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ENTIRE SOLUTIONS OF THE ALLEN-CAHN EQUATION AND

COMPLETE EMBEDDED MINIMAL SURFACES

MANUEL DEL PINO, MICHAL KOWALCZYK, AND JUNCHENG WEI

Abstract. We review some recent results on construction of entire solutions
to the classical semilinear elliptic equation ∆u+u−u

3 = 0 in R
N . In various

cases, large dilations of an embedded, complete minimal surface approximate
the transition set of a solution that connects the equilibria ±1. In particular,
our construction answers negatively a celebrated conjecture by E. De Giorgi
in dimensions N ≥ 9.

1. Introduction and main results

1.1. The Allen-Cahn equation and minimal surfaces. The Allen-Cahn equa-
tion in R

N is the semilinear elliptic problem

∆u + f(u) = 0 in R
N , (1.1)

where f(s) = −W ′(s) and W is a “double-well potential”, bi-stable and balanced,
namely

W (s) > 0 if s 6= 1,−1, W (1) = 0 = W (−1), W ′′(±1) = f ′(±1) =: σ2
± > 0.

(1.2)
A typical example of such a nonlinearity is

f(u) = (1 − u2)u for W (u) =
1

4
(1 − u2)2. (1.3)

Equation (1.1) is a prototype for the continuous modeling of phase transition
phenomena. Let us consider the energy in a subregion region Ω of R

N

Jα(v) =

∫

Ω

α

2
|∇v|2 +

1

4α
W (v),

whose Euler-Lagrange equation is a scaled version of (1.1),

α2∆v + f(v) = 0 in Ω . (1.4)

We observe that the constant functions u = ±1 minimize Jα. They are idealized
as two stable phases of a material in Ω. It is of interest to analyze stationary
configurations in which the two phases coexist. Given any subset Λ of Ω, any
discontinuous function of the form

v∗ = χΛ − χΩ\Λ (1.5)

minimizes the second term in Jε. The introduction of the gradient term in Jα

makes an α-regularization of u∗ a test function for which the energy gets bounded
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and proportional to the surface area of the interface M = ∂Λ, so that in addition
to minimizing approximately the second term, stationary configurations should
also select asymptotically interfaces M that are stationary for surface area, namely
(generalized) minimal surfaces. This intuition on the Allen-Cahn equation gave
important impulse to the calculus of variations, motivating the development of the
theory of Γ-convergence in the 1970’s. Modica [30] proved that a family of local
minimizers uα of Jα with uniformly bounded energy must converge in suitable sense
to a function of the form (1.5) where ∂Λ minimizes perimeter. Thus, intuitively, for
each given λ ∈ (−1, 1), the level sets [vα = λ], collapse as α→ 0 onto the interface
∂Λ. Similar result holds for critical points not necessarily minimizers, see [26]. For
minimizers this convergence is known in very strong sense, see [3, 4].

If, on the other hand, we take such a critical point uα and scale it around an
interior point 0 ∈ Ω, setting uα(x) = vα(αx), then uα satisfies equation (1.1) in an
expanding domain,

∆uα + f(uα) = 0 in α−1Ω

so that letting formally α→ 0 we end up with equation (1.1) in entire space. The
“interface” for uα should thus be around the (asymptotically flat) minimal surface
Mα = α−1M . Modica’s result is based on the intuition that if M happens to be
a smooth surface, then the transition from the equilibria −1 to 1 of uα along the
normal direction should take place in the approximate form uα(x) ≈ w(z) where z
designates the normal coordinate to Mα. Then w should solve the ODE problem

w′′ + f(w) = 0 in R, w(−∞) = −1, w(+∞) = 1 . (1.6)

This heteroclinic solution, indeed exists thanks to assumption (1.2). It is defined,
uniquely up to a constant translation a ∈ R, by the identity

∫ w(t)

0

ds
√

2W (s)
= t− a,

which follows from the fact that

w′2 − 2W (w) = 0 in R.

We fix in what follows the unique w for which
∫

R

t w′(t)2 dt = 0 . (1.7)

For the nonlinearity (1.3), we have w(t) = tanh
(

t/
√

2
)

. In general w approaches
its limits at exponential rates,

w(t) − ±1 = O( e−σ±|t| ) as t→ ±∞ .

Observe then that

Jα(uα) ≈ Area (M)

∫

R

[
1

2
w′2 +W (w)]

which is what makes it plausible that M is critical for area, namely a minimal
surface.
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1.2. De Giorgi’s conjecture. The above considerations led E. De Giorgi [10] to
formulate in 1978 a celebrated conjecture on the Allen-Cahn equation (1.1) for the
nonlinearity (1.3).

(DG) Let u be a bounded solution of the equation

∆u + (1 − u2)u = 0 in R
N , (1.8)

such that ∂xN
u > 0. Then the level sets [u = λ] are all hyperplanes, at least for

dimension N ≤ 8. Equivalently, u must have the form u(x) = w( (x − x0) · e ), for
some x0, e ∈ R

N , where |e| = 1.

De Giorgi’s conjecture has been fully established in dimensions N = 2 by Ghous-
soub and Gui [16] and for N = 3 by Ambrosio and Cabré [1]. Savin [37] proved its
validity for 4 ≤ N ≤ 8 under a mild additional assumption. (DG) is a statement
parallel to Bernstein’s theorem for minimal graphs which in its most general form,
due to Simons [40], states that any minimal hypersurface in R

N , which is also a
graph of a function of N − 1 variables, must be a hyperplane if N ≤ 8. Bombieri,
De Giorgi and Giusti [2] proved that this fact is false in dimension N ≥ 9, by
constructing a nontrivial solution to the problem

∇ ·
(

∇F
√

1 + |∇F |2

)

= 0 in R
8. (1.9)

by means of the super-subsolution method. Let us write

x′ = (x1, . . . , x8) ∈ R
8, u =

√

x2
1 + · · · + x2

4, v =
√

x2
5 + · · · + x2

8.

The BDG solution has the form F (x′) = F (u, v) with the symmetry property
F (u, v) = −F (v, u) if u ≥ v. In addition we can show that F becomes asymptotic
to a function homogeneous of degree 3 that vanishes on the cone u = v. The result
in [2] has made plausible the existence of a counterexample to statement (DG) for
N ≥ 9. This has been recently found in [11], see also [7, 27]. See [15] for a recent
survey on the state of the art of this question. Let us describe the result in [11].

Let M = {x9 = F (x′)} be the minimal BDG graph so predicted, and let us
consider for α > 0 its dilation Mα = α−1M , which is also a minimal graph.
We have the following result, which disproves statement (DG) in dimensions 9 or
higher.

Theorem 1. [11]. Let N ≥ 9. For all α > 0 sufficiently small there exists a
bounded solution uα(x) of equation (1.8) such that

uα(0) = 0, ∂xN
uα(x) > 0 for all x ∈ R

N ,

and

|uα(x)| → 1 as dist (x,Mα) → +∞,

uniformly in all small α > 0.
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Sketch of the proof. The proof in [11] provides accurate information on uα. If
t = t(y) denotes a choice of signed distance to the graph Mα then, for a small
fixed number δ > 0, the solution looks like uα(x) ∼ w(t), if |t| < δ

α
. with w(t) =

tanh
(

t√
2

)

, the one-dimensional heteroclinic solution to (1.8). Let us us assume

N = 9 (which is sufficient), and consider Fermi coordinates to describe points in R
9

near Mα, x = y + zνα(y), y ∈Mα, |z| < δ
α

where να is the unit normal to Mα

for which να9 > 0. Then we choose as a first approximation w(x) := w(z + h(αy))
where h is a smooth, small function on M = M1, to be determined. Looking for
a solution of the form w + φ, it turns out that the problem becomes essentially
reduced to

∆Mα
φ+ ∂zzφ+ f ′(w(z))φ + E +N(φ) = 0 in Mα × R

where S(w) = ∆w+f(w), E = χ|z|<α−1δ S(w), N(φ) = f(w+φ)−f(w)−f ′(w)φ+B(φ),

f(w) = w(1−w
2), and B(φ) is a second order linear operator with small coefficients,

also cut-off for |z| > δα−1. Rather than solving the above problem directly we
consider a projected version of it:

L(φ) := ∆Mα
φ+ ∂zzφ+ f ′(w(z))φ = −E −N(φ) + c(y)w′(z) in Mα ×R (1.10)

∫

φ(y, z)w′(z) dz = 0 for all y ∈Mα (1.11)

A solution to this problem can be found in such a way that it respects the size
and decay rate of the error E, which is roughly of the order ∼ r(αy)−3e−|z|, this is
made precise with the use of a linear theory for the projected problem in weighted
Sobolev norms and an application of contraction mapping principle. Finally h s

found so that c(y) ≡ 0. We have c(y)
∫

w′2dz =
∫

(E+N(φ))w′ dz and thus we get
reduced to a (nonlocal) nonlinear PDE in M of the form

J (h) := ∆Mh+ |A|2h = O(α)r(y)−3 +Mα(h) in M, h = 0 in M ∩ [u = v],
(1.12)

where M(h) is a small operator which includes nonlocal terms. A solvability theory
for the Jacobi operator in weighted Sobolev norms is then devised, with the crucial
ingredient of the presence of explicit barriers for inequalities involving the linear
operator above, and asymptotic curvature estimates by Simon [39]. Using this
theory, problem (1.12) is finally solved by means of contraction mapping principle.
The monotonicity property follows from maximum principle applied to the linear
equation satisfied by ∂x9

u. �

The assumption of monotonicity in one direction for the solution u in De Giorgi’s
conjecture implies a form of stability, locally minimizing character for u when
compactly supported perturbations are considered in the energy. Indeed, if Z =
∂xN

u > 0, then the linearized operator L = ∆+f ′(u), satisfies maximum principle.
This implies stability of u, in the sense that its associated quadratic form, namely
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THE ALLEN–CAHN EQUATION AND MINIMAL SURFACES 99

the second variation of the corresponding energy,

Q(ψ, ψ) :=

∫

|∇ψ|2 − f ′(u)ψ2 (1.13)

satisfies Q(ψ, ψ) > 0 for all ψ 6= 0 smooth and compactly supported. Stability is a
basic ingredient in the proof of the conjecture dimensions 2, 3 in [1, 16], based on
finding a control at infinity of the growth of the Dirichlet integral. In dimension
N = 3 it turns out that

∫

B(0,R)

|∇u|2 = O(R2) (1.14)

which intuitively means that the embedded level surfaces [u = λ] must have a finite
number of components outside a large ball, which are all “asymptotically flat”. The
question whether stability alone suffices for property (1.14) remains open. More
generally, it is believed that this property is equivalent to finite Morse index of
the solution u (which means essentially that u is stable outside a bounded set).
The Morse index m(u) is defined as the maximal dimension of a vector space E of
compactly supported functions such that

Q(ψ, ψ) < 0 for all ψ ∈ E \ {0}.

Rather surprisingly, basically no examples of finite Morse index entire solutions
of the Allen-Cahn equation seem known in dimension N = 3. Great progress has
been achieved in the last decades, both in the theory of semilinear elliptic PDE like
(1.1) and in minimal surface theory in R

3. While this link traces back to the very
origins of the study of (1.1) as discussed above, it has only been partially explored
in producing new solutions.

In the paper [14], we construct a new class of entire solutions to the Allen-Cahn
equation in R

3 which have the characteristic (1.14), and also finite Morse index,
whose level sets resemble a large dilation of a given complete, embedded minimal
surface M , asymptotically flat in the sense that it has finite total curvature, namely

∫

M

|K| dV < +∞

where K denotes Gauss curvature of the manifold, which is also non-degenerate in
a sense that we will make precise below.

As pointed out by Dancer [8], Morse index is a natural element to attempt clas-
sification of solutions of (1.1). Beyond De Giorgi’s conjecture, classifying solutions
with given Morse index should be a natural step towards the understanding of the
structure of the bounded solutions of (1.1). Our main results show that, unlike the
stable case, the structure of the set of solutions with finite Morse index is highly
complex. On the other hand, we believe that our construction contains germs of
generality, providing elements to extrapolate what may be true in general, in anal-
ogy with classification of embedded minimal surfaces We elaborate on these issues
in §2. We point out that solutions with exactly k nodal lines, for any given k ≥ 1,
have been found in R

2 in [13]. These solutions are very to have finite Morse index.
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We shall describe next the main results in [14].

1.3. Embedded minimal surfaces of finite total curvature. The theory of
embedded, minimal surfaces of finite total curvature in R

3, has reached a notable
development in the last 25 years. For more than a century, only two examples
of such surfaces were known: the plane and the catenoid. The first nontrivial
example was found in 1981 by C. Costa, [5, 6]. The Costa surface is a genus one
minimal surface, complete and properly embedded, which outside a large ball has
exactly three components (its ends), two of which are asymptotically catenoids
with the same axis and opposite directions, the third one asymptotic to a plane
perpendicular to that axis. The complete proof of embeddedness is due to Hoffman
and Meeks [21]. In [22, 24] these authors generalized notably Costa’s example by
exhibiting a class of three-end, embedded minimal surface, with the same look as
Costa’s far away, but with an array of tunnels that provides arbitrary genus k ≥ 1.
This is known as the Costa-Hoffman-Meeks surface with genus k.

Many other examples of multiple-end embedded minimal surfaces have been
found since, see for instance [28, 41] and references therein. In general all these
surfaces look like parallel planes, slightly perturbed at their ends by asymptotically
logarithmic corrections with a certain number of catenoidal links connecting their
adjacent sheets. In reality this intuitive picture is not a coincidence. Using the
Eneper-Weierstrass representation, Osserman [34] established that any embedded,
complete minimal surface with finite total curvature can be described by a confor-
mal diffeomorphism of a compact surface (actually of a Riemann surface), with a
finite number of its points removed. These points correspond to the ends. More-
over, after a convenient rotation, the ends are asymptotically all either catenoids or
plane, all of them with parallel axes, see Schoen [38]. The topology of the surface
is thus characterized by the genus of the compact surface and the number of ends,
having therefore “finite topology”.

1.4. Results. In what followsM designates a complete, embedded minimal surface
in R

3 with finite total curvature (to which below we will make a further nondegen-
eracy assumption). As pointed out in [25], M is orientable and the set R

3 \M has
exactly two components S+, S−. In what follows we fix a continuous choice of unit
normal field ν(y), which conventionally we take it to point towards S+.

For x = (x1, x2, x3) = (x′, x3) ∈ R
3, we denote

r = r(x) = |(x1, x2)| =
√

x2
1 + x2

2.

After a suitable rotation of the coordinate axes, outside the infinite cylinder r < R0

with sufficiently large radius R0, then M decomposes into a finite number m of
unbounded components M1, . . . ,Mm, its ends. From a result in [38], we know
that asymptotically each end of Mk either resembles a plane or a catenoid. More
precisely, Mk can be represented as the graph of a function Fk of the first two
variables,

Mk = { y ∈ R
3 / r(y) > R0, y3 = Fk(y′) }
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where Fk is a smooth function which can be expanded as

Fk(y′) = ak log r + bk + bik
yi

r2
+O(r−3) as r → +∞, (1.15)

for certain constants ak, bk, bik, and this relation can also be differentiated. Here

a1 ≤ a2 ≤ . . . ≤ am ,

m
∑

k=1

ak = 0 . (1.16)

The direction of the normal vector ν(y) for large r(y) approaches on the ends that
of the x3 axis, with alternate signs. We use the convention that for r(y) large we
have

ν(y) =
(−1)k

√

1 + |∇Fk(y′)|2
(∇Fk(y′) , −1 ) if y ∈Mk. (1.17)

Let us consider the Jacobi operator of M

J (h) := ∆Mh+ |A|2h (1.18)

where |A|2 = −2K is the Euclidean norm of the second fundamental form of M . J
is the linearization of the mean curvature operator with respect to perturbations of
M measured along its normal direction. A smooth function z(y) defined on M is
called a Jacobi field if J (z) = 0. Rigid motions of the surface induce naturally some
bounded Jacobi fields: Associated to respectively translations along coordinates
axes and rotation around the x3-axis, are the functions

z1(y) = ν(y) · ei, y ∈M, i = 1, 2, 3,

z4(y) = (−y2, y1, 0) · ν(y), y ∈M. (1.19)

We assume that M is non-degenerate in the sense that these functions are actu-
ally all the bounded Jacobi fields, namely

{ z ∈ L∞(M) / J (z) = 0 } = span { z1, z2, z3, z4 } . (1.20)

We denote in what follows by J the dimension (≤ 4) of the above vector space.

This assumption, expected to be generic for this class of surfaces, is known in
some important cases, most notably the catenoid and the Costa-Hoffmann-Meeks
surface which is an example of a three ended M whose genus may be of any order.
See Nayatani [32, 33] and Morabito [31]. Note that for a catenoid, z04 = 0 so that
J = 3. Non-degeneracy has been used as a tool to build new minimal surfaces
for instance in Hauswirth and Pacard [20], and in Pérez and Ros [36]. It is also
the basic element, in a compact-manifold version, to build solutions to the small-
parameter Allen-Cahn equation in Pacard and Ritoré [35].

In this paper we will construct a solution to the Allen Cahn equation whose
zero level sets look like a large dilation of the surface M , with ends perturbed
logarithmically. Let us consider a large dilation of M ,

Mα := α−1M.

This dilated minimal surface has ends parameterized as

Mk,α = { y ∈ R
3 / r(αy) > R0, y3 = α−1Fk(αy′) } .
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Let β be a vector of given m real numbers with

β = (β1, . . . , βm),

m
∑

i=1

βi = 0 . (1.21)

Our first result asserts the existence of a solution u = uα defined for all sufficiently
small α > 0 such that given λ ∈ (−1, 1), its level set [uα = λ] defines an embedded
surface lying at a uniformly bounded distance in α from the surface Mα, for points
with r(αy) = O(1), while its k-th end, k = 1, . . . ,m, lies at a uniformly bounded
distance from the graph

r(αy) > R0, y3 = α−1 Fk(αy′) + βk log |αy′| . (1.22)

The parameters β must satisfy an additional constraint. It is clear that if two
ends are parallel, say ak+1 = ak, we need at least that βk+1−βk ≥ 0, for otherwise
the ends would eventually intersect. Our further condition on these numbers is
that these ends in fact diverge at a sufficiently fast rate. We require

βk+1 − βk > 4 max {σ−1
− , σ−1

+ } if ak+1 = ak . (1.23)

Let us consider the smooth map

X(y, z) = y + zν(αy), (y, t) ∈Mα × R. (1.24)

x = X(y, z) defines coordinates inside the image of any region where the map is
one-to-one. In particular, let us consider a function p(y) with

p(y) = (−1)kβk log |αy′| +O(1), k = 1, . . . ,m,

and β satisfying βk+1 − βk > γ > 0 for all k with ak = ak+1. Then the map X is
one-to-one for all small α in the region of points (y, z) with

|z − q(y)| < δ

α
+ γ log(1 + |αy′|)

provided that δ > 0 is chosen sufficiently small.

Theorem 2. Let N = 3 and M be a minimal surface embedded, complete with
finite total curvature which is nondegenerate. Then, given β satisfying relations
(1.21) and (1.23), there exists a bounded solution uα of equation (1.1), defined for
all sufficiently small α, such that

uα(x) = w(z − q(y)) +O(α) for all x = y + zν(αy), |z − q(y)| < δ

α
, (1.25)

where the function q satisfies

q(y) = (−1)kβk log |αy′| +O(1) y ∈Mk,α, k = 1, . . . ,m.

In particular, for each given λ ∈ (−1, 1), the level set [uα = λ] is an embedded
surface that decomposes for all sufficiently small α into m disjoint components
(ends) outside a bounded set. The k-th end lies at O(1) distance from the graph

y3 = α−1 Fk(αy) + βk log |αy′|.
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The solution predicted by this theorem depends, for fixed α, on m parameters.
Taking into account the constraint

∑m

j=1 βj = 0 this gives m − 1 independent
parameters corresponding to logarithmic twisting of the ends of the level sets. Let
us observe that consistently, the combination β ∈ Span {(a1, . . . , am)} can be set
in correspondence with moving α itself, namely with a dilation parameter of the
surface. We are thus left with m − 2 parameters for the solution in addition to
α. Thus, besides the trivial rigid motions of the solution, translation along the
coordinates axes, and rotation about the x3 axis, this family of solutions depends
exactly on m− 1 “independent” parameters. Part of the conclusion of our second
result is that the bounded kernel of the linearization of equation (1.1) about one of
these solutions is made up exactly of the generators of the rigid motions, so that in
some sense the solutions found are L∞-isolated, and the set of bounded solutions
nearby is actually m − 1 + J-dimensional. A result parallel to this one, in which
the moduli space of the minimal surface M is described by a similar number of
parameters, is found in [36].

Next we discuss the connection of the Morse index of the solutions of Theorem
2 and the index of the minimal surface M , i(M), which has a similar definition
relative to the quadratic form for the Jacobi operator: The number i(M) is the
largest dimension for a vector spaced E of compactly supported smooth functions
in M with

∫

M

|∇k|2 dV −
∫

M

|A|2k2 dV < 0 for all k ∈ E \ {0}.

We point out that for complete, embedded surfaces, finite index is equivalent to
finite total curvature, see [19] and also §7 of [25] and references therein. Thus,
for our surface M , i(M) is indeed finite. Moreover, in the Costa-Hoffmann-Meeks
surface it is known that i(M) = 2l− 1 where l is the genus of M . See [32], [33] and
[31].

Our second result is that the Morse index and non-degeneracy of M are trans-
mitted into the linearization of equation (1.1).

Theorem 3. Let uα the solution of problem (1.1) given by Theorem 2. Then for
all sufficiently small α we have

m(uα) = i(M).

Besides, the solution is non-degenerate, in the sense that any bounded solution of

∆φ+ f ′(uα)φ = 0 in R
3

must be a linear combination of the functions Zi, i = 1, 2, 3, 4 defined as

Zi = ∂iuα, i = 1, 2, 3, Z4 = −x2∂1uα + x1∂2uα.

We will devote the rest of this paper to the proofs of Theorems 1 and 2.
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2. Further comments and open questions

2.1. Symmetries. As it is natural, the invariances of the surface are at the same
time inherited from the construction. If M is a catenoid, revolved around the x3

axis, the solution in Theorem 2 is radial in the first two variables,

uα(x) = uα ( |x′|, x3) .

This is a consequence of the construction. The invariance of the Laplacian under
rotations and the autonomous character of the nonlinearity imply that the entire
proof can be carried out in spaces of functions with this radial symmetry. More
generally, ifM is invariant a group of linear isometries, so will be the solution found,
at least in the case that f(u) is odd. This assumption allows for odd reflections.
The Costa-Hoffmann-Meeks surface is invariant under a discrete group constituted
of combination of dihedral symmetries and reflections to which this remark apply.

2.2. Towards a classification of finite Morse index solutions.

Understanding bounded, entire solutions of nonlinear elliptic equations in R
N is a

problem that has always been at the center of PDE research. This is the context of
various classical results in PDE literature like the Gidas-Ni-Nirenberg theorems on
radial symmetry of one-signed solutions, Liouville type theorems, or the achieve-
ments around De Giorgi’s conjecture. In those results, the geometry of level sets
of the solutions turns out to be a posteriori very simple (planes or spheres). More
challenging seems the problem of classifying solutions with finite Morse index, in
a model as simple as the Allen-Cahn equation. While the solutions predicted by
Theorem 2 are generated in an asymptotic setting, it seems plausible that they
contain germs of generality, in view of parallel facts in the theory of minimal sur-
faces. In particular we believe that the following two statements hold true for a
bounded solution u to equation (1.1) in R

3.

(1) If u has finite Morse index and ∇u(x) 6= 0 outside a bounded set, then each
level set of u must have outside a large ball a finite number of components, each
of them asymptotic to either a plane or to a catenoid. After a rotation of the
coordinate system, all these components are graphs of functions of the same two
variables.

(2) If u has Morse index equal to one. Then u must be axially symmetric, namely
after a rotation and a translation, u is radially symmetric in two of its variables.
Its level sets have two ends, both of them catenoidal.

It is worth mentioning that a balancing formula for the “ends” of level sets to the
Allen-Cahn equation is available in R

2, see [18]. An extension of such a formula to
R

3 should involve the configuration (1) as its basis. The condition of finite Morse
index can probably be replaced by the energy growth (1.14).

On the other hand, (1) should not hold if the condition ∇u 6= 0 outside a large
ball is violated. For instance, let us consider the octant {x1, x2, x3 ≥ 0} and the
odd nonlinearity f(u) = (1−u2)u. Problem (1.1) in the octant with zero boundary
data can be solved by a super-subsolution scheme (similar to that in [9]) yielding a
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positive solution. Extending by successive odd reflections to the remaining octants,
one generates an entire solution (likely to have finite Morse index), whose zero
level set does not have the characteristics above: the condition ∇u 6= 0 far away
corresponds to embeddedness of the ends.

Various rather general conditions on a minimal surface imply that it is a catenoid.
For example, R. Schoen [38] proved that a complete embedded minimal surface in
R

3 with two ends must be catenoid (and hence it has index one). One may wonder
if a bounded solution to (1.1) whose zero level set has only two ends is radially
symmetric in two variables. On the other hand a one-end minimal surface is forced
to be a plane [23]. We may wonder whether or not the zero level set lies on a half
space implies that the solution depends on only one variable.

These questions seem rather natural generalizations of that by De Giorgi, now on
the classification finite Morse index entire solutions of (1.1). The case in which the
minimal surfaces have finite topology but infinite total curvature, like the helicoid,
are natural objects to be considered. While results parallel to that in Theorem 2
may be expected possible, they may have rather different nature. The condition of
diverging ends in β is not just technical. If it fails a solution may still be associated
to the manifold but interactions between neighboring interfaces, which are inherent
to the Allen-Cahn equation but not to the minimal surface problem, will come into
play. The case of infinite topology may also give rise to very complicated patterns,
we refer to Pacard and Hauswirth [20] and references therein for recent result on
construction of minimal surfaces in this scenario.
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