maximal Operators

The one-sided Hardy-Littlewood maximal operators M− and M+ are defined in
the real line by

M−f(x) = sup
h>0

1

h

∫ x

x−h

|f(t)| dt and M+f(x) = sup
h>0

1

h

∫ x+h

x

|f(t)| dt.

As for the usual Hardy-Littlewood maximal operator, we remind [11] (see also [8])
that the weighted weak type (1, 1) inequality (non mixed)

∫

{x:M−f(x)>λ}

u(x) dx ≤
C

λ

∫
|f(x)|u(x) dx

holds if and only if u is in A−
1 , which means that

M+u(x) ≤ Cu(x) a.e.

There is an analogue result for M+: there exists C > 0 such that∫

{x:M+f(x)>λ}

u(x) dx ≤
C

λ

∫
|f(x)|u(x) dx

for all measurable functions f if and only if u ∈ A+
1 , that is,

M−u(x) ≤ Cu(x) a.e.

(as usual, throughout the paper, the constant C will not be the same at each
occurrence). Sawyer’s result suggests immediately the natural conjecture for the
one-sided Hardy-Littlewood maximal operators.

Conjecture 2.1. If u ∈ A−
1 and v ∈ A+

1 then there exists C > 0 such that
∫

{x:M−f(x)>v(x)}

u(x)v(x) dx ≤ C

∫
|f(x)|u(x) dx

for all measurable functions f .

Let me point out another way of stating the same conjecture:

Conjecture 2.2. (The same conjecture: different statement) If M− applies
L1(u) into weak-L1(u) and M+ applies L1(v) into weak-L1(v) then the weighted
mixed inequality holds for M−, that is, there exists C > 0 such that

∫

{x:M−f(x)>v(x)}

u(x)v(x) dx ≤ C

∫
|f(x)|u(x) dx

for all measurable functions f .

Unfortunately, we have not been able to prove that conjecture. We asked our-
selves if we could answer an apparently easier problem. More precisely, if we
consider operators smaller than M− the inequality turns out to be apparently eas-
ier. These smaller operators will be the Hardy operators that we study in the next
section.
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54 F. J. MARTÍN–REYES

3. Mixed weak type inequalities for Hardy operators

We consider for all c ∈ R the Hardy Operator (the averaging Hardy operator)
Tc defined by

Tcf(x) =

{
1

x−c

∫ x

c
f (y) dy, if x > c;

0, if x ≤ c.

Usually c = 0 and the operator is only defined for x > 0 but it is better for our
purposes to work in the whole line.

We have these two obvious relations with M−: Hardy operators are smaller than
M− and the supremum over all c gives the maximal operator M−, that is,

• Tc|f | ≤ M−f.
• M−f = supc∈R

Tc|f |.

An interesting observation is that the weak type (1, 1) inequality of M− is equiv-
alent to weak type (1, 1) of the Hardy operators with an uniform constant and
the good weights are characterized by condition A−

1 . More precisely, the following
statements are equivalent:

(a) There exists a constant C > 0 such that
∫

{x:M−f(x)>λ}

u(x) dx ≤
C

λ

∫
|f(x)|u(x) dx

for all λ > 0 and all functions f ∈ L1(u(x) dx).
(b) There exists a constant C > 0 such that

sup
c∈R

∫

{x:|Tcf(x)|>λ}

u(x) dx ≤
C

λ

∫
|f(x)|u(x) dx

for all λ > 0 and all functions f ∈ L1(u(x) dx).
(c) u ∈ A−

1 .

Taking into account this equivalence we can formulate another conjecture, a weaker
conjecture.

Conjecture 3.1 (A weaker conjecture). If u ∈ A−
1 and v ∈ A+

1 then there
exists C such that

sup
c∈R

∫

{x:|Tcf(x)|>v(x)}

uv ≤ C

∫

R

|f |u

for all functions f ∈ L1(u(x) dx).

It is clear that this new conjecture is weaker since the Hardy operators are
smaller than the one-sided Hardy-Littlewood maximal operator. We have been
able to prove this weak conjecture. In fact, we have proved a more general theorem
which we shall state below. To establish the theorem, we have first characterized
the mixed weak type inequality for Tc (this characterization has already appeared
in [7]).

Theorem 3.2. [7, 6] Let u and v weights in R. Let c ∈ R. The following are
equivalent
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(a) There exists C > 0 such that
∫

{x:|Tcf(x)|>v(x)}

uv ≤ C

∫

R

|f |u

for all all functions f ∈ L1(u(x) dx).

(b) There exists C̃ > 0 such that

sup
a>c

sup
λ>0

λ

∫

{x>a: 1
x−c

>λv(x)}

uv ≤ C̃u(x) a.e. x ∈ (c, a).

Further, if C and C̃ are the best constants in those inequalities then C̃ ≤ C ≤ 4C̃.

As we said at the beginning of the paper, if we take v ≡ 1 in the last theorem
then we obtain the characterization of the weak type (1, 1) inequality.

Corollary 3.3. Let u and v be weights in R. Let c ∈ R. The following are
equivalent

(a) Tc is of weak type (1, 1) with respect to u(x) dx, that is, there exists a
constant C > 0 such that∫

{x:|Tcf(x)|>λ}

u ≤
C

λ

∫

R

|f |u

for all λ > 0 and all functions f ∈ L1(u(x) dx).

(b) The function u satisfies A1(Tc) (u ∈ A1(Tc)), that is, for all a > c

sup
y>a

1

y − c

∫ y

a

u ≤ C̃u(x) a.e. x ∈ (c, a).,

Further, if C and C̃ are the best constants in those inequalities then C̃ ≤ C ≤ 4C̃.

We notice that this inequality was already characterized by Andersen and Muck-
enhoupt [1] with a different condition but one can see easily that Andersen-Mucken-
houpt condition is equivalent to the one in the corollary.

The formal adjoint operator of the Hardy operator is given by

T ∗
c f(x) =

{ ∫ ∞

x

f(t)
t−c

dt, if x > c;

0, if x ≤ c,

Arguing as before, the weak type (1, 1) inequality for this adjoint operator is char-
acterized by the condition A1(T

∗
c ).

Theorem 3.4. Let u and v be weights in R. Let c ∈ R. T ∗
c is of weak type (1, 1)

with respect to v(x)dx if and only if v ∈ A1(T
∗
c ), that is, there exist C > 0 such

that
1

x − c

∫ x

c

v ≤ Cv(x) for almost every x > c.

Now we are prepared to state our main theorem.
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Theorem 3.5. [6] Let u and v be weights in R. Let c ∈ R. Assume that there
exists ε > 0 such that u1+ε ∈ A1(Tc) and v1+ε ∈ A1(T

∗
c ), that is, there exists C > 0

such that the following two conditions hold:

(1) supy>a
1

y−c

∫ y

a
u1+ε ≤ Cu1+ε(x) for a > c and for a.e. x ∈ (c, a).

(2) 1
x−c

∫ x

c
v1+ε ≤ Cv1+ε(x) for a.e. x > c.

Then there exists C such that∫

{x:|Tcf(x)|>v(x)}

uv ≤ C

∫

R

|f |u

all functions f ∈ L1(u(x) dx).

Notice that in the theorem we are assuming that u1+ε is a good weight for the
weak type inequality for Tc while v1+ε is a good weight for the weak type inequal-
ity of the adjoint T ∗

c . Then the theorem says that the mixed weak type inequality
holds with a constant which depends only on the constants in the conditions A1(Tc)
and A1(T

∗
c ).

The proof is reduced to show, that under the assumptions, the characterization
of the previous theorem hold. In order to do that, we use Kolmogorov’s inequality
and Hölder’s inequality. Once we have this theorem, the weaker conjecture can be
proved and we state it as a theorem.

Theorem 3.6. [6] If u ∈ A−
1 and v ∈ A+

1 then there exists C such that

sup
c∈R

∫

{x:|Tcf(x)|>v(x)}

uv ≤ C

∫

R

|f |u

all functions f ∈ L1(u(x) dx).

The proof follows from the fact that u in A−
1 and v in A+

1 imply that, for some
ε > 0, u1+ε and v1+ε belong to A−

1 and A+
1 respectively [11, 8] and, therefore,

u1+ε is in A1(Tc) and v1+ε is in A1(T
∗
c ) with a uniform constant. Now the theorem

follows applying Theorem 3.5.

We finish this section with some remarks and open questions.

Remark 3.7.

(a) An analogous conjecture for M+ can be stated assuming that u ∈ A+
1 and

v ∈ A−
1 . The problem for M− and M+, that is, Conjecture 2.1 remains

open.
(b) We have proved the weaker conjecture. However, is Theorem 3.5 true as-

suming only that u is in A1(Tc) and v is in A1(T
∗
c )? We point out that

u in A1(Tc) does not imply that u1+ε belong to A1(Tc) [6]. So, we do not
know if Theorem 3.5 for Tc is true assuming only that u is in A1(Tc) and v
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is in A1(T
∗
c ). A partial answer is that the result is valid if u is decreasing

and v is in A1(T
∗
c ).

(c) The conjecture for M− is true if u is decreasing.

4. Ergodic Theorems

As we have said in the previous section, we have not been able to prove Con-
jecture 2.1. In this section we wish to show the interest of this conjecture in the
setting of Ergodic Theory. In particular, we shall see that the conjecture implies
an ergodic theorem.

Let (X,F , µ) be a σ-finite measure space and let Γ = {T t : t ∈ R} be a strongly
continuous group of positive (f ≥ 0 ⇒ T tf ≥ 0) linear operators in some Lp(ν),
1 ≤ p < ∞, where ν is a σ-finite measure equivalent to µ (ν(E) = 0 ⇔ µ(E) = 0).
Consider the ergodic averages

A+
ε f(x) =

1

ε

∫ ε

0

Ttf(x)dt.

One of the main problems in Ergodic Theory is to study the almost everywhere
convergence of the averages. A usual approach to this problem is to study the
boundedness of the ergodic maximal operator

M+f(x) = sup
ε>0

|A+
ε f(x)|.

This is the point we are going to check more carefully in this section.

For p greater than 1, it can be proved (see [9] for the discrete case) that if the
averages are uniformly bounded in Lp(µ), that is,

sup
ε>0

||A+
ε f ||p ≤ C||f ||p

with a constant independent of f , then the maximal operator is bounded in the
same Lp(µ): there exists C > 0 such that

||M+f ||p ≤ C||f ||p

for all f ∈ Lp(µ). In what follows we shall give an idea of the proof. The main
points in the proof are the following:

• The assumptions on the group imply [5, 4] that for all t, there exist a
positive measurable function vt and a positive multiplicative linear operator
Φt such that Φt is a group and T tf(x) = vt(x)Φtf(x).

• For all t, there exists a positive measurable function Ht(x), s.t.
∫

X

|T tf(x)|pHt(x)dµ(x) =

∫

X

|f(x)|pdµ(x).

• The uniform boundedness of the averages, that is, supε>0 ||A
+
ε f ||p ≤ C||f ||p

implies that for almost every x the functions wx(t) = Ht(x) belong to the
one-sided A+

p class (see [11, 8]), with a uniform A+
p constant (a constant

independent of x) [9, 4]. Remind [11, 8] that if w is a function on the real
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58 F. J. MARTÍN–REYES

line and w ∈ A+
p then

∫
R
|M+f |p(x)w(x) dx ≤ C

∫
R
|f |p(x)w(x) dx.

These properties allow to use transference arguments to establish the boundedness
of the ergodic maximal operator. We shall sketch the proof of this transference
argument. In order to do that, we work with nonnegative functions f and we
consider the truncated maximal operator

M+
η f(x) = sup

0<ε≤η

A+
ε f(x).

It is clear that it will suffice to obtain the inequality for the truncated maximal
operator with a constant independent of η. Using the properties of Ht, we introduce
this function in the integral.

∫

X

(M+
η f(x))pdµ(x) =

1

R

∫ R

0

∫

X

|T tM+
η f(x)|pHt(x)dµ(x)dt.

If fx is the function defined on R by fx(t) = T tf(x), applying Fubini’s theorem
and the positivity of T t we are able to dominate by the one-sided Hardy-Littlewood
maximal operator of the function fx truncated in an interval and we have

1

R

∫ R

0

∫

X

|T tM+
η f(x)|pHt(x)dµ(x)dt

≤

∫

X

1

R

∫ ∞

0

|M+(fxχ[0,R+η])(t)|
pHt(x) dt dµ(x)

Then we are faced with a weighted inequality for M+. Since the weights wx(t) =
Ht(x) are good weights for the strong type (p, p) of M+, that is, wx ∈ A+

p with a

uniform A+
p constant, we can follow and estimate by the Lp-norm of fx truncated

in the interval. In this way, we obtain
∫

X

1

R

∫ ∞

0

|M+(fxχ[0,R+η])(t)|
pHt(x) dt dµ(x)

≤ C

∫

X

1

R

∫ R+η

0

|fx(t)|pHt(x) dt dµ(x)

= C
1

R

∫ R+η

0

∫

X

|T tf(x)|pHt(x) dµ(x) dt

Applying again the property of Ht and putting together all the inequalities, we
have ∫

X

(M+
η f(x))pdµ(x) ≤ C

1

R

∫ R+η

0

∫

X

|T tf(x)|pHt(x) dµ(x) dt

= C
1

R

∫ R+η

0

∫

X

|f(x)|p dµ(x) dt

= C
R + η

R

∫

X

|f(x)|p dµ(x).
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Letting, first R, and then η, go to infinity we obtain the inequality for the ergodic
maximal operator.

∫

X

(M+f(x))pdµ(x) ≤ C

∫

X

|f(x)|pdµ(x),

What can be said for p = 1? Usually, we prove the weak type (1, 1) inequality
for M

µ({x : M+f(x) > λ}) ≤ C

∫

X

f dµ

If we start by using transference arguments, using the same properties we obtain

µ({x : M+
η f(x) > λ})

≤

∫

X

1

R

∫

{x∈(0,∞):|M+(fxχ[0,R+η])(t)|>λvt(x)}

vt(x)Ht(x) dt dµ(x)

Observe that now we are faced to a mixed weighted inequality. If the conjecture
(for M−) were true, and the weights belong to the corresponding one-sided A1

classes (with an uniform constant), that is, t → vt(x) ∈ A−
1 and t → Ht(x) ∈ A+

1 ,
then

µ({x : M+
η f(x) > λ}) ≤

C

λ

∫

X

1

R

∫ R+η

0

|fx(t)|Ht(x) dt dµ(x)

= C
1

R

∫ R+η

0

∫

X

|T tf(x)|Ht(x) dµ(x) dt

= C
1

R

∫ R+η

0

∫

X

|f(x)| dµ(x) dt

= C
R + η

R

∫

X

|f(x)| dµ(x).

Letting R and η go to infinity we would be done, assuming that the conjecture (for
M−) is true, and t → vt(x) ∈ A−

1 and t → Ht(x) ∈ A+
1 .

We point out that the assumptions on the weights can be translated to properties
of the group. More precisely, the first one, t → vt(x) ∈ A−

1 , holds if and only the
averages are uniformly bounded in L∞(µ): there exists C > 0 such that

sup
ε>0

||A+
ε f ||∞ ≤ C||f ||∞,

for all functions f ∈ L∞(µ), while the second one, t → Ht(x) ∈ A+
1 , means that

the averages are uniformly bounded in L1(µ): there exists C > 0 such that

sup
ε>0

||A+
ε f ||1 ≤ C||f ||1

for all functions f ∈ L1(µ). Therefore, we have that if the conjecture for the one-
sided Hardy-Litlewood maximal operator is proved then we would also have that
if the averages are uniformly bounded in L1(µ) and in L∞(µ) then the ergodic
maximal operator is of weak type (1, 1). But, up till now, it is only a conjecture
that we state explicitly.
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Conjecture 4.1 (The conjecture in Ergodic Theory). If there exists C > 0 such
that

(a) supε>0 ||A
+
ε f ||∞ ≤ C||f ||∞ for all f ∈ L∞(µ) and

(b) supε>0 ||A
+
ε f ||1 ≤ C||f ||1 for all f ∈ L1(µ),

then

µ({x : M+f(x) > λ}) ≤
C

λ

∫

X

|f | dµ

for all λ > 0 and all functions in L1(µ).

Remind that Dunford-Schwartz ergodic theorem [3] establishes for more general
semigroups that if the operators of the semigroup are contractions in L1 and in
L∞ then the ergodic maximal operator is of weak type (1, 1). In this way, the con-
jecture in ergodic theory would be a kind of generalization of Dunford-Schwartz
ergodic theorem in our setting.

As a resume, let me say first that we have a conjecture for the one-sided Hardy-
Littlewood maximal operator. Second, if this conjecture is proved to be true then
we would have an ergodic theorem, that would be in some sense a generalization
of Dunford-Schwartz ergodic theorem. However, at this moment, we only have a
weaker result for the Hardy-operators.
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