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MULTILINEAR SINGULAR INTEGRAL OPERATORS WITH

VARIABLE COEFFICIENTS

RODOLFO H. TORRES

Abstract. Some recent results for bilinear or multilinear singular integrals
operators are presented. The focus is on some of the results that can be viewed
as natural counterparts of classical theorems in Calderón-Zygmund theory,
adding to the already existing extensive literature in the subject. In particular,
two different classes of operators that can be seen as bilinear counterparts of
linear Calderón-Zygmund operators are considered. Some highlights of the
recent progress done for operators with variable coefficients are a modulation
invariant bilinear T1-Theorem and some new weighted norm inequalities.

1. Introduction

In this expository article we want to recount a few recent results in the study
of certain multilinear operators. Multilinear harmonic analysis is an active area
of research that is still developing. We will limit ourselves to results that are, in
a way, natural multilinear versions of well-known and powerful theorems in the
study of linear singular integrals of Calderón-Zygmund type. These new results
only arise after many important progresses have been done in related topics and by
numerous authors. This presentation is far from being exhaustive in the sense that,
for reasons of space, we will not be able to describe all existing contributions in
multilinear analysis but only those most closely related to operators with variable
coefficients. We will concentrate on some progresses done on a series of collabora-
tions and some topics presented by the author at the 2008 CIMPA-UNESCO School
on Real Analysis and its Applications. One of the focus points of the conference
was precisely new aspects of the Calderón-Zygmund theory. We will assume that
the interested reader has some familiarity with basic results about linear Calderón-
Zygmundoperators and linear pseudodifferntial operators, but refer to the book by
Stein [65] for a comprehensive introduction. Also for brevity, we will not present
the theorems in their greatest generality, but with hypotheses that simplify the
narrative and still encapsulate the main mathematical aspects involved.
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One of the simplest bilinear expressions naturally appearing in analysis is the
product of derivatives of two functions,

T (f, g) = ∂αf · ∂βg.

Using the Fourier transform, ĥ(ξ) =
∫
h(x)e−ix·ξ dx, and its inverse, such an oper-

ator can be written as

T (f, g)(x) =

∫

R2n

σ(ξ, η)f̂(ξ)ĝ(η)eix·(ξ+η)dξ dη,

where the multiplier σ is an appropriate polynomial function. Similarly, other
product-like operations of m-linear nature can be represented in the pseudodiffer-
ential form,

T (f1, . . . , fm)(x) =

∫

(Rn)m

σ(x, ξ1, . . . , ξm) f̂1(ξ1) . . . f̂m(ξm) eix·(ξ1+···+ξm)dξ1 . . . dξm,

(1.1)
where now the symbol σ is allowed to depend on the space variable x (to include
among other objects variable coefficients differential operators). Multilinear oper-
ators appear also as technical tools in the study of linear singular integral (through
the method of rotations), the analysis of nonlinear operators (through power series
and similar expansions), and the resolution of many nonlinear partial differential
equations.

As in the linear case, the operators in (1.1) admit an integral representation in
the space domain too. Formally, inverting the Fourier transform,

T (f1, . . . , fm)(x) = 〈K(x, y1, . . . , ym), f1(y1) ⊗ · · · ⊗ fm(ym)〉, (1.2)

where 〈·, ·〉 denotes the usual pairing of distributions and test functions and the
kernel of the operator, K(x, y1, . . . , ym), is a distribution which often exhibits some
symmetries (cancellation, modulation invariance, etc.) and also some singularities
on certain varieties. The singularities appearing in both the symbols and kernels of
interesting operators in the multilinear case are more diverse and harder to handle
than in the linear one. This makes the multilinear theory very challenging and
difficult. It requires both new tools and new ways to implement known ones.

We will concentrate on two main types of bilinear operators that naturally
arise. The two types can be seen as multilinear extensions of linear Calderón-
Zygmund operators, but they are very different objects. The first one consists of
operators with m-linear Calderón-Zygmund kernels. That is,

T (f1, . . . , fm)(x) =

∫

(Rn)m

K(x, y1, . . . , ym)f1(y1) . . . fm(ym)dy1 . . . dym, (1.3)

for x /∈ ∩ suppfj , and where away form the diagonal in (Rn)m the kernel satisfies
the estimates

|∂αK(y0, y1, . . . , ym)| ≤ Cα(

m∑

k,l=0

|yk − yl|)
−mn−|α|, for |α| = 0, 1. (1.4)

Typical examples of these operators are obtained when classical linear Calderón-
Zygmund operators in Rmn are viewed as m-linear operator in Rn. When bounded
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on product of Lebesgue spaces, we call these operators multilinear Calderón-Zygmund
operators.

The second type is a class of bilinear operators in one dimension modeled af-
ter the bilinear Hilbert transform, which we will call variable coefficients bilinear
Hilbert transforms. Their kernels have the singular form

K(y0, y1, y2) = k(y0, y0 − y1)δy2=2y0−y1
,

where k is a linear Calderón-Zygmundkernel. More explicitly, for f1 and f2 with
disjoint supports,

T (f1, f2)(x) =

∫

R

k(x, t)f1(x− t)f2(x+ t) dt. (1.5)

These operators posses a certain modulation invariance that we will define in what
follows and is already present in the bilinear Hilbert transform. Recall that the
bilinear Hilbert transform corresponds to the case of x-independent kernel k(x, t) =
1/t and x-independent symbol σ(x, ξ, η) = sign(ξ − η).

The study of the first type of operators was launched by Coifman and Meyer [22],
[23], [24], [25]. On the other hand, the bilinear Hilbert transform was introduced by
Calderón, but its boundedness properties were not known until the groundbreaking
results of Lacey and Thiele, [52], [53]. The study of multilinear operators picked
up momentum then and attracted numerous investigators. The works by Gilbert
and Nahmod [34], [35], [36]; Muscalu, Tao and Thiele [61]; Thiele [66]; Grafakos
and Li [37], [38]; and Muscalu, Pipher, Tao and Thiele [60]; to name a few, were on
translation invariant∗ singular multipliers. We refer to the work of Thiele [67] for
an exposition about some of these results and the new time-frequency techniques
driving them. We want, however, to focus here on results for non-translation
invariant operators; i.e. with x-dependent symbols and kernels.

The capstone of the linear Calderón-Zygmund theory is the famous T1-Theorem
of David and Journé [27] (and also the related Tb-Theorem by David Journé and
Semmes [28]). Such a result gives a characterization of the boundedness of linear
singular integral operators. In Section 2 we will present two different forms of this
result for both types of bilinear operators (1.3) and (1.5). A reexamination after
Coifman and Meyer of the operators as in (1.3) took place through works by Christ
and Journé [18], Kenig and Stein [49], and the developments in the author’s collab-
oration with Grafakos [41], [42], [43], and [44]. As a consequence a T1-Theorem for
multilinear Calderón-Zygmundoperators is by now well-understood. A more recent
bilinear T1-Theorem that applies to variable coefficient bilinear Hilbert transforms
is due to Bényi, Demeter, Nahmod, Thiele, Torres, and Villarroya [4]. We will
also describe some collaboration with Bényi [10] , [11], Bényi and Nahmod [8] and
Bényi, Maldonado and Nahmod [6] in the study of bilinear pseudodifferential op-
erators and paraproducts that naturally lead, from the author’s perspective, from
one T1-Theorem to the other.

∗With some abuse, translation invariance refers here to invariance under simultaneous trans-
lations by the same amount in each variable. This is the case of operators with kernels of the
form K(x − y1, . . . , x − ym) and symbols which are x-independent multipliers.
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160 RODOLFO H. TORRES

The linear Calderón-Zygmundtheory has proved to be very efficient in the solu-
tion of diverse problems in both real and complex analysis, operator theory, approx-
imation theory, and partial differential equations. The methods employed in the
Calderón-Zygmundtheory have been broadly extended to different contexts. Some
of the versatility of such extensions has been achieved through the development
of a weighted theory. In Section 3 we present the weighted theory for multilinear
Calderón-Zygmund operators. The first attempts to a weighted theory were done
in collaborations of the author with Grafakos [45] and Pérez [63]. A more recent
work addressing several problems raised in those work was carried out by Lerner,
Ombrosi, Pérez, Torres, and Trujillo-González [54]. This last work contains a truly
multilinear weighted theory that we will summarize together with other related
recent progresses. By comparison, it is worth mentioning that, as of the writing of
this article, the construction of a weighted theory for modulation invariant bilinear
operators, or even just for the bilinear Hilbert transform, remains a very attractive
but extremely difficult open problem.

Acknowledgements. The author wants to thank the organizers of the 2008
CIMPA- UNESCO School on Real Analysis and its Applications, La Falda, Córdoba,
Argentina, for their kind invitation to the conference and their wonderful hospital-
ity. He also wants to take this opportunity to thank all the colleagues with whom
he collaborated over the years in the area of multilinear harmonic analysis. He has
been fortunate to enjoy the generosity of their mathematical talents and efforts as
well as the invaluable support of their friendship and affection during some difficult
personal times.

2. Bilinear T1-Theorems and pesudodifferential operators

As it is nowadays well-known, the linear T1-Theorem states that a linear oper-
ator with a kernel satisfying (1.4) (wiht m = 1) is bounded on L2 if and only if the
functions T (1) and T ∗(1) are in BMO and the weak boundedness property holds.
Namely,

|〈Tϕr,z, ψr,z〉| ≤ Cr−n (2.1)

where ϕ and ψ range over a compact subset of D(Rn) (the space of C∞-functions
with compact support) and where we use the notation gr,z(x) = r−ng(r−1(x− z)).
The condition (2.1) is a weak continuity on smooth bumps and can be interpreted
by saying that the family of operators obtained from T by translation and dilations
(T is no longer assumed to be translation and dilation invariant) can be (weakly)
controlled in a uniform way. The condition that T (1) and T ∗(1) are elements of
BMO are usually interpreted as some sort of cancellation condition, since through
the use of paraproducts they can be reduced to the case T (1) = T ∗(1) = 0. It is
important to note that all the hypotheses of the theorem are symmetric in T and
its transpose T ∗. The necessary and sufficient conditions for boundedness were also
combined in the original work [27] in the simpler form

sup
ξ∈Rn

‖T (eiξ·)‖BMO + sup
ξ∈Rn

‖T ∗(eiξ·)‖BMO ≤ C. (2.2)
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This is a beautiful condition that says that to understand the music played by T ,
one only needs to understand how T plays the pure tones eiξx.

Once L2-boundedness is established, Lp results for 1 < p < ∞ are obtained
using the Calderón-Zygmund decomposition and interpolation. All this translates
to the multilinear setting through a careful adaptation of the techniques in the
linear case. The results have been know for some time now but we repeat them to
motivate more recent ones. We state a bilinear T1-Theorem in a form convenient
for our presentation.

Theorem 2.1. ([43]) Let T : S(Rn) × S(Rn) → S′(Rn) be a continuous bilinear
operator with a Calderón-Zygmund kernel satisfying (1.4). Then T maps L4 × L4

into L2 if and only if T = T ∗0 and its transposes, T ∗1 and T ∗2, satisfy

2∑

j=0

sup
ξ1,ξ2∈Rn

‖T ∗j(eiξ1·, eiξ2·)‖BMO ≤ C.

Moreover, such a T maps Lp × Lq into Lr, for all 1 < p, q < ∞ and 1/r =
1/p+ 1/q < 2.

A different L∞ × L2 → L2 version of the result was first given in [18]. Note
the symmetry in the hypotheses and the p-independence of the result as in the
linear theory (in fact the starting point L4 × L4 into L2 could be replaced by
other strong type estimate; see [43]). The full range of exponents, also obtained for
translation invariant operators in [49], extends the previous work for such operators
of Coifman and Meyer mentioned in the introduction and which covered the range
r > 1. Moreover the operators in Theorem 2.1 also satisfy a weak-type estimate

T : L1 × L1 → L1/2,∞. (2.3)

See [49] and [43].
Theorem 2.1 applies to the case of classical linear Calderón-Zygmundoperators

of convolution type in R2n when seen as bilinear on Rn×Rn (see (3.10) in Section
3). It also applies to certain bilinear paraproduct operators of the form

T (f, g)(x) =
∑

Q

|Q|−1/2〈f, φ1
Q〉〈g, φ2

Q〉φ3
Q(x), (2.4)

where the sum runs over all dyadic cubes in Rn and the functions φi
Q, i = 1, 2, 3, are

families of molecules or wavelets as in the works by Meyer [57], Frazier and Jawerth
[32] and Frazier, Jawerth and Weiss [33]. Essentially these are functions of the form
φQ = φνk(x) = 2νn/2φ(2νx−k), whereQ = Qνk is a dyadic cube and φ is a function
with certain prescribed smoothness, decay at infinity, and cancellations. In fact,
by fine tuning these properties of the functions φi one can check that the operators
have Calderón-Zygmundkernels and are bounded, not only on Lebesgue spaces,
but also in numerous other function spaces. The operators (2.4) satisfy almost
diagonal estimates studied in [42] in the bilinear case based on the ideas in [32] (see
the article of Bényi and Tzirakis [12] for higher degree of multilinearity too). We
refer to [6] for details and an extensive list or references about paraproducts. See
also the works of Lacey [50], Diestel [30], Lacey and Metcalf [51], and Maldonado
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162 RODOLFO H. TORRES

and Naibo [55] for connections to bilinear Littlewood-Paley theory on Lebesgue
and Besov spaces.

Theorem 2.1 is also readily applicable to pseudodifferntial operators. Consider
operators of the form (1.1) with symbols σ in BSt

ρ,δ(R
3n), 0 ≤ δ ≤ ρ ≤ 1. That is,

σ satisfies the differential inequalities

|∂α
x ∂

β
ξ ∂

γ
ησ(x, ξ, η)| ≤ Cαβγ(1 + |ξ| + |η|)t+δ|α|−ρ(|β|+|γ|). (2.5)

The class BS0
1,0 is usually called the Coifman-Meyer class, since those authors

were the first to study it. The class BS0
1,1 is the largest one with operators with

kernels satisfying the estimates (1.4) and using the boundedness of their symbols
it is easy to verify that the functions T (eiξ1·, eiξ2·) are uniformly in BMO (and
actually L∞). The symmetry in the conditions of Theorem 2.1 requires that the
same must be true for the transposes if T is to be bounded. This, however, cannot
be always satisfies. A parallel situation to the linear case arises and is described
by the following result.

Theorem 2.2. ([10]) The class of bilinear pseudodifferential operators BS0
1,0 is

closed by transpositions but the class BS0
1,1 is not.

The first statement is proved constructing a symbolic calculus for T ∗1 and T ∗2.
It follows then that Theorem 2.1 applies to BS0

1,0. To prove the second statement in

Theorem 2.2 an example of an operators in BS0
1,1 which is not bounded is exhibited

in [10]. This prevents the symbols of the transposes to be even bounded, much less
in the same class. In general the operators in BS0

1,1 are not bounded on Lebesgue

spaces because T ∗1 and T ∗2 fail to satisfy the BMO conditions.
Also paralleling the linear case there is a substitute Sobolev space bound for

BS0
1,1. One of the most powerful and commonly used bilinear estimates in PDEs

is the generalized Leibniz rule for fractional derivatives of the product of two func-
tions, as in the works by Kato and Ponce [47]; Christ and Weinstein [19]; and Kenig,
Ponce, and Vega [48]. The following is a variable coefficient version involving BS0

1,1.

Theorem 2.3. ([10]) Every operator with a symbol in BS0
1,1 maps Lp

s ×L
q
s into Lr

s

for 1/p+ 1/q = 1/r, 1 < r <∞, and s > 0 and, moreover, it satisfies the estimate

‖T (f, g)‖Lr
s(R

n) ≤ C(‖f‖Lp
s(Rn)‖g‖Lq(Rn) + ‖f‖Lp(Rn)‖g‖Lq

s(Rn)). (2.6)

For another bilinear version involving (constant coefficient) mixed derivatives
and the relation to multiparameter operators see [60]. We also recall that for trans-
lation invariant operators boundedness on Lebesgue spaces automatically gives
boundeness on Sobolev spaces.

Theorem 2.4. ([8]) If the symbol σ of a bilinear operator Tσ is x-independent and
Tσ is bounded from Lp × Lq into Lr, with 1/p+ 1/q = 1/r, r > 1, then Tσ is also
bounded from Lp

s×L
q
s into Lrs

s , where 1/rs = 1/p+1/q−s/n and 0 ≤ s ≤ (n/p∧n/q)
(where a ∧ b denotes the largest integer strictly smaller than min(a, b)).

This theorem applies in particular to the bilinear Hilbert transform and was mo-
tivated by bilinear estimates for derivatives as used in the collaboration with Brown
[15] on the inverse conductivity problem. See that reference for the motivation.
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It should be pointed out that not everything about classical linear pseudodif-
ferntial operators translates to the bilinear setting. For example, unlike the linear
case, the class BS0

0,0 is anomalous too. It was shown in [11] that not every op-

erator in BS0
0,0 maps L2 × L2 into L1. Hence, there is no direct analog of the

Calderón-Vaillancourt theorem [16], [17] for smooth linear symbols with bounded
derivatives. Alternative substitutes were investigated in [11] too. Other results for
the Coifman-Meyer classes on other functions spaces can be found in the works
by Coifman, Dobyinsky and Meyer [20], Youssfi [68], and Bényi [2], [3]. A more
general symbolic calculus for the transposes of operators in this classes has been
developed by Bényi, Maldonado, Naibo, and Torres [7]. For multilinear pseudodif-
ferential operators and modulation spaces see the works of Bényi, Gröchenig, Heil,
and Okoudjou [5] and Bényi and Okoudjou [9].

In light of Leibniz’s rule it is natural in the research of bilinear pseudodifferential
operators to study a symbolic calculus generated by composition of linear and
bilinear operators. Surprisingly, such composition reveals new classes of symbols.
For θ in (−π/2, π/2] let BSt

ρ,δ; θ denote the classes of symbols satisfying estimates
of the form

|∂α
x ∂

β
ξ ∂

γ
ησ(x, ξ, η)| ≤ Cαβγ;θ(1 + |η − ξ tan θ|)t+δ|α|−ρ(|β|+|γ|) (2.7)

(with the convention that θ = π/2 corresponds to the decay in terms of 1+|ξ| only).
For example, the composition of a classical linear symbols in the Hörmander class
S0

1,0, i.e.

|∂β
x∂

α
ξ σ(x, ξ)| ≤ Cαβ(1 + |ξ|)−α, (2.8)

with bilinear ones in BS0
1,0 gives rise to operators in BS0

1,0;−π/4.

Once again, symmetric considerations motivated the need to establish a good
understanding of the the transposes of operators in the classes BSt

ρ,δ; θ. This was

accomplished in [8] for T ∈ BS0
1,0; θ with explicit formulae for T ∗1 and T ∗2. The

result is briefly stated here as follows.

Theorem 2.5. ([8]) The collection of classes of bilinear pseudodifferential opera-
tors {BS0

1,0; θ}θ is closed under transpositions.

For the rest of this section only the space dimension n = 1 will be considered.
We will state boundedness results for some operators in these new classes again
in the form of another bilinear T1-Theorem. In particular the result will apply
to operators in the class BS1,0; π/4 obtained by staring with a linear symbol a ∈

S0
1,0, and defining σ(x, ξ, η) = a(x, ξ − η). In fact, at a formal level the change

in linear symbols and multipliers from ξ to |ξ| + |η|, respectively ξ − η, leads
to bilinear Calderón-Zygmund operators, respectively variable coefficient bilinear
Hilbert transforms. We illustrate this with Table 1, which puts in evidence that
both classes can be seen as generalizations of the linear Calderón-Zygmundtheory.

Like the bilinear Hilbert transform, operators in BS0
1,0; π/4 of the form

T (f1, f2) =

∫

R2

σ(x, ξ − η)f̂1(ξ)f̂2(η)e
ix·(ξ+η)dξdη (2.9)
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Operator Symbol Type

(linear) Hilbert Transform sign(ξ)

(linear) Hörmander–Mihlin multipliers |∂αm(ξ)| ≤ Cα|ξ|
−α

(linear) Classical PDOs (S0

1,0) |∂β
x ∂α

ξ σ(x, ξ)| ≤ Cαβ(1 + |ξ|)−α

Bilinear Hilbert Transform sign(ξ − η)

Bilinear Singular Multipliers |∂αm(ξ − η)| ≤ Cα|ξ − η|−α

Bilinear Coifman–Meyer PDOs (BS0

1,0) |∂β
x ∂α

ξ,ησ(x, ξ, η)| ≤ Cαβ(1 + |ξ| + |η|)−|α|

Variable Coeff. Bilinear Hilbert Transforms |∂β
x∂α

ξ,ησ(x, ξ − η)| ≤ Cαβ(1 + |ξ − η|)−|α|

Table 1. From the linear Hilbert transform to the x-dependent bilin-
ear Hilbert transforms

trivially satisfy the modulation invariance

〈T (f1, f2), f3〉 = 〈T (eiz·f1, e
iz·f2), e

−i2z·f3〉 (2.10)

for all z in R and all Schwartz functions fj. A simple computation inverting the
Fourier transforms of the functions in (2.9) leads to a kernel representation of the
operators as in (1.5). Note that the operators in (1.5) always satisfy the modula-
tion invariance for functions with disjoint supports, but for arbitrary functions the
condition needs to be imposed. Other directions of modulation invariance could be
considered too as long as one avoids the same degenerate directions for the bilinear
Hilbert transform. See [4] for more details. This modulation invariance is crucial
in the analysis of operators given by a kernel representation and permits to use in
the study of the operators the time-frequency techniques developed in [52], [53],
[35], [36], [61], but adapted to a variable coefficient situation.

We can now state a simplified version of the new modulation invariant bilinear
T1-Theorem.

Theorem 2.6. ([4]) Let T : S(R) × S(R) → S′(R) be a continuous bilinear
operator satisfying the modulation invariance (2.10). Assume further that for f1
and f2 with disjoint supports

T (f1, f2)(x) =

∫

R

k(x, t)f1(x− t)f2(x+ t) dt,

where for t 6= 0

|∂αk(x, t)| ≤ C|t|−(1+|α|) |α| = 0, 1.

Then T , T ∗1, and T ∗2 are bounded from L4 × L4 into L2 if and only if they
satisfy the restricted boundedness conditions

|〈T (ϕI , ψI), f〉| + |〈T ∗1(ϕI , ψI), f〉| + |〈T ∗1(ϕI , ψI), f〉| ≤ C|I|−1/2‖f‖L2, (2.11)

for all L2-normalized bump functions† ϕI and ψI supported on an interval I.
Moreover, in such a case, T maps Lp × Lq into Lr for all 1 < p, q < ∞ and
1/r = 1/p+ 1/q < 3/2.

†A normalized bump has the form ϕI (x) = |I|−1/2ϕ0((x − x0)/|I|) where ϕ0 is supported in
the unit interval and all its derivatives up to a certain order are bounded by a fixed constant.
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We note that this version of the theorem is modeled after a formulation of the
linear T1-Theorem by Stein in [65]. It it shown there, that in the linear case, the
classical conditions involving BMO and weak-boundedness property can also be
combined into the equivalent ones

|〈T (ϕI), f〉| + |〈T ∗(ϕI), f〉| ≤ C‖f‖L2

for all normalized bumps. A version of the modulation invariant theorem involving
T (1, 1), etc. and a weak-boundedness property is given in [4] too.

We also note by comparison with Theorem 2.1 that the range of exponents is
smaller in Theorem 2.6. In fact, r > 2/3 and not 1/2. This is the same known range
of exponents for the bilinear Hilbert transform from the work of Lacey and Thiele.
It remains an open problem (even for the bilinear Hilbert transform) whether the
range can be pushed to 1/2. Moreover, if one replace in Theorem 2.6 the conditions
on the derivative of the kernel by the usual Lipschitz type one, then the range of
exponents obtained may be further reduced. See [4] for more details.

Using Theorem 2.5 it is easy to see that operators in BS0
1,0; π/4 satisfy (2.11), so

the modulation invariant T1-Theorem immediately applies to the operators of the
form (2.9).

It also remains an open problem whether the modulation invariant condition
can be removed. Recently Bernicot [13] showed that the condition is not needed
for smooth pseudodifferential operators, but the minimal conditions on the kernel
assumed in Theorem 2.6 are not enough to obtain smooth symbols or even a pseu-
dodifferntial representation with a function as symbol. For example, the theorem
applies to operators given by kernels like the bilinear Calderón commutators

p.v.

∫
f(x+ t)g(x− t)

(A(x + t) −A(x))m

tm+1
dt (2.12)

with ‖A′‖∞ < C, whose symbols only exist as formal distributions.
Further progress on classes of bilinear pseudodifferential operators related to

the new modulation invariant bilinear T1-Theorem can be found in the recent
collaboration with Bernicot [14] where the class BS0

1,1; π/4 is studied.

Complete higher multilinear version or higher dimensional versions of the theory
for modulation invariant operators, however, have not been achieved yet. Some
work in this direction was done by Pramanik and Terwilleger in [64]. In two space
dimensions, progress for operators analogous of the bilinear Hilbert transform were
very recently produced by Demeter and Thiele [29].

3. Weighted estimates for multilinear Calderón-Zygmund operators

The Muckenhoupt [59] Ap classes of weights characterize the boundedness of the
Hardy-Littlewood maximal function,

Mf(x) = sup
Q∋x

1

|Q|

∫

Q

|f(y)|dy,
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on weighted Lp(w) spaces. Recall that w is in Ap with 1 < p < ∞ if for some
constant C and all cubes Q,

(
1

|Q|

∫

Q

w dx

) (
1

|Q|

∫

Q

w1−p′

dx

)p−1

< C,

w ∈ A1 if
1

|Q|

∫

Q

w dx ≤ C essinfQw,

and A∞ =
⋃
Ap. The classes also characterize the weights w for which the Hlbert

transform is bounded on Lp(w), as shown by Hunt, Muckenhoupt and Wheeden
[46]. Through the work of Coifman and Fefferman [21] it is known that the Ap

weights are the right weights for the boundedness of general linear Calderón-
Zygmund operators too. Once a multlinear Calderón-Zygmund theory was de-
veloped it was natural then to investigate weighted estimates in the new setting.

In a first approach to several multilinear problems, it appears natural to pre-
dict that the role played by the Hardy-Littlewood maximal function in the linear
Calderón-Zygmundtheory, would be played in the m-linear version of the theory
by the product operator

M (m)(f1, . . . , fm) =
m∏

j=1

M(fj).

In fact, several maximal and weighted estimates were obtained in [45] and [63]
using such product operator to control the operators in the m-linear version of
Theorem 2.1. We will called such operators m-linear Calderón-Zygmund operators.

Theorem 3.1. ([45]) Let T be an m-linear Calderón-Zygmund operator and let
1 < p1, . . . , pm < ∞, and 1

p1
+ · · · + 1

pm
= 1

p . If w ∈ Ap0
, p0 = min{p1, · · · , pm},

then

T : Lp1(w) × · · · × Lpm(w) → Lp(w).

The result was first proved using a good-λ inequality and establishing the esti-
mate

‖T (f1, . . . , fm)‖Lp(w) ≤ C

m∏

j=1

‖M(fj)‖Lp(w). (3.1)

This was then improved using a pointwise inequality. Recall the Fefferman-Stein
sharp maximal function,

M#f(x) = sup
x∈Q

1

|Q|

∫

Q

|f(y) − fQ| dy,

and also for δ > 0

Mδ(f) = M(|f |δ)1/δ

and

M#
δ f = M#(|f |δ)1/δ.

Rev. Un. Mat. Argentina, Vol 50-2



MULTILINEAR OPERATORS WITH VARIABLE COEFFICIENTS 167

Theorem 3.2. ([63]) Let T be an m-linear Calderón-Zygmund operator and let
0 < δ < 1/m. Then

M#
δ (T (f1, . . . , fm))(x) ≤ C

m∏

j=1

Mfj(x) (3.2)

for all bounded fj with compact support.

This pointwise estimate is the multlinear version of

M#
δ (T (f ))(x) ≤ CM(f )(x) (3.3)

for a linear Calderón-Zygmundoperator and 0 < δ < 1 obtained by Alvarez and
Pérez [1]. Using Thereom 3.2 and Fefferman and Stein inequality [31] it is easy to
obtain the estimate

∫
|T (f1, . . . , fm)(x)|pw(x) dx ≤ C

∫ ( m∏

j=1

M(fj)(x)

)p

w(x) dx,

which holds for any A∞ weight. From this it is also easy to see that Theorem 3.1
can be extended to

T : Lp1(w1) × · · · × Lpm(wm) → Lp(ν), (3.4)

where ν =
∏m

j=1 w
p/pj

j and wj is in Apj
. These type of weights were used by

Grafakos and Martell to develop a general multilinear extrapolation theory analo-
gous to the linear one [39]. Weighted results for a class of less regular Calderón-
Zygmundoperators of a so-called type w were investigated by Maldonado and Naibo
[56].

Nevertheless, despite all these results it was not clear whether the control of
m-linear Calderón-Zygmundoperators by M (m) was really optimal. Recently, the
answer to this question has come in the article [54]. This work has put in evidence
that the right maximal function to consider is the smaller one

M(f1, . . . , fm)(x) = sup
Q∋x

m∏

ij=1

1

|Q|

∫

Q

|fi(yj)|dyj .

Since clearly M is pointwise controlled by M (m) the boundeness of the new max-
imal function on Lebesgue spaces is immediate. A more careful analysis than the
one used in Theorem 3.2 gives the following.

Theorem 3.3. ([54]) Let T be an m-linear Calderón-Zygmund operator and let
0 < δ < 1/m. Then

M#
δ (T (f1, . . . , fm))(x) ≤ C

m∏

j=1

Mfj(x) (3.5)

for all bounded fj with compact support. As a consequence, for all 0 < p <∞ and
all w ∈ A∞,

∫
|T (f1, . . . , fm)(x)|pw(x) dx ≤ C

∫ ( m∏

j=1

M(f1, . . . , fm)(x)

)p

w(x) dx. (3.6)
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The smaller multi(sub)linear maximal function M uncovered the existence of
a class of weights for m-linear Calderón-Zygmundoperators much larger than the
product of the classical Muckenhoupt Ap classes used in [45] and [63]. We first
start with the weak-type characterization of the two-weight estimate for M.

We will use the notation ~f = (f1, . . . , fm) for functions and ~w = (w1, . . . , wm)
for weights. For m exponents p1, . . . , pm, and p such that 1

p = 1
p1

+ · · · + 1
pm

we

will denote ~P = (p1, . . . , pm) and also write ~1 = (1, . . . , 1) and ~P ≥ ~Q if pi ≥ qi,
i = 1, . . . ,m.

Theorem 3.4. ([54]) Let ~P ≥ ~1 and ~w = (w1, . . . , wm) and u be weights. Then
the estimate

‖M(~f )‖Lp,∞(u) ≤ C

m∏

j=1

‖fj‖Lpj (wj)

holds if and only if

sup
Q

( 1

|Q|

∫

Q

u
) 1

p

m∏

j=1

( 1

|Q|

∫

Q

w
1−p′

j

j

) 1

p′
j <∞.

It is understood that
( 1

|Q|

∫

Q

w
1−p′

j

j

) 1

p′
j = (inf

Q
wj)

−1

when pj = 1. Note that for m = 1 this is the usual two-weight Ap condition.
Differentiation suggests the following one-weight condition. Given ~w = (w1, . . . ,

wm), let u~w =
∏m

j=1 w
p/pj

j . For ~P ≥ ~1, we say that ~w satisfies the A~P condition if

sup
Q

( 1

|Q|

∫

Q

u~w

) 1
p

m∏

j=1

( 1

|Q|

∫

Q

w
1−p′

j

j

) 1

p′
j <∞ (3.7)

(with obvious interpretations if some pj = 1). This definition clearly becomes the
usual Ap condition if m = 1

Using Hölder’s inequality it is not hard to see that if each wj is in Apj
then the

corresponding ~w is in A~P , so
∏m

j=1 Apj
⊂ A~P . This inclusion, however, is strict.

Examples are given in [54]. Also using Hölder’s inequality one can verify that if wj

is in Apj
then u~w is in Amp. It turns out that something more general happens.

Theorem 3.5. ([54]) The vector weight ~w is in A~P if and only if w
1−p′

j

j is in Amp′
j

and u~w is in Amp.

Note that this reduces to the usual dual weight condition if m = 1. It is also
important to note that although the wj may not be usual Ap weights, the weights

w
1−p′

j

j and u~w always are. This a crucial result that allows to prove the following
one-weight strong-type characterization of the boundedness of M.
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Theorem 3.6. ([54]) Let ~w = (w1, . . . , wm) be a vector of weights and ~P > ~1.
Then the inequality

‖M(~f )‖Lp(u~w) ≤ C

m∏

j=1

‖fj‖Lpj (wj) (3.8)

holds if and only if ~w satisfies the A~P condition.

Since by Theorem 3.5, for ~w = (w1, . . . , wm) in A~P we have that u~w is an A∞

weight, Thereom 3.3 gives new weighted norm inequalitties for m-linear Calderón-
Zygmundoperators.

Theorem 3.7. ([54]) Let T be an m-linear Calderón-Zygmund operator and ~w ∈

A~P with ~P > ~1. Then,

‖T (~f )‖Lp(u~w) ≤ C
m∏

j=1

‖fj‖Lpj (wj). (3.9)

An endpoint weighted estimate m-linear analogous to (2.3) holds too. See again
[54] for details.

That theA~P classes are the right classes form-linear Calderón-Zygmundoperators
is given by a partial converse to Theorem 3.7. The A~P condition is at least neces-
sary for the following particular operators.

For i = 1, · · · , n, the m-linear i-th Riesz transform is defined by

Ri(~f ) (x) = p.v.

∫

(Rn)m

∑m
j=1(xi − (yj)i)

(
∑m

j=1 |x− yj |
2
)

nm+1

2

~f(~y)d~y. (3.10)

Theorem 3.8. ([54]) If the estimate (3.9) holds for all of the m-linear Riesz trans-

forms Ri(~f ), then ~w ∈ A~P .

We want to mention one application of the weighted theory form-linear Calderón-
Zygmundoperators to the unweighted boundedness of certain commutators. Recall
that in the linear case the commutator of a linear Calderón-Zygmundoperator with
a function b in BMO,

Tb(f)(x) = [b, T ]f(x) = b(x)Tf(x) − T (bf)(x).

This was introduced by Coifman, Rochberg and Weiss [26], who showed that this
operator satisfies

[b, T ] : Lp −→ Lp,

for all 1 < p < ∞. Such a result can be proved using the weighted estimates for
T ‡. Similarly in the multlinear setting one can consider for an m-linear Calderón-
Zygmundoperator

T j
~b
(~f) = bjT (f1, · · · , fj , · · · , fm) − T (f1, · · · , bjfj, · · · , fm)

‡A general version of this result was described by C. Pérez in his course at CIMPA.
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and

T~b (f1, · · · , fm) =
m∑

j=1

T j
~b
(~f) (3.11)

We will refer to such operator as m-linear commutator. Using the weighted esti-
mates from [45] it was shown in [63] that if each bj is in BMO, then the m-linear
commutator satisfies

T~b : Lp1 × · · · × Lpm −→ Lp (3.12)

for all 1 < p1, . . . pm < ∞ and 1 < p < ∞ with 1
p1

+ · · · + 1
pm

= 1
p . This estimate

was not the best expected, since it does not include the larger range of exponents
that we have seen in other related results. That is, based on the results of the linear
theory for commutators and the multilinear one for Calderón-Zygmundoperators,
one should expect (3.12) to hold for 1/m < p <∞.

The gap for 1/m < p ≤ 1 was finally resolved in [54] in a very general way. The
idea is to prove again a pointwise estimate using an appropriate maximal operator
ML(log L) defined by

ML(logL)(~f)(x) = sup
x∈Q

m∏

j=1

‖fj‖L(logL),Q
§.

Theorem 3.9. ([54]) Let T be a Calderón-Zygmund operator, 0 < δ < 1/m and

0 < ǫ. If ~b ∈ BMOm, then there exists a constant C > 0 such that

M#
δ (T~b(

~f))(x) ≤ C‖~b‖BMOm

[
ML(logL)(~f)(x) +Mδ+ǫ(T (~f))(x)

]

From this pointwise estimate one can obtain the following strong type one.

Theorem 3.10. ([54]) If ~w ∈ A~P with ~P > ~1, then

‖T~b(
~f)‖Lp(u~w) ≤ C‖~b‖BMOm

m∏

j=1

‖fj‖Lpj (wj)

In particular,
T~b : Lp1 × · · · × Lpm → Lp,

for all 1 < p1, . . . , pm <∞, and 1
p1

+ · · · + 1
pm

= 1
p .

In the linear case, Tb does not satisfy a weak-L1 estimate like a Calderón-
Zygmund operator. It satisfies though a weak-L(logL) estimate as proved by Pérez
in [62]. An analogous estimate also holds in the multilinear setting.

Theorem 3.11. ([54]) Let
→

b∈ BMOm. Then there exits a constant C > 0, such
that, for any t > 0,

|{x ∈ Rn : |T→

b
(~f)(x)| > tm}| ≤ C

m∏

j=1

(∫

Rn

Φ(
|fj(x)|

t
)dx

)1/m

,

where Φ(t) = t(1 + log+ t).

§The definition of this norm requires the use of Orlicz spaces; we skip the details for brevity
and refer once again to [54].
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In the linear (m = 1) case, the above estimate can be used as an endpoint
together with a strong bound for some p > 1 to interpolate. In a very recent
collaboration of the author with Grafakos, Liu and Pérez [40] the same was achieved
in the bilinear case, providing an alternative proof for the boundeness of the bilinear
commutator in the whole range 1/2 < p <∞.

We would like to conclude mentioning that the new multilinear weighted theory
has generated further research on the subject. In particular, Moen has looked re-
cently at weighted estimates for multilinear versions of fractional singular integrals
and fractional maximal functions. We remit the interested reader to [58] for details
and further references to related work.
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[9] A. Bényi and K. Okoudjou, Modulation space estimates for multilinear pseudodifferential
operators, Studia Math. 172 (2006), 169-180.
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