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EXAMPLES OF INNER LINEAR HOPF ALGEBRAS

NICOLÁS ANDRUSKIEWITSCH AND JULIEN BICHON

Abstract. The notion of inner linear Hopf algebra is a generalization of the
notion of discrete linear group. In this paper, we prove two general results
that enable us to enlarge the class of Hopf algebras that are known to be inner
linear: the first one is a characterization by using the Hopf dual, while the
second one is a stability result under extensions. We also discuss the related
notion of inner unitary Hopf ∗-algebra.

1. introduction

Throughout the paper, we work over C, the field of complex numbers.
The notion of inner linear Hopf algebra was introduced in [4] as a natural gen-

eralization of the notion of discrete linear group. The precise definition is the
following one.

Definition 1.1. A Hopf algebra is said to be inner linear if it contains an ideal of
finite codimension that does not contain any non-zero Hopf ideal.

Indeed, when H = C[Γ] is the group algebra of a discrete group Γ, then H is
inner linear if and only if the group Γ is linear in the usual sense, i.e. admits a
faithful finite-dimensional linear representation [4].

Also the concept of inner linearity for Hopf algebras generalizes the notion of
linear (= finite dimensional) Lie algebra: if H = U(g) is the enveloping algebra of
a Lie algebra g, then U(g) is inner linear if and only if g is finite-dimensional.

We believe that the problem to know whether a given Hopf algebra is inner linear
or not is an important one, since it is a generalization of the celebrated linearity
problem for discrete groups.

Several examples were considered in [4], and we continue this study here. We
prove two general results that enable us to enlarge the class of Hopf algebras that
are known to be inner linear.

(1) We give a reformulation of inner linearity using the Hopf dual. This en-
ables us to show that the Drinfeld-Jimbo quantum algebras attached to
semisimple Lie algebras are inner linear if the parameter q is not a root of
unity.

(2) We prove a stability result for inner linearity under extensions. This ap-
plies to Drinfeld-Jimbo algebras and quantized function algebras at roots
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8 N. ANDRUSKIEWITSCH AND J. BICHON

of unity, and to the recently introduced half-liberated orthogonal Hopf al-
gebras [5].

The paper is organized as follows. In Section 2 we reformulate the notion of
inner linear Hopf algebra by using the Hopf dual, with, as an application, the inner
linearity of the Drinfeld-Jimbo quantum algebras Uq(g) and Oq(G) if q is not a root
of unity. Section 3 contains some basic results on the possible use of quotient Hopf
algebras to show inner linearity, which might be used to show the inner linearity
of Hopf algebras having an analogue of the dense big cell of reductive algebraic
groups, such as in [17]. In Section 4 we give a stability result for inner linearity
under extensions. This applies to quantum algebras Oq(G) and Uq(g) at roots of
unity, as well as to the half-liberated Hopf algebras A∗

o(n) from [5]. In Section 5 we
study the related notion of inner unitary Hopf ∗-algebra, and it is shown that for
q ∈ R∗, q 6= ±1, and K a connected simply connected simple compact Lie group,
the Hopf ∗-algebra Oq(K) is not inner unitary (while it is inner linear as a Hopf
algebra). We also give a Hopf ∗-algebra version of the extension theorem of Section
4.

We assume that the reader is familiar with the basic notions of Hopf algebras, for
which [16] is a convenient reference. Our terminology and notation are the standard
ones: in particular, for a Hopf algebra, ∆, ε and S denote the comultiplication,
counit and antipode, respectively.

2. Inner linear Hopf algebras and the Hopf dual

In this section we reformulate the notion of linear Hopf algebra by using the
Hopf dual, and we apply this reformulation to Drinfeld-Jimbo quantum algebras.

Theorem 2.1. A Hopf algebra H is inner linear if and only if H0, the Hopf dual
of H, contains a finitely generated Hopf subalgebra that separates the points of H.

Of course finitely generated Hopf algebra means finitely generated as a Hopf

algebra. Before proving Theorem 2.1, we need to recall the concept of inner faith-
ful representation of a Hopf algebra [4], which generalizes the notion of faithful
representation of a discrete group.

Definition 2.2. Let H be a Hopf algebra and let A be an algebra. A representation
π : H −→ A is said to be inner faithful if Ker(π) does not contain any non-zero
Hopf ideal.

It is clear that a Hopf algebra is inner linear if and only it admits a finite-
dimensional inner faithful representation.

Proof of theorem 2.1. We first introduce some notation. Let F be the free monoid
generated by the set N, with its generators denoted α0, α1, . . . and its unit element
denoted 1. Let V be a vector space. To any element g ∈ F , we associate a vector
space V g, defined inductively on the length of g as follows. We put V 1 = k,
V αk = V ∗···∗(k times) (so that V α0 = V, V α1 = V ∗...). Now for g, h ∈ F with
l(g) > 1 and l(h) > 1, we put V gh = V g ⊗ V h. For g ∈ F , we have, if V is
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finite dimensional, canonical isomorphisms End(V g) ∼= End(V )g, where the algebra
End(V )g is defined as in Section 2 of [4].

Now let π : H −→ End(V ) be a representation, with V finite dimensional, so
that V is an H-module. For any g ∈ F , the standard procedure gives an H-module
structure on V g, and we identify, via the algebra isomorphism End(V g) ∼= End(V )g,
the corresponding algebra map H −→ End(V g) with πg : H −→ End(V )g as
defined in Section 2 of [4].

We know, from Proposition 2.2 in [4], that the largest Hopf ideal contained in
Ker(π) is Iπ = ∩g∈F Ker(πg). Hence π is inner faithful if and only ∩g∈F Ker(πg) =
(0).

Thus if π is inner faithful, we have ∩g∈F Ker(πg) = (0). The coefficients of
the representation πg belong, by construction, to L, the Hopf subalgebra of H0

generated by the coefficients of π = πα0 . Hence L separates the points of H .
The proof of the first implication in the theorem follows. If H is inner linear,

let π : H −→ A be an inner faithful representation, with A finite-dimensional. We
can assume, by using the regular representation of A, that A = End(V ) for some
finite-dimensional vector space V . Hence the finitely generated Hopf subalgebra
L ⊂ H0 constructed above separates the points of H , by the previous discussion.

Conversely, assume that we have a finitely generated Hopf subalgebra L ⊂ H0

that separates the points of H . Then L is generated by the coefficients of a finite
dimensional H0-comodule, corresponding to a finite dimensional H-module V . Let
π : H −→ End(V ) be the corresponding algebra map. The elements of L are the
coefficients of the H-modules V g constructed above, hence ∩g∈F Ker(πg) = (0)
since L separates the points of H , and we conclude that π is inner faithful, so that
H is inner linear. �

Corollary 2.3. Let H be a Hopf algebra such that H0 separates the points of H.

(1) Assume that H0 is finitely generated as a Hopf algebra. Then H is inner
linear.

(2) Assume that H is finitely generated as a Hopf algebra. Then H0 is inner
linear.

Proof. The first asssertion follows from the previous theorem. For the second one,
consider the embeddingH ⊂ (H0)0 (this is indeed an embedding sinceH0 separates
the points of H). Then H is a finitely generated Hopf subalgebra of (H0)0, and we
conclude by the previous theorem. �

As an application, we get the following result for quantum groups at generic q;
the case when q is a root of 1 will be discussed in Section 4.

Theorem 2.4. Let G be a (complex) connected, simply connected, semisimple
algebraic group with Lie algebra g, and let q ∈ C∗. If q is not a root of unity, then
the Hopf algebras Uq(g) and Oq(G) are inner linear.

Proof. We know from the representation theory of Uq(g) (see [13, Lemma 8.3])
that the type I irreducible representations of Uq(g) separate the points of Uq(g).
Hence the linear span of their coefficients separates the elements of Uq(g), and is
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10 N. ANDRUSKIEWITSCH AND J. BICHON

a finitely generated Hopf subalgebra of Uq(g)
0 (actually it is Oq(G), see [12, 8]).

It follows from Theorem 2.1 that Uq(g) is inner linear. The second part of the
previous corollary ensures that Uq(g)

0 is inner linear, and hence so is the Hopf
subalgebra Oq(G). �

Remark 2.5. The proof uses the fact that Uq(g)
0 separates the points of Uq(g),

a deep result in the representation theory of Uq(g). On the other hand, to prove
this separation result, it might be simpler to combine Theorem 2.1 and the inner
faithfulness criterion for representations of pointed Hopf algebras in [4] (Theorem
4.1). This last theorem is as follows: a pointed Hopf algebraH is inner linear if and
only if there exists a finite-dimensional representation π : H −→ A such that for any
group-like g ∈ Gr(H), the restriction map π|Pg,1(H) : Pg,1(H) −→ A is injective. A
similar idea to prove separation results, using description of skew-primitives, was
already used in [9], Section 4.

3. Inner linearity and quotient Hopf algebras

In this section we prove some very basic but useful results on the possible use
of quotient Hopf algebras to show inner linearity. We begin with a lemma.

Lemma 3.1. Let H be a Hopf algebra, let I1, I2 be Hopf ideals in H. Let ρk :
H/Ik −→ A, k = 1, 2, be some representations. Consider the representation

ρ : H −→ A×B

x 7−→ (ρ1 ◦ π1(x), ρ2 ◦ π2(x))

where πk, k = 1, 2 is the canonical projection. Assume that I1∩I2 does not contain
any non zero Hopf ideal and that ρ1 and ρ2 are inner faithful. Then ρ is inner
faithful.

Proof. Let J be a Hopf ideal contained in Ker(ρ) = Ker(ρ1 ◦ π1) ∩ Ker(ρ2 ◦ π2).
Then for k = 1, 2, πk(J) is a Hopf ideal contained in Ker(ρk), and hence J ⊂ Ik
by inner faithfulness of ρk. Hence J is a Hopf ideal in I1 ∩ I2, and J = (0), which
proves that ρ is inner faithful. �

Corollary 3.2. Let H be a Hopf algebra, let I1, I2 be Hopf ideals in H. Assume
that I1 ∩ I2 does not contain any non zero Hopf ideal and that the Hopf algebras
H/I1 and H/I2 are inner linear. Then H is inner linear.

Proof. This is a consequence of the lemma, by using finite-dimensional inner faith-
ful representations of H/I1 and H/I2. �

Corollary 3.3. Let H be a Hopf algebra, let I1, I2 be Hopf ideals in H. Assume
that the algebra map

θ : H −→ H/I1 ⊗H/I2

x 7−→ π1(x(1))⊗ π2(x(2))

where π1, π2 are the canonical projections, is injective, and that the Hopf algebras
H/I1 and H/I2 are inner linear. Then H is inner linear.
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Proof. Let J ⊂ I1 ∩ I2 be a Hopf ideal. Then

∆(J) ⊂ J ⊗H +H ⊗ J ⊂ (I1 ∩ I2)⊗H +H ⊗ (I1 ∩ I2).

Hence θ(J) = (0) and J = (0) by the injectivity of θ, and we are done by the
previous result. �

This last result might be used to show the inner linearity of Hopf algebras
having an analogue of the dense big cell of reductive algebraic groups, such as in
[17]. Indeed for Oq(GLn(C)), the previous result combined with Theorem 8.1.1
in [17] reduces the problem to show the inner linearity of Oq(GLn(C)) to show
the inner linearity of the pointed Hopf algebras Oq(B) and Oq(B

′), for which the
method of Theorem 4.1 in [4] is available.

4. Stability of inner linearity under extensions

We now study the question of the stability of inner linearity under extensions.
At the group level, it is known that linearity is not stable under extensions (see
e.g. [11]), but we have the following positive result: If G is a group having a linear
normal subgroup H of finite index, then G is linear. We prove a Hopf algebraic
analogue of a weak form of this result, and we apply it to two types of Hopf algebras.

4.1. The general result. Here is our more general result on the preservation of
inner linearity by extensions.

Theorem 4.1. Let H be a Hopf algebra and let A ⊂ H be a normal Hopf subalge-
bra. Assume that the following conditions hold:

(1) A is inner linear and commutative,
(2) H is finitely generated as a right A-module.

Then H is inner linear.

To prove the theorem, we need to recall some facts on exact sequences of Hopf
algebras.

First recall that a Hopf subalgebra A of a Hopf algebra H is said to be normal
if it is stable under both left and right adjoint actions of H on itself, defined,
respectively, by

adl(x)(y) = x(1)yS(x(2)), adr(x)(y) = S(x(1))yx(2),

for all x, y ∈ H . If A ⊆ H is a normal Hopf subalgebra, then the idealHA+ = A+H
is a Hopf ideal and the canonical map H → H := H/HA+ := H//A is a Hopf
algebra map.

Now recall that a sequence of Hopf algebra maps

k → A
i
→ H

p
→ H → k, (4.1)

is called exact if the following conditions hold:

(1) i is injective and p is surjective,
(2) p ◦ i = ǫ1,
(3) Kerp = HA+,
(4) A = Hco p = {h ∈ H : (id⊗p)∆(h) = h⊗ 1}.
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12 N. ANDRUSKIEWITSCH AND J. BICHON

It follows that i(A) is normal Hopf subalgebra of H . Conversely, if we have a
sequence (4.1) and H is faithfully flat over A, then (1), (2) and (3) imply (4). See
e.g. [1].

We now state several preparatory lemmas for the proof of Theorem 4.1.

Lemma 4.2. Let H be a Hopf algebra and let A ⊂ H be a normal Hopf subalgebra.
If A is commutative, then k → A → H → H//A → k is an exact sequence.

Proof. We know from [3], Proposition 3.12, that H is a faithfully flat as an A-
module, and hence we have the announced exact sequence by the previous consid-
erations. �

We shall need the following Hopf algebraic version of the 5 lemma.

Lemma 4.3. Consider a commutative diagram of Hopf algebras

k −−−−→ A −−−−→ H −−−−→ H −−−−→ k
∥

∥

∥





y
θ

∥

∥

∥

k −−−−→ A −−−−→ H ′ −−−−→ H −−−−→ k

(4.2)

where the rows are exact. If A is commutative, then θ is an isomorphism.

Proof. The proof is similar to Corollary 1.15 in [2]: A ⊂ H and A ⊂ H ′ are H-
Galois extensions and sinceH ′ is a faithfully flat A-module [3, Proposition 3.12], the
H-colinear A-linear algebra map θ is an isomorphism by Remark 3.11 in [20]. �

Lemma 4.4. Let A ⊂ H be a normal and commutative Hopf subalgebra. Let J be
a Hopf ideal in H such that J ∩ A = (0) and J ⊂ A+H. Then J = (0).

Proof. We have, by Lemma 4.2, an exact sequence

k → A
i
→ H

pH
→ H//A → k.

Now put K = H/J , and let q : H → K be the canonical surjection. Since
J ∩A = (0), we have an injective Hopf algebra map j : A → K such that q ◦ i = j,
and j(A) is a normal Hopf subalgebra of K. We then have an exact sequence

k → A
j
→ K

pK
→ K//A → k.

We now claim that there exists a Hopf algebra isomorphism q : H → K such that
the following diagram is commutative

k −−−−→ A −−−−→ H
pH

−−−−→ H//A −−−−→ k
∥

∥

∥





y

q





y

q

k −−−−→ A −−−−→ K
pK

−−−−→ K//A −−−−→ k

Indeed, we have pK ◦ q(A+H) = pK(j(A)+H) = 0, which shows the existence of q.
We also have, since J ⊂ A+H ,

Ker(q) = pH(Ker(pK ◦ q)) = pH(q−1(Ker(pK))

= pH(q−1(j(A)+K)) = pH(J +A+H) ⊂ pH(A+H) = (0)
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and hence q is an isomorphism. We get a commutative diagram with exact rows

k −−−−→ A −−−−→ H
q◦pH

−−−−→ K//A −−−−→ k
∥

∥

∥





y

q

∥

∥

∥

k −−−−→ A −−−−→ K −−−−→ K//A −−−−→ k

(the top row is still exact because q is an isomorphism) and Lemma 4.3 ensures
that q is an isomorphism, hence J = (0). �

Proof of Theorem 4.1. Let ρ : A → End(V ) be an inner faithful representation,
with V finite-dimensional. As usual, we get the induced representation ρ̃ : H →
End(H ⊗A V ). Since H is finitely generated as an A-module, the vector space
H ⊗A V and the Hopf algebra H//A are finite dimensional. We thus consider the
finite-dimensional representation

θ : H −→ H//A× End(H ⊗A V )

x 7−→ (pH(x), ρ̃(x))

Let us show that θ is inner faithful. Let J ⊂ Ker(θ) = A+H ∩ Ker(ρ̃) be a Hopf
ideal. Then J ∩ A ⊂ A is a Hopf ideal. It is easy to see, using the faithful flatness
of H as a right A-module, that Ker(ρ̃) ∩ A ⊂ Ker(ρ). Thus J ∩ A ⊂ Ker(ρ) and
J ∩ A = (0) since ρ is inner faithful. We thus have J ⊂ A+H and J ∩ A = (0):
the previous lemma ensures that J = (0). Hence θ is inner faithful and H is inner
linear. �

Question 4.5. Is it true that the induced representation ρ̃ : H → End(H ⊗A V )
is inner faithul if ρ is? A positive answer would give a strenghtening of Theorem
4.1, dropping the commutativity assumption on A.

4.2. Applications. Our first application is with quantized function algebras at
roots of unity.

Theorem 4.6. Let G be a connected, simply connected complex semisimple alge-
braic group with Lie algebra g, and let q be a root of unity of odd order ℓ, with ℓ
prime to 3 if G contains a component of type G2. The Hopf algebras Oq(G) and
Uq(g) are inner linear.

Proof. It is known [10] that Oq(G) contains a central Hopf subalgebra isomorphic
to O(G), and that Oq(G) is finitely generated and projective as O(G)-module. The
Hopf algebra O(G) is inner linear [4], and thus Theorem 4.1 gives the result.

Similarly it is known (see e.g. [8]) that Uq(g) contains an affine central Hopf
subalgebra (hence inner linear by [4]) Z0 such that Uq(g) is a finitely generated
Z0-module. Hence again Theorem 4.1 gives the result. �

We now turn to the half-liberated orthogonal Hopf algebra. Recall that the
half-liberated orthogonal Hopf algebra A∗

o(n), introduced in [5] and further studied
in [6], is the algebra presented by generators uij , 1 ≤ i, j ≤ n, submitted to the
relations
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(1) the matrix u = (uij) is orthogonal,
(2) uijuklupq = upqukluij , 1 ≤ i, j, k, l, p, q ≤ n.

It admits a Hopf algebra structure given by the standard formulas

∆(uij) =
∑

k

uik ⊗ ukj , ε(uij) = δij , S(uij) = uji

Theorem 4.7. The Hopf algebra A∗
o(n) is inner linear.

Proof. Let A ⊂ H = A∗
o(n) be the subalgebra generated by the elements uijukl.

As remarked in [6], it is a commutative Hopf subalgebra of H . Thus A ≃ O(G)
for a (reductive) algebraic group G (in fact it is shown in [6] that G = PGLn(C)))
and A is inner linear by [4]. It is easy to check the existence of a Hopf algebra map
π : H → C[Z2], uij 7→ δijg, where 1 6= g ∈ Z2, and that A = Hcoπ . This Hopf
algebra map is cocentral (π(x(1))⊗ x(2) = π(x(2))⊗ x(1), for all x ∈ H) and hence
A is normal in H (see e.g. Lemma 3.4.2 in [16]). Moreover H is, as an A-module,
generated by the elements uij . Thus H is inner linear by Theorem 4.1. �

5. Inner unitary Hopf ∗-algebras

In this section we discuss the Hopf algebraic analogue of the notion of discrete
unitary group. Here we say that a discrete group is unitary if it can be embedded
as a subgroup of the group of unitary operators on a finite-dimensional Hilbert
space. We work in the framework of Hopf ∗-algebras (see e.g. [14] for the relevant
definitions).

Definition 5.1. A Hopf ∗-algebra H is said to be inner unitary if there exists
a ∗-representation π : H −→ A into a finite-dimensional C∗-algebra A such that
Ker(π) does not contain any non zero Hopf ∗-ideal.

Of course a group Γ is unitary if and only if the Hopf ∗-algebra C[Γ] is inner
unitary.

A possible trouble with the previous natural definition is that it is not clear that
an inner unitary Hopf algebra must be inner linear. We do not know if this is true
in general, but we shall see that under some mild assumptions (see Proposition
5.4), an inner unitary Hopf ∗-algebra is inner linear. This is true in particular for
compact Hopf algebras, i.e. Hopf ∗-algebras arising from compact quantum groups,
the class of Hopf ∗-algebras we are most interested in.

We need the following concept.

Definition 5.2. We say that a Hopf algebra H has a regular antipode if there
exists a group-like a ∈ H, an algebra morphism Φ : H −→ C and an integer m ≥ 1
such that

∀x ∈ H, S2m(x) = a(Φ ∗ idH ∗ Φ−1(x))a−1

For example, by [7], any co-Frobenius Hopf algebra has a Radford type formula
for S4 and hence has a regular antipode. In particular any cosemisimple Hopf
algebra has a regular antipode.
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Proposition 5.3. Let H be a Hopf algebra having a regular antipode. The following
assertions are equivalent.

(1) H is inner linear.
(2) There exists a representation π : H −→ A into a finite-dimensional algebra

A such that Ker(π) does not contain any non-zero Hopf ideal I such that
S(I) = I.

Proof. By the assumption there exists a group-like a ∈ H , an algebra morphism Φ :
H −→ C and m ≥ 1 such that for x ∈ H , one has S2m(x) = a(Φ∗ idH ∗Φ−1(x))a−1.
Let π : H −→ A be a representation satisfying condition (2), and consider the
representation

π′ : H −→ A× C
2

x 7−→ (π(x),Φ(x),Φ−1(x))

Let J ⊂ Ker(π′) be a Hopf ideal. Then we have

S−1(J) = a−1
(

Φ−1 ∗ S2m−1 ∗ Φ)(J)
)

a

⊂ a−1
(

Φ−1(J)S2m−1(H)Φ(H)

+Φ−1(H)S2m−1(J)Φ(H) + Φ−1(H)S2m−1(H)Φ(J)
)

a

⊂ a−1S2m−1(J)a ⊂ J

since Φ(J) = Φ−1(J) = (0). Thus S(J) = J with J ⊂ Ker(π), and hence J = (0).
Thus π′ is inner faithful and H is inner linear. �

Proposition 5.4. Let H be a Hopf ∗-algebra having a regular antipode. If H is
inner unitary, then H is inner linear. In particular an inner unitary compact Hopf
algebra is inner linear.

Proof. Let π : H −→ A be a ∗-representation into a finite-dimensional C∗-algebra
A such that Ker(π) does not contain any non zero Hopf ∗-ideal. The previous
proposition ensures that to showH is inner linear, it is enough to check that Ker(π)
does not contain any non-zero Hopf ideal I with S(I) = I. So let I ⊂ Ker(π) be
such a Hopf ideal. It is clear that I + I∗ is a ∗-bi-ideal contained in Ker(π).
Moreover S(I + I∗) = S(I) + S(I∗) = S(I) + S−1(I)∗ = I + I∗. Hence I + I∗ is a
Hopf ∗-ideal contained in Ker(π) and I + I∗ = (0) = I. �

It is well-known that, already at the discrete group level, the converse of this
result is not true. For example the group Γ = 〈x, y | yxy−1 = x2〉 is linear but
is not unitary. For non cocommutative Hopf algebras, we also have the following
example.

Proposition 5.5. Let G be a connected, simply connected and simple complex Lie
group and let K ⊂ G be a maximal compact subgroup. Let q ∈ R

∗, q 6= ±1. Then
the compact Hopf algebra Oq(K) is inner linear but is not inner unitary.
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Proof. The Hopf algebra underlying Oq(K) is Oq(G), hence is inner linear by The-
orem 2.4. Assume that Oq(K) is inner unitary: there exists a ∗-algebra morphism

π : Oq(K) −→ B(V )

where V is a finite-dimensional Hilbert space, such that Ker(π) does not contain
any non zero Hopf ∗-ideal. The Oq(K)-module V is semisimple since π is a ∗-
algebra map. We know from [15] that the finite-dimensional irreducible Hilbert
space representations of Oq(K) all are one-dimensional, and hence the elements of
π(Oq(K)) are simultaneously diagonalizable. It follows that π(Oq(K)) is a commu-
tative ∗-algebra and that the commutator ideal of Oq(K), which is a Hopf ∗-ideal,
is contained in Ker(π). Hence the commutator ideal is zero and Oq(K) is commu-
tative: a contradiction (these last arguments are from Proposition 2.13 in [4]). �

Remark 5.6. The Hopf ∗-algebraO−1(SU2) is inner unitary, since the inner faithful
representation O−1(SU2) → M2(C) ⊗ C

4 constructed in [4], Corollary 6.6, is a ∗-
algebra map. Also one can adapt the other constructions in Section 6 of [4] to show
that O−1(SUn) is inner linear for any n.

It is now natural to ask if the compact Hopf ∗-algebra A∗
o(n) (whose ∗-structure

is defined by u∗
ij = uij) is inner unitary. For this we need a Hopf ∗-algebra version

of Theorem 4.1.

Theorem 5.7. Let H be a compact Hopf algebra and let A ⊂ H be a normal Hopf
∗-subalgebra. Assume that the following conditions hold:

(1) A is inner unitary and commutative,
(2) H is finitely generated as a right A-module.

Then H is inner unitary.

Proof. The proof is an adaptation of the proof of Theorem 4.1, using induced
representations of C∗-algebras [19]. Similarly to Section 4, H is a faithfully flat
A-module since A is commutative, and hence Hco p = A, where p : H −→ H//A is
the canonical map. Hence using the Haar measure φ on the compact Hopf algebra
H//A, we get a map

E = (id⊗ φ) ◦ (id⊗ p) ◦∆ : H −→ A

which is a conditional expectation in the sense of [19] (see e.g. [18]).
Consider now a Hilbert space ∗-representation ρ : A → B(V ). There is a

sesquilinear form on H ⊗A V such that for x, y ∈ H , v, w ∈ V , we have

〈x⊗A v, y ⊗A w〉 = 〈ρ(E(y∗x))(v), w〉

Moreover this is a pre-inner product (Lemma 1.7 in [19]). Killing the norm zero
elements, we get a (finite-dimensional) Hilbert space H⊗

A
V , and an induced ∗-

representation (Theorem 1.8 in [19])

ρ̃ : H −→ B(H⊗
A
V )

x 7−→ ˜ρ(x), ˜ρ(x)(y⊗
A
v) = xy⊗

A
v
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We wave Ker(ρ̃)∩A ⊂ Ker(ρ) since the map V → H⊗
A
V , v 7→ 1⊗

A
v, is isometric.

Then, similarly to the proof of Theorem 4.1, if Ker(ρ) does not contain any non
zero Hopf ∗-ideal, the kernel of the ∗-representation

θ : H −→ H//A× B(H⊗
A
V )

x 7−→ (p(x), ρ̃(x))

does not contain any non-zero Hopf ∗-ideal, and hence H is inner unitary. �

Corollary 5.8. The compact Hopf ∗-algebra A∗
o(n) is inner unitary.
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