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REMARKS ON SPECTRAL MULTIPLIER THEOREMS

ON HARDY SPACES

ASSOCIATED WITH SEMIGROUPS OF OPERATORS

JACEK DZIUBAŃSKI AND MARCIN PREISNER

Abstract. Let L be a non-negative, self-adjoint operator on L2(Ω), where
(Ω, d, µ) is a space of homogeneous type. Assume that the semigroup {Tt}t>0

generated by −L satisfies Gaussian bounds, or more generally Davies-Gaffney
estimates. We say that f belongs to the Hardy space H1

L if the square function

Shf(x) =

 

ZZ

Γ(x)
|t2Le−t2Lf(y)|2

dµ(y)

µ(Bd(x, t))

dt

t

!1/2

belongs to L1(Ω, dµ), where Γ(x) = {(y, t) ∈ Ω × (0,∞) : d(x, y) < t}. We
prove spectral multiplier theorems for L on H1

L.

1. Introduction.

A classical Hörmander multiplier theorem [37] asserts that if m is a bounded
function on Rd such that for some β > d/2 and any radial function η ∈ C∞

c ,
supp η ⊂ {ξ ∈ Rd : 2−1 ≤ |ξ| ≤ 2}, one has

sup
t>0

‖η( · )m(t · )‖W 2,β(Rd) ≤ Cη,

where ‖ · ‖W 2,β(Rd) is the standard Sobolev norm on Rd, then the multiplier

operator f 7→ F−1(mFf), initially defined on Lp(Rd) ∩ L2(Rd), is bounded on
Lp(Rd) for 1 < p < ∞, and is of weak-type (1,1). Here F denotes the Fourier
transform.

Let (Ω, d(x, y)) be a metric space equipped with a positive measure µ. We
assume that (Ω, d, µ) is a space of homogeneous type in the sense of Coifman-
Weiss [9], that is, there exists a constant C > 0 such that

µ(Bd(x, 2t)) ≤ Cµ(Bd(x, t)) for every x ∈ Ω, t > 0, (1.1)

where Bd(x, t) = {y ∈ Ω : d(x, y) < t}. The condition (1.1) implies that there
exist constants C > 0 and q > 0 such that

µ(Bd(x, st)) ≤ C0s
qµ(Bd(x, t)) for every x ∈ Ω, t > 0, s > 1. (1.2)
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202 JACEK DZIUBAŃSKI AND MARCIN PREISNER

Of course we wish to get q as small as possible even at the expense of large C0.
Let {Tt}t>0 be a semigroup of linear operators on L2(Ω, dµ) generated by −L,

where L is a non-negative, self-adjoint operator which is injective on its domain.
Assume the operators Tt have the following form

Ttf(x) =

∫

Ω

Tt(x, y)f(y)dµ(y), (1.3)

where the kernels Tt(x, y) satisfy Gaussian bounds, that is, there exist constants
C0, c0 > 0 such that for every x, y ∈ Ω, t > 0, we have

|Tt(x, y)| ≤ C0

V (x,
√
t)

exp

(

−d(x, y)2

c0t

)

, (1.4)

where here and subsequently V (x, t) = µ(Bd(x, t)). The estimate (1.4) implies that
for every k ∈ N there exist constants Ck, ck > 0 such that

∣

∣

∣

∣

∂k

∂tk
Tt(x, y)

∣

∣

∣

∣

≤ Ck

tkV (x,
√
t)

exp

(

−d(x, y)2

ckt

)

for x, y ∈ Ω, t > 0. (1.5)

The constants Ck, ck in (1.5) depend only on k and the constants C,C0, q, c in
(1.2) and (1.4).

For a suitable function f (e.g., from L2(Ω)) we consider the square function Shf
associated with L defined by

Shf(x) =

(

∫∫

Γ(x)

|t2LTt2f(y)|2 dµ(y)

V (x, t)

dt

t

)1/2

, (1.6)

where Γ(x) = {(y, t) ∈ Ω × (0,∞) : d(x, y) ≤ t}.
Following [2], [3], [36] (see also [4], [23]) we define the Hardy space H1

L =
H1

L,Sh
(Ω) as the completion of {f ∈ L2(Ω) : ‖Shf‖L1(Ω) < ∞} in the norm

‖f‖H1
L

= ‖Shf‖L1(Ω).

It was proved in Hofmann, Lu, Mitrea, Mitrea, Yan [36] that the space H1
L,

where −L generates a semigroup having Gaussian bounds, admits the following
atomic decomposition.

Let M ≥ 1, M ∈ N. A function a is a (1, 2,M)-atom for H1
L if there exist a ball

B = Bd(y0, r) = {y ∈ Ω : d(y, y0) < r} and a function b ∈ D(LM ) such that

a = LM b; (1.7)

suppLkb ⊂ B, k = 0, 1, ...,M ; (1.8)

‖(r2L)kb‖L2(Ω) ≤ r2Mµ(B)−1/2, k = 0, 1, ...,M. (1.9)

The atomic norm ‖f‖H1
L-atom is defined by

‖f‖H1
L-atom = inf

∑

j

|λj |,

where the infimum is taken over all representation f =
∑

j λjaj , where aj are

(1, 2,M)-atoms for H1
L, λj ∈ C. Theorem 7.1 of [36] asserts that there exists a
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MULTIPLIERS FOR HARDY SPACES 203

constant C > 0 such that

C−1‖f‖H1
L
≤ ‖f‖H1

L-atom ≤ C‖f‖H1
L
. (1.10)

Let

Lf =

∫ ∞

0

λdEL(λ)f (1.11)

be the spectral resolution of L.
Our first goal in this paper is to present a simple proof of the following spectral

multiplier theorem.

Theorem 1.12. Let m be a bounded function defined on (0,∞) such that for some
real number α > q/2 and any nonzero function η ∈ C∞

c (2−1, 2) there exists a
constant Cη such that

sup
t>0

‖η( · )m(t · )‖W∞,α(R) ≤ Cη, (1.13)

where ‖F‖W p,α(R) = ‖(I−d2/dx2)α/2F‖Lp(R). Then the spectral multiplier operator

m(L) =

∫ ∞

0

m(λ)dEL(λ), (1.14)

maps (1, 2, 1)-atoms for H1
L into H1

L. Moreover, there exists a constant C > 0 such
that

‖m(L)a‖H1
L
≤ C for every (1, 2, 1)-atom. (1.15)

Remark 1.16. If we additionally assume that for every y ∈ Ω there exist constants
κ > 0 and c > 0 such that µ(Bd(y, s)) ≥ csκ for s > 1, then the operator m(L)
extends uniquely to a bounded operator on H1

L (see Section 5 for details).

Remark 1.17. It turns out that if we replace (1.13) by the stronger condition

sup
t>0

‖η( · )m(t · )‖W 2,α(R) ≤ Cη, (1.18)

with some α > (q + 1)/2, then the multiplier theorem holds for Hardy spaces
associated with more general semigroups, that is, semigroups satisfying Davies-
Gaffney estimates. This will be discussed in Section 4. We present two seemingly
similar theorems with two different proofs. The first proof, thanks to [34], could be
also adapted to cover the case of a broader class of semigroups with integral kernels
of a very mild decay. The other one does not even require the existence of integral
kernels of the semigroups under consideration, however depends very much on the
finite speed propagation of the wave equation associated with generators which is
in fact equivalent to Davies-Gaffney estimates, see, e.g., [45], [10].

Spectral multiplier theorems on various spaces attracted attention of many au-
thors (see, for example, [1], [6], [7], [11], [12], [15], [18], [19], [30], [32], [33], [35],
[40], [43], [44], [46], and references there). E. M. Stein [46] proved that if −A is
the infinitesimal generator of a symmetric diffusion semigroup and m is of Laplace
transform type, then m(A) is bounded on Lp, 1 < p <∞. E. Stein and A. Hulan-
icki (see [30]) noticed that if −A is a sublaplacian on a stratified Lie group G, then
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204 JACEK DZIUBAŃSKI AND MARCIN PREISNER

the convolution kernel of the operator m(A) satisfies Calderón-Zygmund type esti-
mates. This fact together with atomic decompositions of the Hardy spaces Hp(G)
leads to a spectral multiplier theorem on these spaces (see [30, Theorem 6.25]).
The finite speed propagation of the wave equation was used by Sikora [44] and [45]
for proving Lp bounds for certain operators. Actually, the technique of the proof
of Lemma 4.8 is taken from [44].

The development of the theory of real Hardy spaces in Rd had its origin in works
Stein-Weiss [47] and Fefferman-Stein [29]. An important contribution to the theory
were atomic decompositions proved by Coifman [8] for d = 1 and Latter [38] for
d > 1. The extension of Hp on the spaces of homogenous type is due to Coifman-
Weiss [9] (see also [43]). Hardy spaces associated with various semigroups of linear
operators were considered by many authors. For their properties and equivalent
characterizations we refer the reader to [2]-[5], [13]-[28], [31], [36], [41], [42].

2. Functional calculi

For β ≥ 0 let ωβ(x, y) = (1 + d(x, y))β . The function is submultiplicative, that
is, ωβ(x, y) ≤ ωβ(x, z)ωβ(z, y).

For an integral kernel k(x, y) and β > 0 we define

‖k(x, y)‖ω(β) = sup
x∈Ω

∫

|k(x, y)|(1 + d(x, y))βdµ(y)

+ sup
y∈Ω

∫

|k(x, y)|(1 + d(x, y))βdµ(x).

The following theorem is a consequence of (1.4) and results of W. Hebisch [34,
Theorem 2.10].

Theorem 2.1. Let (Ω, d, µ) and {Tt}t>0 satisfy (1.2) and (1.4) respectively. For
α, β > 0 with α > β + q/2 there exists a constant C′ > 0 such that for every
function η ∈ W∞,α(R) with supp η ⊂ (1/4, 4) the multiplier operator

η(L)f =

∫ ∞

0

η(λ) dEL(λ)f

is of the form

η(L)f(x) =

∫

Ω

η(L)(x, y)f(y) dµ(y)

with

‖η(L)(x, y)‖ω(β) ≤ C′‖η‖W∞,α(R). (2.2)

The constant C′ in (2.2) depends only on α, β and the constants C, q from (1.2)
and constants C0, c0 from (1.4).

In this paper we shall use the following scaling argument. For τ > 0, let
d{τ}(x, y) = τ−1/2d(x, y). Then the space (Ω, d{τ}(x, y), µ) is the space of ho-
mogeneous type such that

Vτ (x, st) = µ(Bd{τ}(x, st)) ≤ Csqµ(Bd{τ}(x, t)), s > 1, (2.3)
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with the same constants C, q as in (1.2). Similarly, let L{τ} = τL and {T {τ}
t }t>0 be

the semigroup generated by −L{τ}. Clearly, T
{τ}
t (x, y) = Tτt(x, y) are the integral

kernels of T
{τ}
t . Hence, for k = 0, 1, 2, ..., we have

∣

∣

∣

∣

∂k

∂tk
T

{τ}
t (x, y)

∣

∣

∣

∣

≤ Ck

tkVτ (x,
√
t)

exp

(

−d
{τ}(x, y)2

ckt

)

for x, y ∈ Ω, t > 0, (2.4)

with the same constants Ck, ck as in (1.4) and (1.5) independent of τ .
Therefore, from Theorem 2.1 we conclude that
∫

Ω

|η(τL)(x, y)|
(

1 +
d(x, y)√

τ

)β

dµ(y) +

∫

Ω

|η(τL)(x, y)|
(

1 +
d(x, y)√

τ

)β

dµ(x)

≤ C‖η‖W∞,α(R),

(2.5)

provided supp η ⊂ (4−1, 4), α > β + q/2.

Proposition 2.6. Assume that m satisfies the assumptions of Theorem 1.12. For
N = 1, 2, we set

Φ
〈N〉
t (λ) = (t2λ)Ne−t2λm(λ).

Then there exist β > 0 and C′′ > 0 such that
∫

Ω

|Φ〈N〉
t (L)(x, y)|

(

1 +
d(x, y)

t

)β

dµ(x) ≤ C′′, (2.7)

∫

Ω

|Φ〈N〉
t (L)(x, y)|

(

1 +
d(x, y)

t

)β

dµ(y) ≤ C′′. (2.8)

Proof. It suffices to prove (2.7) for t = 1 and then use the scaling argument. Fix a
C∞

c (1
2 , 2) function ψ such that

∑

j∈Z

ψ(2−jλ) = 1 for λ > 0. (2.9)

Denote nj(λ) = ψ(2−jλ)λNe−λm(λ), ñj(λ) = nj(2jλ) = ψ(λ)(2jλ)Ne−2jλm(2jλ).
Clearly, supp ñj ⊂ (2−1, 2) and

‖ñj‖W∞,α(R) ≤
{

C2−j for j ≥ 0;

C2jN for j < 0.
(2.10)

Let 0 < β ≤ 1/2 be such that α > β + q/2. Applying (2.5) combined with (2.10)
we obtain

∫

Ω

|nj(L)(x, y)|
(

1 + 2j/2d(x, y)
)β

dµ(x) ≤
{

C2−j for j ≥ 0;

C2jN for j < 0,
(2.11)

with the same bounds when integrating with respect to dµ(y). Obviously,
∫

Ω

|Φ〈N〉
1 (L)(x, y)| dµ(x) ≤

∑

j∈Z

∫

Ω

|nj(L)(x, y)| dµ(x) ≤ C′. (2.12)
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Moreover, from (2.11) we also deduce that
∫

Ω

|Φ〈N〉
1 (L)(x, y)|d(x, y)β dµ(x) ≤

∑

j∈Z

∫

Ω

|nj(L)(x, y)|d(x, y)β dµ(x)

≤
∑

j≥0

C2−j−β/2 +
∑

j<0

C′2jN−jβ/2 ≤ C′,
(2.13)

which implies (2.7) for t = 1. To prove (2.8) we proceed in the same way. �

Lemma 2.14. For N = 1 or N = 2, let

Θ
〈N〉
j (x, y) = sup

2j≤t<2j+1

sup
d(x,x′)<t

|Φ〈N〉
t (x′, y)|. (2.15)

Then there exist constants C′ > 0 and β > 0 such that

∫

Ω

Θ
〈N〉
j (x, y)

(

1 +
d(x, y)

2j

)β

dµ(x) ≤ C′. (2.16)

Proof. Fix 2j ≤ t < 2j+1 and let d(x, x′) < t. Since

Φ
〈N〉
t (λ) = (21−jt)2N exp(−(t2 − 22(j−1))λ)Φ

〈N〉
2j−1 (λ)

and V (x′, (t2 − 22(j−1))1/2) ∼ V (x, 2j) for d(x, x′) < t, we have

|Φ〈N〉
t (x′, y)| = (21−jt)2N

∣

∣

∣

∣

∫

Ω

Tt2−22(j−1)(x′, z)Φ
〈N〉
2j−1(z, y) dµ(z)

∣

∣

∣

∣

≤ C′′

∫

Ω

exp(−d(x′, z)2/c0(t2 − 22(j−1)))

V (x′, (t2 − 22(j−1))1/2)
|Φ〈N〉

2j−1(z, y)| dµ(z)

≤ C

∫

Ω

exp(−d(x, z)2/c′22j)

V (x, 2j)
|Φ〈N〉

2j−1 (z, y)| dµ(z).

(2.17)

Using (2.17) and Proposition 2.6 we obtain

∫

Ω

Θ
〈N〉
j (x, y)

(

1 +
d(x, y)

2j

)β

dµ(x)

≤ C

∫

Ω

∫

Ω

exp(− d(x,z)2

c′22j )

V (x, 2j)
|Φ〈N〉

2j−1(z, y)|
(

1 +
d(x, z)

2j

)β (

1 +
d(z, y)

2j

)β

dµ(z) dµ(x)

≤ C′.

�

3. Proof of Theorem 1.12

It suffices to establish that there exists a constant C such that for every (1, 2, 1)-
atom a for H1

L we have

‖Sh(m(L)a)‖L1(Ω) ≤ C. (3.1)
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Our proof of (3.1) borrows ideas from [17]. Let a be a (1, 2, 1)-atom for H1
L and

let b and B = Bd(y0, r) be as in (1.7)–(1.9). Since Sh is bounded on L2(Ω), we
have

‖Shm(L)a‖L1(Bd(y0,2r),dµ) ≤ C′‖m(L)a‖L2(Ω)µ(B)1/2 ≤ C‖a‖L2(Ω)µ(B)1/2 ≤ C.
(3.2)

It suffices to estimate Shm(L)a on (2B)c, where 2B = Bd(y0, 2r). Clearly, Φ
〈1〉
t (L)a =

t−2Φ
〈2〉
t (L)b. Set j0 = log2 r. Then

(Shm(L)a(x))2 =

∫∫

Γ(x)

∣

∣t2(LTt2m(L)a)(x′)
∣

∣

2 dµ(x′)

V (x′, t)

dt

t

=
∑

j∈Z

∫ 2j+1

2j

∫

d(x,x′)<t

∣

∣

∣Φ
〈1〉
t (L)a(x′)

∣

∣

∣

2 dµ(x′)

V (x′, t)

dt

t

=
∑

j≤j0

∫ 2j+1

2j

∫

d(x,x′)<t

∣

∣

∣Φ
〈1〉
t (L)a(x′)

∣

∣

∣

2 dµ(x′)

V (x′, t)

dt

t

+
∑

j>j0

∫ 2j+1

2j

∫

d(x,x′)<t

∣

∣

∣t−2Φ
〈2〉
t (L)b(x′)

∣

∣

∣

2 dµ(x′)

V (x′, t)

dt

t
.

Using (2.15) we have

(Shm(L)a(x))2 ≤ C
∑

j≤j0

∫ 2j+1

2j

∫

d(x,x′)<t

(∫

Ω

Θ
〈1〉
j (x, y)|a(y)| dµ(y)

)2
dµ(x′)

V (x′, t)

dt

t

+ C
∑

j>j0

∫ 2j+1

2j

∫

d(x,x′)<t

(∫

Ω

t−2Θ
〈2〉
j (x, y)|b(y)|dµ(y)

)2
dµ(x′)

V (x′, t)

dt

t

≤ C
∑

j≤j0

(∫

Ω

Θ
〈1〉
j (x, y)|a(y)| dµ(y)

)2

+ C
∑

j>j0

(∫

Ω

2−2jΘ
〈2〉
j (x, y)|b(y)| dµ(y)

)2

,

(3.3)

because
∫ 2j+1

2j

∫

d(x,x′)<t

dµ(x′)

V (x′, t)

dt

t
≤ C.

From (3.3) we trivially get

(Shm(L)a)(x)

≤ C





∑

j≤j0

∫

Ω

Θ
〈1〉
j (x, y)|a(y)| dµ(y) +

∑

j>j0

∫

Ω

2−2jΘ
〈2〉
j (x, y)|b(y)| dµ(y)



 .

Applying Lemma 2.14 we obtain
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∫

(2B)c

(Shm(L)a)(x) dµ(x)

≤ C
∑

j≤j0

∫

(2B)c

∫

d(y,y0)<r

Θ
〈1〉
j (x, y)

(

d(x, y)

2j

)β (
2j

r

)β

|a(y)| dµ(y) dµ(x)

+ C
∑

j>j0

∫

(2B)c

∫

d(y,y0)<r

2−2jΘ
〈2〉
j (x, y)|b(y)| dµ(y) dµ(x)

≤ C
∑

j≤j0

∫

d(y,y0)<r

(

2j

r

)β

|a(y)| dµ(y) + C
∑

j>j0

2−2j

∫

d(y,y0)<r

|b(y)| dµ(y) dµ(x).

(3.4)

By the Cauchy-Schwarz inequality ‖a‖L1(Ω) ≤ 1 and ‖b‖L1(Ω) ≤ r2. Since 2j0 ∼ r,
we easily conclude from (3.4) that

∫

d(x,y0)>2r

(Shm(L)a)(x) dµ(x) ≤ C,

which together with (3.2) completes the proof of (3.1)

4. Spectral multiplier theorem for semigroups satisfying

Davies-Gaffney estimates.

Let {Tt}t>0 be a semigroup of linear operators on L2(Ω) generated by −L,
where L is a non-negative, self-adjoint operator which is injective on its domain.
We assume that {Tt}t>0 satisfies Davies-Gaffney estimates, which briefly speaking
means that

|〈Ttf1, f2〉| ≤ C exp

(

−dist(U1, U2)2

ct

)

‖f1‖L2(Ω)‖f2‖L2(Ω) (4.1)

for every fi ∈ L2(Ω), supp fi ⊂ Ui, i = 1, 2, Ui are open subsets of Ω (see e.g., [10],
[36] for details).

The Hardy space H1
L, defined as in Section 1 by means of L1(Ω) bounds of

the square function (1.6), were considered by Auscher, McIntosh, Russ [3] and
Hofmann, Lu, Mitrea, Mitrea, Yan [36]. It was proved in [36] that the space H1

L

admits atomic decompositions into (1, 2,M)-atoms associated with L, provided
M > q/4, M ∈ N (see [36]). Clearly, L is replaced by L in the definition (1.7)–
(1.9) of (1, 2,M)-atoms for H1

L.
In this section we show that the following spectral multiplier theorem holds for

Hardy spaces associated with semigroups satisfying the Davies-Gaffney estimates.

Theorem 4.2. Let M > q/4, M ∈ N. Assume m be a bounded function defined
on (0,∞) such that for some real number α > (q + 1)/2 and any nonzero function
η ∈ C∞

c (2−1, 2) the condition (1.18) holds. Then there exists a constant C > 0
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such that

‖m(L)a‖H1
L
≤ C for every (1, 2, 2M)-atom a for the space H1

L. (4.3)

Fix ε > 0 and M > q/4, M ∈ N. We say that a function ã is a (1, 2,M, ε)-

molecule associated to L if there exist a function b̃ ∈ D(LM ) and a ball B =
Bd(y0, r) such that

ã = LM b̃; (4.4)

‖(r2L)k b̃‖L2(UjB)) ≤ r2M 2−jεV (y0, 2
jr)−1/2 (4.5)

for k = 0, 1, ...,M , j = 0, 1, 2, ..., where U0 = B, Uj(B) = Bd(y0, 2
jr)\Bd(y0, 2

j−1r)
for j ≥ 1.

It was proved in [36, Corollary 5.2] that every (1, 2,M, ε)-molecule ã belongs to
H1

L and

‖ã‖H1
L
≤ Cε,M . (4.6)

Of course the condition (1.18) is invariant under the change of variable λ 7→ λs

in multipliers. Hence (4.3) will be established if we have proved the following

proposition for
√
L.

Proposition 4.7. Assume that m satisfies (1.18). Fix M > q/4, M ∈ N. Then
there exists ε > 0 such that for every (1, 2, 2M)-atom a for H1

L the function

ã(x) = m(
√
L)a(x)

is a multiple of (1, 2,M, ε)-molecule. The multiple constant is independent of a.

Proof. Let a be a (1, 2, 2M)-atom for H1
L and let b and B = Bd(y0, r) be as in

(1.7)–(1.9). Set b̃ = m(
√
L)LM b. Clearly, ã = LM b̃. In order to complete the

proof of the proposition is suffices to verify (4.5). To do this we need the following
lemma.

Lemma 4.8. Let γ > 1/2, β > 0. Then there exists a constant C > 0 such that
for every even function F ∈ W 2,γ+β/2(R) and every g ∈ L2(Ω), supp g ⊂ Bd(y0, r),
we have
∫

d(x,y0)>2r

|F (2−j
√
L)g(x)|2

(

d(x, y0)

r

)β

dµ(x) ≤ C(r2j)−β‖F‖2
W 2,γ+β/2‖g‖2

L2(Ω)

for j ∈ Z.

Proof of the lemma. The lemma seems to be well-known. For the convenience of
the reader we provide a proof. To this end we borrow methods from [44]. Since F
is even,

F (2−j
√
L)g =

1

2π

∫

R

F̂ (ξ) cos(2−jξ
√
L)g dξ,

where F̂ = FF is the Fourier transform of F . The Davies-Gaffney estimates (4.1)
imply the finite speed propagation of the wave equation Lu + utt = 0 (see, e.g.,
[45], [10]), which means that there exists a constant C′ > 0 that

supp cos(2−jξ
√
L)g ⊂ Bd(y0, r + C′2−j|ξ|).
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Hence,

(

∫

d(x,y0)>2r

|F (2−j
√
L)g(x)|2

(

d(x, y0)

r

)β

dµ(x)

)1/2

=

(

∫

d(x,y0)>2r

∣

∣

∣

∣

1

2π

∫

R

F̂ (ξ) cos(2−jξ
√
L)g(x) dξ

∣

∣

∣

∣

2 (
d(x, y0)

r

)β

dµ(x)

)1/2

≤ C

∫

C2−j |ξ|>2r

(

∫

2r<d(x,y0)<C2−j|ξ|

|F̂ (ξ)|2| cos(2−jξ
√
L)g(x)|2 d(x, y0)β

rβ
dµ(x)

)1/2

dξ

≤ C

∫

R

|F̂ (ξ)|
(

2−j|ξ|
r

)β/2

‖g‖L2(Ω) dξ

≤ C′′(r2j)−β/2‖F‖W 2,γ+β/2‖g‖L2(Ω).

�

We are now in a position to complete the proof of Proposition 4.7. Fix ε > 0
and γ > 1/2 such that γ + ε + q/2 = α. Set β = q + 2ε. Then γ + β/2 = α. Let
j0 = − log2 r. For an integer number k, 0 ≤ k ≤M , write

(r2L)k b̃ = r2k
∑

j≥j0

ψ(2−j
√
L)m(

√
L)Lk+M b+ r2k

∑

j<j0

ψ(2−j
√
L)LMm(

√
L)Lkb

= r2k
∑

j≥j0

ψ(2−j
√
L)m(

√
L)g1 + r2k

∑

j<j0

ψ(2−j
√
L)LMm(

√
L)g2,

(4.9)

where g1 = Lk+M b, g2 = Lkb. Since a is a (1, 2, 2M)-atom for L associated with
B = Bd(y0, r) and b (see (1.7)-(1.9)), we have

‖g1‖L2(Ω) ≤ r2M−2kµ(B)−1/2, ‖g2‖L2(Ω) ≤ r4M−2kµ(B)−1/2. (4.10)

Put

Fj(λ) =

{

m(2jλ)ψ(λ) for j ≥ j0;

22Mjm(2jλ)λ2Mψ(λ) for j < j0;
(4.11)

and extend each Fj to the even function. Clearly,

‖Fj‖W 2,α(R) ≤
{

C for j ≥ j0;

C22Mj for j < j0.
(4.12)
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Using Lemma 4.8 combined with (4.9) – (4.12), we get
(

∫

d(x,y0)>2r

|(r2L)k b̃(x)|2 d(x, y0)β

rβ
dµ(x)

)1/2

≤ Cr2k
∑

j≥j0

(r2j)−β/2‖Fj‖W 2,α(R)‖g1‖L2(Ω)

+ Cr2k
∑

j<j0

(r2j)−β/2‖Fj‖W 2,α(R)‖g2‖L2(Ω)

≤ Cr2Mµ(B)−1/2.

(4.13)

Moreover,

‖(r2L)k b̃‖L2(Ω) = ‖r2km(
√
L)Lk+M b‖L2(Ω)

≤ Cr2k‖m‖L∞(R)‖g1‖L2(Ω) ≤ Cr2Mµ(B)−1/2.
(4.14)

Let j ∈ Z, j ≥ 0. Applying (4.13) and (4.14) we obtain

‖(r2L)k b̃‖2
L2(Uj(B)) ≤ C

∫

Uj(B)

|(r2L)k b̃(x)|2
(

1 +
d(x, y0)

r

)β

2−jβdµ(x)

≤ Cr4M 2−jβµ(B)−1

≤ C′′r4M 2−2jεV (y0, 2
jr)−1,

(4.15)

where in the last inequality we have used (1.2). �

5. Remarks

1. Assume that −L generates a semigroup with Gaussian bounds. If we addi-
tionally assume that the space (Ω, d, µ) is such that for every y ∈ Ω there exists
κ = κ(y) and c = c(y) > 0 such that

µ(Bd(y, s)) ≥ csκ for s > 1, (5.1)

then the multiplier operator m(L) (see (1.14)) extends uniquely to a bounded
operator on H1

L. To see this we define the space T of test functions in the following
way: a function g belongs to T if there exist t > 0, a ball Bd(y, r), and a function
ζ ∈ L∞(Ω) such that supp ζ ⊂ Bd(y, r) and g = Ttζ. Wa say that gn converge
to g0 in T if there exist t > 0, a ball B = Bd(y, r), and functions ζn such that
supp ζn ⊂ B, sup ‖ζn‖∞ < ∞, gn = Ttζn, and ζn(x) → ζ0(x) a.e. Clearly, T ⊂
Lp(Ω) for every 1 ≤ p ≤ ∞. One can easily prove that if f ∈ L1(Ω) is such that
∫

Ω fg dµ = 0 for every g ∈ T, then f = 0.

Lemma 5.2. Assume that m satisfies (1.13). Then m̄(L) maps continuously T

into L∞(Ω).

Proof. Recall that α > q/2. Observe that there exists a constant C > 0 such that
for every function n(λ) such that n ∈W∞,α(R), suppn ⊂ (2j−1, 2j+1), one has

|n(L)(x, y)| ≤ Cµ(Bd(y, 2−j/2))−1‖n(2j · )‖W∞,α(R). (5.3)
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It suffices to prove (5.3) for j = 0 and then use the scaling argument. Set ξ(λ) =
eλn(λ). Then ‖ξ‖W∞,α(R) ∼ ‖n‖W∞,α(R). Hence, by Theorem 2.1,

|n(L)(x, y)| ≤
∫

|ξ(L)(x, z)T1(z, y)| dµ(z) ≤ Cµ(Bd(y, 1))−1‖n‖W∞,α(R).

Assume that g ∈ T. Then there are t > 0, B = Bd(y0, r), and a bounded function
ζ such that g = Ttζ, supp ζ ⊂ B. Of course we can assume that r > 1. Let ψ be
as in (2.9). Let nj(λ) = m(λ)ψ(2−jλ)e−tλ. Then

m̄(L)g(x) =
∑

j

n̄j(L)ζ(x) =
∑

j

∫

n̄j(L)(x, y)ζ(y) dµ(y).

Set j0 = −2 log2 r. Obviously ‖n̄j(2j · )‖W∞,α(R) ≤ Ce−c2jt. Thus
∑

j

|n̄j(L)(x, y)| ≤ C
∑

j≤j0

µ(Bd(y, 2−j/2))−1 + C
∑

j>j0

e−ct2j

µ(Bd(y, 2−j/2))−1.

(5.4)
By (5.1) there exist c(y0) and κ = κ(y0) > 0 such that for y ∈ Bd(y0, r) and j ≤ j0
we have

µ(Bd(y, 2−j/2)) ∼ µ(Bd(y0, 2
−j/2)) ≥ c(y0)2−jκ/2. (5.5)

On the other hand, by (1.2), for y ∈ Bd(y0, r) and j > j0, we have

µ(Bd(y0, r)) ∼ µ(Bd(y, r)) ≤ C(2j/2r)qµ(Bd(y, 2−j/2)). (5.6)

From (5.4)-(5.6) we conclude that there exists a constant C(y0, r) such that
∑

j

|n̄j(L)(x, y)| ≤ C(y0, r) for x ∈ Ω and y ∈ Bd(y0, r).

�

We are now in a position to define the action of m(L) on the space L1(Ω) in the
weak (distributional) sense by putting

〈m(L)f, g〉 =

∫

Ω

f(x)m̄(L)g(x) dµ(x).

Let us observe that m(L) is uniquely defined on H1
L. Indeed, if f =

∑

j λjaj , where

aj are (1, 2, 1)-atoms, λj ∈ C,
∑

|λj | ∼ ‖f‖H1
L
< ∞ then, by Theorem 1.12 and

Lemma 5.2, for every g ∈ T we have

〈m(L)f, g〉 =

∫

Ω

(

∑

j

λjaj(x)
)

m̄(L)g(x) dµ(x)

=
∑

j

λj

∫

Ω

aj(x)m̄(L)g(x) dµ(x)

=
∑

j

λj

∫

Ω

m(L)aj(x)g(x) dµ(x)

=

∫

Ω

(

∑

j

λjm(L)aj(x)
)

g(x) dµ(x).
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Since
∑

j λjm(L)aj belongs to L1(Ω), we obtain that m(L)f =
∑

j λjm(L)aj ,

which gives the required uniqueness. Obviously, ‖m(L)f‖H1
L
≤ C‖f‖H1

L
.

2. One of distinguished examples of semigroups of linear operators with Gauss-
ian bounds is that generated by a Schrödinger operator −A = ∆−V on Rd, where
V is a nonnegative potential such that V ∈ L1

loc(R
d). By the Feynman-Kac formula

the integral kernels pt(x, y) of the semigroup e−tA satisfy

0 ≤ pt(x, y) ≤ (4πt)−d/2 exp(−|x− y|2/4t).
Clearly, considering (Rd, d(x, y) = |x− y|, dx) as a space of homogeneous type, we
have that (1.2) and (5.1) hold with q = d. Thus, as a corollary of Theorem 1.12,
we obtain that any bounded function m : (0,∞) → C which satisfies (1.13) with
α > d/2 is an H1

A spectral multiplier for A.
We would like to remark that the space H1

A admits also characterization by
means of maximal function from the semigroup e−tA (see [36]). Using arguments
similar to those of [19] one can prove the spectral multiplier theorem on Hardy
spaces associate with the Schrödinger operators by applying both atomic and max-
imal function characterizations.

Another molecule decomposition of Hardy space H1 associated with semigroups
generated by Schrödinger operators was communicated to us by Jacek Zienkiewicz
[48]. These decompositions also lead to multiplier theorems.

Acknowledgment. The authors would like to thank Pascal Auscher, Frédéric
Bernicot, and Pawe l G lowacki for their valuable comments.
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[24] J. Dziubański and J. Zienkiewicz, Hardy space H1 associated to Schrödinger operator with
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(2005), no. 2, 329–356.

[29] C. Fefferman and E.M. Stein, Hp spaces of several variables, Acta Math., 129 (1972), 137–
195.

[30] G. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Princeton University Press,
Princeton, NJ, 1982.

[31] J. Garcia-Cuerva, Weighted Hp spaces, Dissertationes Math. (Rozprawy Mat.) 162 (1979).
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