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REPRESENTATIONS OF FINITE DIMENSIONAL POINTED
HOPF ALGEBRAS OVER S;

AGUSTIN GARCIA IGLESIAS

ABSTRACT. The classification of finite-dimensional pointed Hopf algebras with
group S3 was finished in [ATS]: there are exactly two of them, the bosoniza-
tion of a Nichols algebra of dimension 12 and a non-trivial lifting. Here we
determine all simple modules over any of these Hopf algebras. We also find
the Gabriel quivers, the projective covers of the simple modules, and prove
that they are not of finite representation type. To this end, we first investigate
the modules over some complex pointed Hopf algebras defined in the papers
[AG1, GG], whose restriction to the group of group-likes is a direct sum of
1-dimensional modules.

1. INTRODUCTION

In [AG1], a pointed Hopf algebra H,, was defined for each n > 3. It was shown
there that H3 and H,4 are non-trivial pointed Hopf algebras over S3 and Sy, respec-
tively. We showed in [GG] that this holds for every n, by different methods. We
started by defining generic families of pointed Hopf algebras associated to certain
data, which includes a finite non-abelian group G. Under certain conditions, these
algebras are liftings of (possibly infinite dimensional) quadratic Nichols algebras
over GG. In particular, this was proven to hold for G = S,,. Moreover, the classifi-
cation of finite dimensional pointed Hopf algebras over S, was finished. We review
some of these facts in Section 2. We investigate, in Section 3, modules over these
algebras whose G-isotypic components are 1-dimensional and classify indecompos-
able modules of this kind. We find conditions on a given G-character under which
it can be extended to a representation of the algebra. We apply these results to
the representation theory of two families of pointed Hopf algebras over S,,. In Sec-
tion 4 we comment on some known facts about simple modules over bosonizations.
We also prove general facts about projective modules over the algebras defined in
[AGI, GG], and recall a few facts about representation type of finite dimensional
algebras. In Section 5 we use some of the previous results to classify simple mod-
ules over pointed Hopf algebras over S3. In addition, we find their projective covers
and compute their fusion rules, which lead to show that the non-trivial lifting is
not quasitriangular. We also write down the Gabriel quivers and show that these
algebras are not of finite representation type.
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2. PRELIMINARIES

We work over an algebraically closed field k of characteristic zero. We fix i =
V—1. For n € N, let [%] denote the biggest integer lesser or equal than %. If V
is a vector space and {z;};ecs is a family of elements in V', we denote by k{z; }iecs
the vector subspace generated by it. Let G be a finite group, G the set of its
irreducible representations. Let Ga, = G/[G,G], Gap = Hom(G,k*) € G. We
denote by € € é; the trivial representation. If y € é, and W is a G-module, we
denote by W{x] the isotypic component of type x, and by W, the corresponding
simple G-module.

A rack is a pair (X,>), where X is a non-empty set and > : X x X — X
is a function, such that ¢; = i > (-) : X — X is a bijection for all i € X and
i>(jok) = (i>j)>(i>k), Vi, j, k € X. Arack (X, >) is said to be indecomposable
if it cannot be decomposed as the disjoint union of two sub-racks. We shall always
work with racks that are in fact quandles, that is that i>i =i Vi € X. In practice,
we are interested in the case in which the rack X is a conjugacy class in a group;
hence this assumption always holds. We will denote by OF the conjugacy class of
transpositions in S,,.

A 2-cocycle ¢ : X x X — k*, (¢,7) — ¢;; is a function such that ¢; jprgjr =
Qisj,iskGik, V1,7, k € X. See [AGI] for a detailed exposition on this matter.

Let H be a Hopf algebra over k, with antipode S. Let ¥ YD be the category of
(left-left) Yetter-Drinfeld modules over H. That is, M is an object of ZYD if and
only if there exists an action - such that (M, -) is a (left) H-module and a coaction
0 such that (M, 0) is a (left) H-comodule, subject to the following compatibility
condition:

5(/1 . m) = hlm_lS(hg) ® hy -mg, Ym € M, h € H,
where §(m) = m_1®mg. If G is a finite group and H = kG, we write &YD instead
of g)}D.
Recall from [AG2, Def. 3.2] that a principal YD-realization of (X, q) over a finite
group G is a collection (-, g, (x;)icx) where
e - is an action of G on X;
e g: X — G is a function such that gy.; = hg;h ! and g; - j =i > 5;
e the family (x;)iex, with x; : G — k*, is a l-cocycle, i. e. x;(ht) =
Xi(t)xei(h), for all i € X, h,t € G, satisfying x;(g;) = ¢ji-
In words, a principal YD-realization over G is a way to realize the braided vector
space (kX,c?) as a YD-module over G. See [AG2] for details.

2.1. Quadratic lifting data.

Let X be a rack, ¢ a 2-cocycle. Let R be the set of equivalence classes in X x X
for the relation generated by (i,7) ~ (i > j,i). Let C € R, (i,j) € C. Take i1 = 7,
19 = 1, and recursively, ip+o = ip41 > ip. Set n(C) = #C and

n(C)
R = {C € R| H Qi yin = (_1)n(0)}.

h=1
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REPRESENTATIONS OF POINTED HOPF ALGEBRAS OVER S3 53

Let F be the free associative algebra in the variables {T;},cx. If C € R’, consider
the quadratic polynomial

n(C)
Pc = Z nn(C) Tih+1Tih € F, (1)
h=1

where ﬂl(c) =1 and Uh(c) = (_1)h+1qi2i1qi3i2 s Gipip h > 2.

A quadratic lifting datum Q = (X,q,G, (-, g, (x1)iex), (Ac)cer), or gql-datum,
[GG, Def. 3.5], is a collection consisting of

a rack X;

a 2-cocycle ¢;

a finite group G;

a principal YD-realization (-, g, (xi)iex) of (X,q) over G such that g; #
959k, Vl,j,k‘ € X7

a collection (Ac)cer’ € k such that, if C = {(i2,i1),..., (in,in-1)}, and
ke X,

>\C = 07 if 9i29i; = 17 (2)
AC = Qkis Qhiy Mk>C'» (3)
where k> C' = {(k >, k> i1),..., (k> iy, k>i,-1)}.

In [GG], we attached a pointed Hopf algebra H(Q) to each gl-datum Q. Tt is
generated by {a;, H; : | € X, t € G} with relations:

He: ]_7 HtHsths; t,SéG, (4)
Hia; = xu(t)a. Hy, teG,leX; (5)
¢C({al}l€X) = /\C(l - Hgigj)’ Ce R/a (Zaj) eC. (6)

Here ¢¢ is as in (1) above. We denote by ac the left-hand side of (6). H(Q)
is a pointed Hopf algebra, setting A(H;) = H; ® Hy, Ala;) = i ® a; + a; @ 1,
t € @G, i€ X. See [GG] for further details on this construction and for unexplained
terminology.

Notice that by definition of the Hopf algebras H(Q), the group of grouplikes
G(H(Q)) is a quotient of the group G. Thus, any H(Q)-module M is a G-module,
using the corresponding projection. We denote this module by M|g. For simplicity,

we denote M [p] = Mg[p], p € G.

3. MODULES THAT ARE SUMS OF 1-DIMENSIONAL REPRESENTATIONS

In this Section, we study H(Q)-modules whose underlying G-module is a direct
sum of representations in Gap,.
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We begin by fixing the following notation. Given a pair (X, q), let

L1
(_1)5_1 (ll:ll qih2[+1,ih2[> lf 2|h7
G(C) = <,1

h—1 2 .
(_1)T lnl qih2l+17ih2l> if 2|h + 1L

Note that (1(C) = (2(C) =1, Ch41(C)Cr(C) = nu(C), see (1).

3.1. Modules whose underlying G-module is isotypical.
We first study extensions of multiplicative characters from G to H(Q).

Proposition 3.1. Let p € Ga. There exists p € homgy (H(Q), k) such that
pia = p if and only if

0=Ac(1 —plgig;)) if (i) € C and 2|n(C), (8)

and there exists a family {v;}iex of scalars such that
Vi = Xj(t)ﬁyt] Vte Ga] € Xv (9)
Y5 = Ac(l = p(gig;)) if (i,4) € C and 2[n(C) + 1. (10)

If (8) holds, then the set of all extensions p of p is in bijective correspondence with
the set of families {~;}iex that satisfy (9) and (10). In particular, if
Ao #0=p(gigj) =1, CeR,(i,j)cC. (11)

then v; =0, Vi € X defines an H(Q)-module. Moreover, this is the only possible
extension if, in addition,

xilgi) #1, Vie X. (12)
Remark 3.2. (a) Mainly, we will deal with Nichols algebras for which the following
is satisfied:

Xi(gi) = -1, Vie X. (13)
In this case, obviously (12) holds and the class C; = {(,4)} belongs to R'.

(b) If X is indecomposable, using (9) and the fact that Vi € X 3¢ € G such
that ¢ = t - j, we may replace (10) by

72 = Ac (1= p(g;)*)x;(t) if (i,j) € C and 2n(C) +1. (107

Proof. Assume that such p exists and let v; = p(a;). Then (9) follows from (5).
In particular, for p,q € X, we have p(apsq) = Xq(9p) " 'p(ay). Then, for C € R/,
(i2,i1) = (4,7) € C, it follows that

I (=)= G(C) p(ay) if 2/ +1
T “)‘{(—1)%1@@)1;3(%) it 2, .
cf. (7). Consequently,

plai, . ai,) = (1) 19y (C) ! plai)p(ay) (15)

Rev. Un. Mat. Argentina, Vol 51-1



REPRESENTATIONS OF POINTED HOPF ALGEBRAS OVER S3 55

and thus (10) and (8) follow from (6). Conversely, if (8) holds and {v;}iex is a
family that satisfies (9) and (10), then we define p : H(Q) — k as the unique
algebra morphism such that p(H;) = p(t) and p(a;) = ;. If (12) holds, it follows
from (9) for t = g; that p(a;) = 0Vi € X is a necessary condition. O

Definition 3.3. Let p be an extension of p € é; and v; = p(a;), v = (7i)iex €
kX. Then we denote the corresponding H(Q)-module by Sy If v = 0, we set
ST =25,.

P P

We now determine all H(Q)-modules whose underlying G-module is isotypical
of type p € Gap, provided that X is indecomposable and (12) holds.

Proposition 3.4. Assume X is indecomposable. Let M be an H(Q)-module such
that M = M|p] for a unique p € Gup, dim M = n. Then M is simple if and only
if n=1. If, in addition, (12) holds, M = S$".

Proof. Let p: H(Q) — End M be the corresponding representation and I'; € k™*"
be the matrix associated to p(a;) in some (fixed) basis. As in the proof of Prop. 3.1,
{T'i}iex satisfies (9). Thus, if we fix j € X, then for each ¢ € X there exists t € G
such that I'; = y;(¢)7'T';. Thus, there exists a basis {z1,...,2,} in which all of
these matrices are upper triangular and so k{z;} generates a submodule M’ C M.
If (12) holds, then it follows that I'; = 0, Vi € X and thus M = @?:1 Sp. O

3.2. Modules whose underlying G-module is a sum of two isotypical com-
ponents. -

Let p,u € Gy fulfilling (8), 7,6 € k¥ satisfying (9) and (10) for p and u,
respectively. We begin this Subsection by describing indecomposable modules that
are extensions of S by Sﬁ. For simplicity of the statement of (17) in the following
Lemma, we introduce the following notation. Let C' € R’, j € C and let

(221 (A1
ai(C)= > xlg) BC)= > xilg)
r=0 r=0

Note that if 2|n(C'), then a; = §;; otherwise, 8; = a; + Xj(gj)[%]_l.

Lemma 3.5. Let V be the space of solutions { f;}icx € kX of the following system

fin(t) = xi(t) frip(t), i€ X, teGand  (16)
(a; (C)5; = Bi(C)v) fi = —xi(9:) (i (C)di — Bi(C)vi) [ (17)

CeR, (i,j) € C. Then Ext%_[(g)(S;’, Sﬁ) =V and the set of isomorphism classes
of indecomposable H(Q)-modules such that

0—>Sg—>M—>Sg—>0is exact (18)

is in bijective correspondence with Py (V).
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Proof. Let M =k{z,w} be as in (18), with z € M|[p], w € M[u]. Then there exists
{fi}iex such that

a;z = vz + fiw. (19)
Then (16) follows from (5) and this implies

1 :{(_Xj(gj))}%_lch(c)_lfi if 2|h,
T (xale) E

T ((C) Ly if2lh+ 1,
since, for 7 =p or 7 = p,

T(gi21+1) = T(gizzgizzagz‘;l) = T(gi2171) == T(Qh) = T(gj)a
T(gi21+2) = T(gi21+1gizlgi;1+1) = T(gizl) == T(gi2) = T(gi)a

and % = X&(gx). Therefore, if (i,7) € C' and n = n(C), (6) holds if and only if

Znh(c) (fih,(sih+1 + fih,+17ih,) = O)VC 6 Rl?
h=1

that is, using (14), (6) holds if and only if (17) follows.

Conversely, if {f;}icx fulfills (16) and (17), then (19) together with a;w = d;w
define an H(Q)-module which is an extension of S} by Sﬁ.

M is indecomposable if and only if f; # 0 for some i € X. Assume M is
indecomposable and let M" = k{z’,w’'} be another indecomposable H(Q)-module
fitting in (18), with 2z’ € M'[p], w’ € M'[u]. Let {g;}iex € V be the corresponding
solution of (16) and (17). Assume ¢ : M — M’ is an isomorphism of H(Q)-
modules. In particular, ¢ is a G-isomorphism and thus there exist o, 7 € k* such
that ¢(w) = ow’, ¢(z) = 72’. But then it is readily seen that o,7 must satisfy
gi =07 f;, i € X. That is, [fi]iex = [9i]iex in Px(V). The converse is clear. [

Remark 3.6. If X is indecomposable, then, up to isomorphism, there is at most
one indecomposable H(Q)-module M as in the Lemma. In fact, if there is one,
let {f;}iex € k¥ be the corresponding solution of (16) and (17). Then, if we fix
j € X and let t; € G be such that i =¢; - j, i € X, then

Y Sy pu(ti) X
ex = £ () 5Es) e (20

and thus M is uniquely determined. In this case, the existence of a solution is
equivalent to (16) and

(65 = Bij) (

if (1,/) eC,CeR,i=t;-].

p(ti)
p(ti)

+m@0ﬁ=m ar)

Definition 3.7. Assume X is indecomposable and Ext%_[(g)(Sg,Si) # 0. We
denote the corresponding unique indecomposable H(Q)-module by M;’l‘f. Ifv =
d =0, then (17’) is a tautology. We set M, ,, := MS,’3~
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Assume that X is indecomposable and that G = ({gi}iex). Let j be a fixed
element in X. Define ¢ : G — Z, resp. ¢ : G — k*, as

L) =min{n : t=g; ... G, t1,...,0n € X},
resp. Y(t) = Xj(gj)z(tl\,t € G. Notice that 7(g;) = 7(g;), Vi € X, hence 7(t) =
7(g;)*®, for any 7 € Gap, t € G.
Lemma 3.8. Keep the above hypotheses. If EXt%_L(Q)(S;, Sﬁ) # 0, then

uls) = v(s)pls), Vs € G (21)

Therefore p determines p (and vice versa), and v is a group homomorphism.
Conversely, if (21) holds, we may replace (16) and (17) by

Fixi(9)" Y = xa(t) fris ieX, teGand (16"
0= filao; = Brg) (xi () 971 + 1)), (ar)

if (1,j)€eC,CeR,i=t;-].
Proof. Setting i = j and ¢ = g; in (16), and taking the ¢(s)-th power, we get (21).
The rest is straightforward. O

We will show next that there are no simple modules M of dimension 2 such that
M, is sum of two (necessarily different) components of dimension 1, provided that
the following holds:

ICeR' with n(C)>1. (22)

Notice that if (22) does not hold and gr H(Q) = B(X, ¢)tkG, then it follows that
dim H(Q) = oo, provided that | X| > 1, since {(a;a;)" }nen is a linearly independent
set in H(Q).

Lemma 3.9. Assume X is indecomposable, and that (13) and (22) hold. Let

[NTRS Gav, and let M be an H(Q)-module such that M = M[p)® M [u], dim M[p] =
dim M[u] = 1. Then M is not simple.

Proof. Assume that there exists M simple as in the hypothesis. We first claim
that p # p and that, if z € M[p], then a;z € M[u]. In fact, let a;z2 = v + w with
u € M|p], w € M[u], then

Hiaiz = p(t)u + p(t)w, xi(t)ar.Hez = xi(t)p(t)at.iz
and taking t = g;, we get

plgi)u + plgi)w = xi(g:)p(g) (u +w) ) —p(giyu — p(gi)ew.

Thus u = 0; hence w # 0 because M is simple. Also,

p(gi) = —u(gi), i€ X. (23)

By a symmetric argument, a;(M[u]) = M|p].
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Now, fix 0 # z € M|p], 0 # w € M|u]; let f;, i € X, such that a;z = f;w. Then
(fi)iex satisfies (16), by (5). As X is indecomposable and M is simple, we have
fi #0, Vi e X. We necessarily have

aw=piz, for p;=f7 N1 - p(g:)?). (24)

Note that p; # 0 or otherwise a;w = 0, Vi € X. As stated for {f;}, the family {p;}
also satisfies (16), with the roles of p and p interchanged.

Assume that there is C' € R’, with n(C') > 1. We now show that this contradicts
the existence of M. Let (i, 1) = (i,7) € C, then

n(C) n(C)

acz = nfi,Qip,,w Z N i f“L“ P(Gini)?)z.
h=1 th+1

Let t € G such that i = t-j and recall that i, = ij_1>1i5_2. Since gs.x = gsgrgs '
then

p(gins)? = plg;)? Vh
Now, by (3)7 )‘ih = Aih—l>¢h—2 = Xin—2 (gih—l)_QAih—27 then

L GO TG07 i 20h,
T G(0) 2, if 2/h + 1.

Additionally, by (16), we have

(@D f i o,

fir, = p(t) (25)
C(C)Lf; if 2|h + 1,
for every h =1,...,n(C). Therefore, we have that:
&Xj(t)_l)\j if 2|h,
f; p(t
ﬂh(c)AiHl - b= (26)
e o )t if2(h+1
p(t) ™ !
Analogously, if we analyze the element acw, we get
&Xj(t)ilAj if 2|h,
i u(t)
Uh(C)AihH ] — = (27)
e | )" if2lh+1
p t) J J
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However, notice that, if b > 1,

7 >‘ih 1-— in 2 iha1
nh(C)Azh+1 ph :nh(c)A ( p(g ) )f v+

Pir s P Niner (L= p(Ginr)2) fin
= —1h-1(C)Xi,_, (9ir)Ais f}}: o —nr—1(C)Ai, f;;hl %
—x; ()7, if 2|h.

And from this equality together with (27), we get

p(t) = —p(t), if (i,j)eC, t-j=i. (28)
But, as i > i = i, we have that u(g;t) = —p(g;t) and also

(23)
p(git) = p(gi)p(t) =" —p(gi)u(t) = p(gi)p(t) = p(git),
which is a contradiction.
O

Assume X is indecomposable. Next, we describe indecomposable modules which
are sums of two different isotypical components, provided that (13) and (22) hold.

Theorem 3.10. Letp # p € é;. Assume X is indecomposable and both (13) and
(22) hold. Let M = M|[p]®M [p] be an H(Q)-module, with dim M [p], dim M [p] > 0.
Then M is not simple.

Moreover, M is a direct sum of modules of the form S}, Sﬁ, M,;[;f/ and M/‘iupV
for various v,0, v, 8", 4", 56".

"

Proof. Take 0 # z € M|p]. As in the first part of the proof of Lemma 3.9, it
follows from (13) that p # u and that, if 0 # z € M|p], then a;z € M[u]. Now,
a;w = a?z = \(1 — p(g:)?)z, and thus the space k{z,w} is a;-stable. As X is
indecomposable, it follows that this is a submodule. Let K = kera,;. Here we see
a; as an operator in End M. This subspace is G-stable: if u € K, u = z + w, with
z € M[p], w € M[u], then 0 = a;u = a;z + a;w = z,w € K, since a;w € M|p],
a;z € M[u]. Thus p(t)z = Hyz and p(t)w = Hw € K, ¥Vt € G. Therefore
G -u C K. The same holds for I = ima;. Let T be a G-submodule such that
M =K ®T (recall kG is semisimple). Let

K =kera; = Kl[p|® K[u], T=T[p|®T[ul, I=ima;=I[p]® I[u].

Notice that K # 0. In fact, if K = 0, then the space k{z,w} would be a simple
2-dimensional H(Q)-module, contradicting Lemma 3.9. Thus K # 0. Then ~; = 0,
Vi€ X and a? - M = 0. Notice that in this case I[t)] C K[¢], for ) = p or p, and
thus we have K[¢] = I[¢p] @ J[¢p]. As G-modules, we have

Me= P Myl= P Y e Jl e T,

Y=p,u h=p,p
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and this induces the following decomposition of H(Q)-modules:
M = Jlpl@ J[pl ® (Ip] + Tlp)) @ (I[u] + Tlp))-

Let ¢»p = p or p. If J[yy] # 0, then (8) holds for #, and J[¢] is a sum of 1-
dimensional H(Q)-modules, by Prop. 3.4. Let {w1,...,ws} be a basis of T[u].

Then {a;w1,.. .,aiwk} is a basis of I[p]. In fact, if z € I[p], z = a;w, w € T[u],
there are o1, ...,0% € k such that w = Zf 1 ojw; and then z = Z?:l oja;w;j. If,

on the other hand, {o;}}_, € k satisfy 0 = Zj 1 0ja;w; then Z?:l ojw; € K(ul,
and as K NT =0, 0; = 0Vj = 1,...,k. Thus I[p] + T[u] = @?:1<wj> as
H(Q)-modules. By Lemma 3.5, for each j = 1,...,k there exists §;,7; € k*¥
such that (w;) = M7, A similar statement follows for I[y] + T[p]. Therefore,

there are myp, my, mp ., my,p € No, {gj};n:ph{wj}] ", {95 }g 1 a{’YJ}g 1 ’{U]}j 1
{T]}m" * € k¥ such that

my Mp,p My, p

=@ ooy o B e Gz

where m,, (resp. mu) is non-zero only if (8 ) holds for p (resp. W), &, m; and satisfy
(9) and (10) for p, pu respectively. On the other hand, m, , # 0 only if (16) holds
for p, ;v and 65, y; satisty (17). Similarly for my, ,, o, 7;. O

3.3. The case G =S,,, n > 3.
Let A, T, ek, t = (A, T),t: OF < S, the inclusion, - : S, x X — X the action

given by conjugation, —1 the constant cocycle ¢ = —1 and x the cocycle given by,
ifr,0e0f, 7= (ij) and i < j:
1 i (i) < ol
xo,r) =" o(i) < o(j) see [MS, Ex. 5.3].
=1, ifo(i) > o(j),

Then the gl-data:
e Ot = (Sn, 08, —1,-,0,{0,A,T}), n > 4
o OX[A] = (Sn, 03, X, 1,{0,0,A}), n > 4;
o Q'[N = (S3,08,—1,-,¢,{0,A});
define pointed Hopf algebras over S,,, for n as appropriate, [AG2, GG].

Remark 3.11. Notice that the racks OF, n > 3 are indecomposable and that (13) is

satisfied for both cocycles. In this case, é; = {e,sgn}, where ¢, resp. sgn, stands
for the trivial, resp. sign, representation. In any case, (11) holds. Bear also in
mind that S,, = (OF). In this case, the function ¢ : G — Z is well-known and
¥ G — {£1} C k* coincides with the sign function, by (13). Moreover, (22) holds
in all of these gl-data.

Proposition 3.12. Let A = H(Q,'[t]) or H(Q3'[\]). Let M be an A-module
such that Mg, = M|e] & M|sgn], dim M[e] = p, dim M([sgn] = q. Then
(i) M is simple if and only if M =S¢ or M = Sggn.
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(ii) M s indecomposable if and only if M is simple or p = q = 1. In this
last case, there are two non-isomorphic indecomposable modules, namely
Me sgn and Mgn .

Proof. 1t follows by Props. 3.1 and 3.4, and by Lemma 3.9 that S, and S, are the
unique two simple modules. The second item follows by Thm. 3.10 and Lemma
3.8. O

Proposition 3.13. Let n > 4. Let M be a H(QX[)\])-module such that Mg, =
Me] ® M(sgn], with dim Me] = p, dim Me] = q, p,q > 0. Then M is indecom-
posable if and only if it is simple if and only if M = Se or M = Sygy.

Proof. The determination of the simple modules follows from Props. 3.1 and 3.4
and Lemma 3.9. By Lemma 3.8 there are no extensions between 1-dimensional
modules. Hence, the Prop. follows from Thm. 3.10. (]

4. GENERAL FACTS

Let H be a Hopf algebra, V € £YD. The Nichols algebra B(V) = ©,>¢B8"(V)
is a graded braided Hopf algebra in YD generated by V, in such a way that
V = BYV) = P(B(V)), that is, it is generated in degree one by its primitive
elements which in turn coincide with the module V. This algebra is uniquely
determined, up to isomorphism. See [AS] for details.

Let G be a finite group. Let X be a rack, ¢ a 2-cocycle and assume that there
exists a YD-realization of (X, ¢) over G. We denote by B(X, ¢q) the corresponding
Nichols algebra.

4.1. Simple modules over bosonizations.

Consider the bosonization A = B(X, q)fkG. As an algebra, A is generated by
B(X, q) and kG; the product is defined by (aft)(bfs) = a(t - b)fts, here - stands for
the action in $YD. See [AS, 2.5] for details. In what follows, we shall assume that
B(X, q), and thus A, is finite dimensional. The following proposition is well-known.
We state it and prove it here for the sake of completeness.

Proposition 4.1. The simple modules for A are in bijective correspondence with
the simple modules over G: Given p € G, S, is the A-module such that

Sy, =2 W, as G-modules, and a;S, =0, VielX.
This correspondence preserves tensor products and duals.

Proof. With the action stated above, it is clear that for each p € @, S, is an
A-module. If B(X,q)" denotes the maximal graded ideal of B(X,q), then the
Jacobson radical J = J(A) is given by J = B(X,q)TtkG. In fact J is a maxi-
mal nilpotent ideal (since A is graded and finite dimensional) and A/J = kG is
semisimple. This also shows that the list {S, : p € G} is an exhaustive list of
B (X, g)-modules, which are obviously pairwise non-isomorphic. The last assertion
follows since a; (S, ® S,,) = 0 and S(a;) = —H, 'a;. O
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4.2. Projective covers of modules over quadratic liftings.

Let B be aring, M a left B-module. A projective cover of M is a pair (P(M), f)
with P = P(M) a projective B-module and f : P — M an essential map, that
is f is surjective and for every N C M proper submodule, f(N) # M. We will
not explicit the map f when it is obvious. Projective covers are unique up to
isomorphism and always exist for finite-dimensional k-algebras, see [CR, Sect. 6].
Moreover,

BB = P P(S)"™m”. (29)
SeB
Fix G a finite group and H a pointed Hopf algebra over G. Let {e;}}¥, be

a complete set of orthogonal primitive idempotents for G' and set I; = He;, for
1<j<N.

Lemma 4.2. [; = Indﬂfg kGe;. In particular, if kGe; = kGey, as G-modules, then
I; = Iy, as H-modules.

Moreover, H = ®pe@ Igimp as H-modules, where I, = IndﬂfZ{G W, and thus I,
is a projective H-module.

Proof. Let v : Ind]fG kGe; — H be the composition of the multiplication m :
H ®xe kG — H with the inclusion H ®g kGe; — H ®kg kG. It follows that
im¢y = I;. Then I; = Indf,, kGe; and I; does not depend on the idempotent e;
but on the simple module W, = kGe;. Therefore, as kG = @ kGe;, we have

that H = @ 515" O

Let {H,, }nen be the coradical filtration of H,
grnH: Hn/anlv ng: @nzogfn H.
We know that there exists R € §YD such that gr H = REkG, see [AS, 2.7]. Let
7 Hyp — gr™ H be the canonical projection. As every H, is ad(G)-stable, it
follows that 7, is a morphism of G-modules. Therefore there exists a section
gr™ H — H, and H,, = gr"™ H® H,,_1 as G-modules. By an inductive argument we
have that H, =2 gr" H @ gr" ' H®--- @ gr® H. And thus it follows that H = gr H
as G-modules. Moreover, it follows that, if we consider the adjoint action on kG,

grH = R ® kG as G-modules, via the diagonal action. Thus, H = R ® kG as
G-modules.

Proposition 4.3. Let gr H = RikG.
(i) I. 2 R as G-modules.
(ii) Assume there exists a simple H-module M such that My is a simple
G-module W,. Then P(M) is a direct summand of I,. In particular, if
I, is indecomposable, then I, = P(M).
(i) If H = RikG, 1, is the projective cover of S,, see Prop. 4.1.

Proof. Let W, be the trivial G-module. Since I, = Indlfg We and H =2 RQKkG, we
have
()6 = (R@KG) 84a Wo)jo = Rie.
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Thus the first item follows. Let now M be an H-module such that Mg = W,. If
(P(M), f) is the projective cover of M, we have the commutative diagram:

~ Ip
S
P(M) M

where 7 : I, — M is the factorization of the action - : H ® M — M through
HoM — I, = H® W,. As f(r(I,)) = n(I,) = M and f is essential, we
have an epimorphism I, — P(M) and P(M) is a direct summand of I,. Thus
I, = P(M), if I, is assumed to be indecomposable.

Finally, assume H = R{kG. If P(S,) is the projective cover of S,, we must have
dim P(S,) < dim I, = dim Rdim W,. But we see that this is in fact an equality
from the formulas:

dim H = dim R )  dim W, = > (dim Rdim W,) dim ¥,
peG peG
dim H =) dim P(S,) dim S, = > dim P(S,) dim W,,.
peG peG
O

4.3. Representation type.

We comment on some general facts about the representation type of a finite
dimensional algebra, that will be employed in 5.2.2 and 5.3.6. Let B be a finite
dimensional k-algebra, B= {S1,...,S,} a complete list of non-isomorphic simple
B-modules. The FEzt-Quiver (also Gabriel quiver) of B is the quiver ExtQ(B)
with vertices {1,...,n} and dim Extj(S;, S;) arrows from the vertex i to the ver-
tex j. Then B is Morita equivalent to the basic algebra kExtQ(B)/I(B), where
kExztQ(B) is the path algebra of the quiver FxztQ(B) and I(B) is an ideal con-
tained in the bi-ideal of paths of length greater than one. Recall that for any two
B modules My, M5 there is an isomorphism of abelian groups

Exty (M, My) = {equivalence classes of extensions of M by M},

where the element 0 is given by the trivial extension M; & Mos.

Given a quiver ) with vertices V' = {1,...,n}, its separation diagram is the
unoriented graph with vertices {1’,...,n/,1” ..., n”} and with an edge i"—;j" for
each arrow i — j in Q. If B is algebra, we speak of the separation diagram of B
referring to the separation diagram of its Ext-Quiver.

Theorem 4.4. [ARS, Th. 2.6] Let B be an Artin algebra with radical square zero.
Then B is of finite (tame) representation type if and only if its separated diagram
is a disjoint union of finite (affine) Dynkin diagrams. O

Next lemma is well-known by mathematicians working on representation theory
of algebras.
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Lemma 4.5. Let J be the radical of B. Then ExtQ(B) = ExtQ(B/J?).

Proof. First, it is immediate that B= B//ﬁ Let S,T € B. As any B/J?-module
is a B-module, we have Ext}g/p (S,T) C Exty(S,T). Now, let

0TV —»8—=>0eB—-—mod, z€V,ay,as, € J.

IfzeT CV,then a1z =0= agarx =0. If c ¢ T, then 0 # 2 € V/T = S and
thus a1z = 0, that is a;xz € T, and therefore asa;z = 0. Thus, the above exact
sequence in B — mod gives rise to an exact sequence in B/.J? — mod, proving the
lemma. U

5. REPRESENTATION THEORY OF POINTED HOPF ALGEBRAS OVER Sj3

In this Section we investigate the representations of the finite dimensional pointed
Hopf algebras over S3. We will denote by Ay, A € k, the algebra H((Qz'[\])).
This algebra was introduced in [AG1]. Explicitly, it is generated by elements Hy,
a;, t,i € O3; with relations

HH,H, = H;HH, Ht2 =1, S 7é te Og,
Hia; = —atqiHy, t,i € O3;
G%Q = 0)

a12023 + ag3a1z + a13a12 = AN(1 — Hi2Hoag).

A, is a Hopf algebra of dimension 72. If H is a finite-dimensional pointed Hopf
algebra with G(H) = Sg, then either H =2 kS3, H = Ay or H = A; [AHS, Theorem
4.5], together with [MS, AGL, AZ].

We will determine all simple modules over Ay and A;, along with their pro-
jective covers and fusion rules. We will also show that these algebras are not of
finite representation type and classify indecomposable modules satisfying certain
restrictions.

Remark 5.1. Notice that to describe an Ay-module supported on a given G-module,
it is enough to describe the action of a2, since ay3,as3 € ad(G)(a12).

5.1. Simple kSz-modules. We will need some facts about the representation
theory of Sz, which we state next. Besides the modules W, and Wy, associated to
the characters € and sgn, respectively, there is one more simple kS3-module, namely
the standard representation Wy;. This module has dimension 2. We fix {v, w} as its
canonical basis. In this basis the representation is given by the following matrices:

= () = (1 0. = (3 ).

Given a kSs-module W, we denote by W{st] the isotypical component correspond-
ing to this representation.

Rev. Un. Mat. Argentina, Vol 51-1



REPRESENTATIONS OF POINTED HOPF ALGEBRAS OVER S3 65

5.2. Representation theory of Aj.

Proposition 5.2. There are exactly three simple Ag-modules, namely the exten-
sions Se, Sgen and Sg; of the simple kSs-modules.

Proof. Follows from Prop. 4.1. O

5.2.1. Some indecomposable Ag-modules.
Fix (2)s, = We, (¥)ss = Wegn, (v, w)s, = Wi

Lemma 5.3. There are exactly four non-isomorphic non-simple indecomposable
Ag-modules of dimension 3:

My e = k{z,v,w}, with a12 -V = x, a1z -z =0; (i

Mgt son = k{y, v, w}, with a1z - v =1, a1z -y =0; (ii

M, o = k{z,v,w}, with a2 T =0V —w, ais - v =0; (iii

Mign st = k{y, v, w}, with ais -y =v+w, ais - v =0. (iv
In particular, dim Exti‘o(Sst, Sy) = dim Ext}% (S5, Sst) =1, 0 € {e,sgn}.

Proof. By Prop. 3.12, we know that such an Ap-module M must contain a copy
of Wy Thus Mg, = W, @& Wy, or Mg, = Wsgn © Wy. The lemma now follows by
straightforward computations. O

Proposition 5.4. The non-isomorphic indecomposable modules which are exten-
sions of S by itself are indexed by PL. In particular, it follows that dim Ext}% (Ssts
Sst) = 1.

Proof. 1If {v1,v2, w1, ws} is basis of such a module, with {ve, wa}|s, = Wi, {v1, w1}
> Mg, then a necessary condition is that ajove = avy + bwy, a # 0 or b # 0. It is
easy to see that this formula defines in fact an indecomposable Ay module M, p)
for each (a,b) and that two of these modules, M, ) and M, 4, are isomorphic
if and only if 3 # 0 such that (a,b) = v(a’, V). O
5.2.2. Representation type of Ag.

Proposition 5.5. Aq is of wild representation type.

Proof. From Lemmas 3.8 and 5.3 together with Prop. 5.4, we see that the Ext-

Quiver of Ay is
) <47 3

where we have ordered the simple modules as {Se, Ssgn; Sst } = {1,2,3}. Thus, the
separation diagram of Ay is

.1 / .3
’ ’
.3 .2 .1
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which implies that Ag is wild. O

5.3. Representation theory of A;.
We investigate now the simple modules of A;, their fusion rules and projective
covers, and also the representation type of this algebra.

5.3.1. Modules that are sums of 2-dimensional representations. We first focus our
attention on those A;-modules supported on sums of standard representations of
kSs.

Lemma 5.6. Let My = k{v,w}. Then, the following formulas define four non-
isomorphic Ay-modules supported on Mg :

a12v = i(v — w), ajpw = i(v — w); (i)
a12v = —i(v — w), ajpw = —i(v — w); (ii)
i i
a12v = g(’U +w), ajpw = —g(v +w); (iii)
i 1
ajov = —g(v + w), apw = g(v + w). (iv)

They are simple modules, and we denote them by S (i), Sse(—1), Sst(3), Sst(—3),
respectively.

Proof. Straightforward. O

Proposition 5.7. Let p € N and let M be an Aj-module such that M = M|st],
dim M = 2p. Then M is completely reducible.
M is simple if only if p = 1. In this case, it is isomorphic to one of the modules

Ss (1)7 Sst(_i); Sst(%)v Sst(_é)
Proof. Let {v;, w;}Y_; be copies of the canonical basis of Wy, such that {v;, w; }7_;
is a linear basis of M. Let v = (v1,...,vp), w = (w1,...,wp). Now, there must
exist matrices «, 8 € kP*P such that a1s-v = av+ Sw and thus a12-w = — v —aw,
by acting with His. By acting with the rest of the elements H; we get:

alg.v:—(a+ﬂ)v+2(a+ﬂ)w, a13~w:—ﬂv+(a+ﬂ)w,

asgz - v =—(a+ B)v+ Pw ass - w = —=2(a+ p)v+ (a+ pw.
Now, 0 = a?yv = aayz - v + Baiz - w = (a? — %)v + (o — Ba)w, and this implies
that o2 = 82, o8 = fa. Hence,

(a12a13 + a13a23 + azzaiz) - v = (—5a” — 4af)(v + w),
while (1 — Hqi2Hq3) v =v+w,
and thus —5a2 — 4af = id.
Now, we have that, in particular, —5a — 48 = a~! and therefore 8 = —%a —

1ot Thus,

1 1
2 _ 52 _ —1y2 _ 2 -2 -
o =p7= 16(5a+a ) 16(2504 +a " +10id),
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from where it follows (ozz)*1 = —902 — 10id and id = —9a* — 10a?, which is
equivalent to
) 16
2 12 :
+ —id)* = —id.
(« 9 id) 31 1 (30)

This gives, in particular, that if § € k is an eigenvalue of «, then 6 € L(a) :=
{:l:i,:l:%}. Now, let @ € kP*P be a matrix satisfying equation (30). A simple
analysis of the possible Jordan forms J(a) of o gives J(a) = diag(6s,...,0,), for
some 0; € L(a), i =1,...,p. If p> 1, we get that there is a basis of M in which
« (and consequently ) is a diagonal matrix, and so M is completely reducible.
On the other hand, if p =1, « € L(a) and § = +« give the module structures
defined in Lemma 5.6. (]

5.3.2. Classification of simple modules over A;. Now, we present the classification
of all simple A;-modules.

Theorem 5.8. Let M be a simple Ay-module. Then M is isomorphic to one and
only one of the following:

® Se;
L4 Ssgn;

° st(i); Sst(_i); Sst(%) or Sst(_%)'

Proof. We know that the listed modules are all simple. In view of Props. 3.12
and 5.7, we are left to deal with the case in which Mg, = Mle] © M|sgn] @
M st], with dim M[e] = n, dim M[sgn] = m, dim M[st] = p, n +m,p > 0. Let
{T1, - Tn, Y1, oy Ym,y V1, - oo, Up, W1, ..., Wy} be a basis of M such that k{x;} =
We,i=1,...,n,k{y;} = Wn, i =1,....m, k{ve,wp} = Wy, k=1,...,p. Using
the action of His, we find that there are matrices aw € k"> g € k"*P ~ € k™*",
n e km*P q e kP b e kP*™ and ¢,d € kP*P, such that, if x = (x1,...,2,),
Y= (Y1, Ym), v = (V1,...,0p), w = (w1,...,wp), the action of ay2 is determined
by the following equations:

ap-x = oy + Bv —w), arz -y =yr +n(v+w)

a1z - v = ax + by + cv + dw, a1z - w = —ax + by — dv — cw.

We deduce as in Prop. 5.7 the action of every a,:

ais - = ay — P, a1z - v = —2ax — (¢ + d)v + 2(c + d)w,
ais -y =vx +n(v — 2w) a1z - w = —azx — by — dv + (¢ + d)w,
as3 - T = ay + Pw, ags - v = ax — by — (¢ + d)v + dw,

ass -y = vx + n(w — 20), ass - w = 2ax — 2(c+ d)v + (¢ + d)w.

Recall that it is enough to find a subspace stable under the action of aj5 and the
elements H;, by Rem. 5.1. Now,
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0= ajyx = (ay + 2Ba)z + (an + Blc + d)) (v + w);
0= aloy = (ya+ 2nb)y + (v8 + nlc — d)) (v — w);
0= alyw = (by + (c — d)a)z + (ac + (c + d)b)y

+ (af + b+ * — d*)v 4 (—af + by + cd — dec)w

a12a13 + a13a23 + assai2) - © = (3ay — 3Ba)r — 35by;

= (
= (a12a13 + a13a23 + az3a12) - y = Inax + 3(ya — nd)y;
v+ w = (a12a13 + a13a23 + azzaiz) - v

(—=3af — 3bn — ¢* — 4d* — 2dc — 2cd)v

+ (3aB + 3bn — 4c* — d? — 2dc — 2cd)w
Then we have the following equalities:
0=rya=ay=pa=pb=mna=nb,
Blc+d)+an=0=n(c—d)+8,
by + (¢ —d)a =0=aa+ (c+ d)b,
d> —c2=aB+by, cd—dc=af—by
3a8 + 3bn = —c? — 4d? — 2dc — 2cd — id
3a8 + 3bny = 4c® + d? + 2dc + 2cd + id .
From the last two equations:

A —d*=2(aB+bn), 5(c*+d?) +4(dc+ cd) = —2id,

and thus a8+ bn = 0, ¢ = d?. Notice that the matrix of a5 in the chosen basis is:

(31)

0 t,y ta —ta
laza] = ta 0t
12] — t/@ t77 te  _tg

—tﬁ t77 td _tc

Now we make the following
Claim. If « or v have a null row, then M is not simple.

In fact, assume (a11,...,a1,) = 0. We have a12 - 21 = Zj B1j(v; —w;), if this
is zero, then (z1) & S. C M and M is not simple. If not, let

U = Zﬂljvj; wy = Zﬂlngw
J J

Thus, a1 -1 = v1 — wy and as 0 = a%le we have that ai1207 = a;ow;. But,
moreover, we also have that

a1201 = Z ,Ba 15T + Z ¢+ d))k(vg +wy) =0,
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since fa = 0 and (B(c+d))1x = —(an)1x = — >, aumr = 0. Then v, =0, Sc C M
and M is not simple.

The claim when a row of  is null follows analogously, or just tensoring with the
representation Sggp,, since it interchanges the roles of o and +.

Then we see that, for M to be simple, we necessarily must have ‘o, 'y injective.
But 0 = *(ay) = "y*a = a = 0. Thus M cannot be simple if n, m > 0. Therefore,
we are left with the (equivalent) cases

Ms, = Mle] © M[st], with dim M[e] =n, dim M|[st] =p, n,p> 0;
Ms, = M([sgn] © M|st], with dim M[sgn] =m, dim M]st] = p, m,p > 0.

Assume we are in the first case. Thus, the equations above become:

{ af=PBa=0, Blc+d) =0, (c—da=0,

32
d>=¢c2, cd=dc, c(—5c—4d)=id. (32)

Now, in particular, if *3 is injective, we have ‘a = 0 and thus A; - M([st] & M[st].
But if '8 is not injective, we may find a non-trivial linear combination z of the
elements {z;}_ ; making S. = (z) into an A;-submodule of M. O

5.3.3. Some indecomposable Ai-modules.

We start by studying the 3-dimensional indecomposable modules. As said in
Lemma 5.3, it follows that for such a module M, it holds either that M, =
W Wi or Mg, = Wgn®Wyi. Take x,y, v, w such that (z)s, = We, ()5, = Wegn,
(v, )5, = Wit

Lemma 5.9. There are exactly eight non-isomorphic non-simple indecomposable
Ai-modules of dimension 3:

MSt’E[ié] =k{z,v,w}, a9 -V = i%(v +w)+x, az-x=0; (i)

Mst,sgn[ii] = k{y, v, w}, a12 -V = ii(v - ’U}) + v, arz -y = 0; (11)

M, g[£i] = k{z,v, w}, aiz - v = Fi(v — w), a1z -x=v—w; (i)
1 i

Msgn,st[:tg] =k{y,v,w}, ap2-v= j:g(v + w), a2 y=v+w. (iv)

Proof. 1t is straightforward to check that the listed objects are in fact A;-modules
and that they are not isomorphic to each other. Now, assume Mg, = We @ W,
the other case being analogous. If M is not simple, then there is N C M and
necessarily Njg, = Wy or Nig, = We. Then, the lemma follows specializing the
equations in (31) to this case. O

Proposition 5.10. Let M be an indecomposable non-simple Ay -module such that
Ms, = M[e]® M]st], with dim M[e] = p, dim M[st] = q or M|s, = M [sgn|® M st],
with dim M[sgn] = p, dim M[st] = ¢ for p,q > 0. Thenp = ¢ =1 and M is
isomorphic to one and only one of the modules defined in Lemma 5.9.

Proof. We work with the case Mg, = M([e]® M [st], with dim M[e] = p, dim M st] =
g, p,q > 1, the other resulting from this one by tensoring with Sezn. Let M[e] =
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k{z;}¥_,, M[st] = k{v;,w;}{_; and a, 3, ¢,d be as in the proof of Th. 5.8. Recall
that they satisfy the system of equations (32). The last three conditions from that
system imply, as in the proof of Prop. 5.7, that ¢, d may be chosen as

50 —5 0
<o 5) = 5)

i
for 6 € k>0 §" € k%% diagonal matrices with eigenvalues in {£i} and {ig},
respectively, ¢ + g2 = q. Consequently,

/3=<Bl 0)7 a=<0 fz>,witha161+azﬁz=07

52 0 a1
0 0 0 ‘tap 0 —tay
0 0 0 ‘taa 0 —ta
P By By 6 0 & 0
2=1 o 0 0o & 0o =&

—B =By -6 0 =5 0
0 0 0 o 0 —

Assume ¢o > 0. In this case, a = (ZZ;) must be injective. Otherwise, we may

change the basic elements {vg,11,...,0q, Wg+1,--.,Wq} in such a way that, for
some ¢q; + 1 < r < g, the last ¢ — r columns of @ are null and in that case

M = (vgy—r41,...,0q) B (xi,v; i =1,...,p;5=1,...,¢—1).

Thus a is injective. Change the basis {z; : ¢ = 1,...,p} in such a way that

i )
a12 Vg +i = T; + g(vqlﬂ' +wg 1i), i1=1,...,q.

Notice that, as ai2(vg, +i + wg,+i) = 0 for every i and af, = 0, then ajs - z; = 0,
i=1,...,q2. But then

q2
M = @<£L‘i,’uql+i> b <£L'q2+1, sy Tpy Uy e e ,’Uq1>.
=1

Therefore, if go > 0 and M is indecomposable, then ¢; = 0, p = ¢o = 1, and this
gives us the modules in the first item of Lemma 5.9.
Analogously, if ¢ > 0, 8 = ( *g1 82 ) must be injective, and g2 = 0. If v1,..., v,
are chosen in such a way that ayo-z; = vi—w;, i =1,...,p, then M = @_ (x;,v;)®
g;p 41 (vi) and therefore p = ¢; = 1, giving the modules in the third item of the
lemma. The modules in the other two items result from these ones by tensoring
with Segn. O

5.3.4. Tensor product of simple Ai-modules. Here we compute the tensor product
of two given simple A;-modules, and show that it turns out to be an indecomposable
module.

First, we list all of the indecomposable A;-modules of dimension 4. Notice that
if M is such an indecomposable module, then we necessarily must have Mg, =

Rev. Un. Mat. Argentina, Vol 51-1



REPRESENTATIONS OF POINTED HOPF ALGEBRAS OVER S3 71

We ® Wegn @ Wy, by Props. 5.7 and 5.10. In the canonical basis, the matrix of a2
is given by

0 ~v a —a

a 0 b b
[a12] - B n ¢ —dl-

-8 n d —c

for some «,v,a,b ek and c =d = i% or c=—d=1. For every c=10 € {ii,i%}
and for each collection («, 3,7,7, a,b) which defines representation, we denote by
M, B,7,m,a,b)[d] the corresponding module.

Proposition 5.11.

e et = i%. There are exactly four non-isomorphic indecomposable mod-
ules M(a, B,7,n,a,b)[£35]. They are defined for (o, B,7v,m,a,b) in the
following list:

(i) (0,0,1,0,1,0),
(ii) (0,0,1,1,0,0),

(i) (1,0,0,0,F%,1),

(iv) (1,1,0,%%,0,0).

e Let = £i. There are exactly four non-isomorphic indecomposable mod-
ules M (e, B,7,n,a,b)[xi]. They are defined for (c, B,7,n,a,b) in the fol-
lowing list:

(i) (1,0,0,0,0,1),
(ii) (1,1,0,0,0,0),
(iii) (0,¥2i,1,1,0,0),
(iv) (0,0,1,0,1,F2i).
The next proof is essentially interpreting the equations (31) in this case.

Proof. We have the following identities

ay=~va=0, Ba=pb=na=nb=0. (33)
Assume c =d = i%, then to the equations listed above we must add:

0=26c+ an=aa+2ch, 0=~5="0y.

We compute the solutions. Notice that « = 0= 5 =0=b=0= na = 0. Then
according to 7 = 0 or a = 0 we have:

aiz - x =0, a2 -r =0,
ai2 "y =YL, or aiz -y = vz + v+ w),
a12 - v = ax + c(v + w) ayz - v = c(v + w).

Notice that, in any case, we cannot have v = 0, otherwise the module would
decompose. We may thus assume v = 1, changing y by %y For the same reason,

we cannot have a = 1 = 0. In the first case, we may take a = 1, changing v by év
and in the second case, changing v by nv we may take n = 1.
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On the other hand, v = 0 = « # 0; and, according to 8 =0 or 3 # 0,

as - T = ay,
b=0=<Cai2-y=0
aig-v =axr +by +c(v+w), fora=—2cba"!
a2 @ = ay + (v —w),
B#0= a2 y=n(+w),
az v =c(v+w), for n = —2Bca~1.
In the first case we may assume a« = b = 1, and thus a = —2¢ and, in the second,

a = =1, and thus n = —2c.

Assume now ¢ = —d = =i, then to the identities (33) we had we must add:

{

0 =aa=an.
We find the solutions:

0 =2by+ 2ca=~5+2cn

ais - T = ay, aiz - = oy + Bv —w),
(i) Jai2-y =0, (i) § a12 -y = 0,
a2 - v =by + c(v — w). aiz v =c(v —w).
a1z -z = fv—w), a1z -z =0,
(i) 4 12 Y = 1@ v+ w), (iv) 4 12 Y =
ayz v =c(v —w), a12 - v = ax + by + ¢(v — w),
B =—2ncy L. b= —2cay~ L.

Therefore, changing conveniently the basis on each case (by scalar multiple of its

components), we have the four modules from the second item.

Let sgn : iR — {£1}, sgn(it) = sgn(t).

O

Proposition 5.12. The following isomorphisms hold:
(i) Se®S=S=S®S. for every simple Ay-module S;

(11) Ssgn®Sst(9) = Sst(ﬁ); fm,. 9; 19 € {:l:ia :t%}

with sgn(6) = sgn(9), 19] # [9];

(i) Sst(0) ® Ssgn = St (0), for 0,9 € {£i, £1} with sgn(d) = —sgn(V), |0] #

Sst 1) = Sst(_é) ® Sst(é)
) = Sst(_%) & Sst(

(1)

)

Ugo

24
—_ =~ =~ =

_'
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o Sut(—1) ® See(—1) = St (3) @ See(—4) = M(0,-2i,1,1,0,0)[i],

o Se(—1) ® Sat(5) = Su(3) @ Sar(i) = M(1,1,0,24,0,0)[—3],

o Sut(—1) ® See(—1) = Sat(3) ® Se(—i) = M(0,0,1,0,1, —2i)[i].
Proof. Ttem (i) is immediate.

We check item (ii): let § € {+i, 1}, Sen = k{z}; Ss(6) = k{v,w}, a1z - v =
cv + dw. Then (Ssgn @ Sit)js, = Wit with the canonical basis given by
U=2Q0v—22Q0w, t=2z2Q0v—2zQw,
and then
5c+4d 4c + bd
U — t.
3 3

Thus, the claim follows according to ¢ = +i or ¢ = :l:%.
Item (iii) follows analogously: in this case

a12U =

S5c+4d 4c+ 5d
U+ t.
3 3
Now, we have to compute S (#) ® Sg(0), for 6,9 € {+i,+3}. Let Sy (f) =
k{v,w}, Sx(¥) =k{v,w'},a=v@v,b=v@w,c=w®v,d=w®w. First,
Wst & Wst = We 2 ngn S Wst = k{x} @ k{y} @ k{vvw}v
forx =2a—b—c+2d,y=b—c,v=a—b—c,w=d—b—c. Now, if a12-v = av+pw
and ais - v = o’v' + f'w’, then
ajz-a=aa+ (B+a e+ pBd, az-b=ab—fc+ (B—a')d,
air-c= (o —Bat Fb—ac, as-d=—Fa— (o + )b ad

u=1v®z—-2w®z and aju=—

and thus
a2 7= (~a— 28— 20— B)y+ 20+ B — o — 28 (v —w),
1
aip -y = §(a +28—2d — )z + (—2a— B+ a +28) (v +w),
1 1
ajp v = 6(204—!—5—}—0/ + 28z + 5(—2@—,8 —a' =28y
1 1
+ g(a +28 —4a’ — 26" v + g(—20¢ — 4B + 2" + fw.
For each 6,9 € {£i+ %}, we get the identities in item (iv) by inserting the corre-
sponding values of a, o, 3, 5. O

Corollary 5.13. A; is not quasitriangular.

Proof. If H is a quasitriangular Hopf algebra and M, N are H-modules, then M ®
N =2 N ® M as H-modules. We see that this does not hold for A;, from, for
instance, the second item of Prop. 5.12. (]
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5.3.5. Projective covers. Recall that a linear basis for A; is given by the set S =
{zH; |z € X,t € Sz}, where X = {1, a12, a13, a3, a12a13, a12a23, 413023,
a13a12, 12013023, 12013012, 413012023, A12013012023 } [AG2].

Proposition 5.14. I, is the projective cover of Sy, x € {¢,sgn}.
Proof. In view of Prop 4.3, we only have to check that I, is indecomposable. We
work with x = €, the other case being analogous, or follows by tensoring with
Ssegn. Let e = Ztesg, H; € Ay, then it is clear that {ze.|z € X} is a basis of I.
Moreover, if we change this basis by the following one:
{ee} U{(a12a13a12a23 — a12az3)ec} U {(a12 + a1z + azs)ec}

U {(a12a13a12 — 1213023 — @13012023 — @13 — 20/12)66}

U {(a12 — 2a13 + ag3)ec, (2a23 — a1z — aiz)e.}

U {(a13a23 — a1zaiz)ec, (a12a13 — ai2a23 + a13a23 — aizaiz)ec}

U {(@12a13 + a12a23 + a13a12)ec, (—ai2a13 + a13a23 — A13a12)ee }

U {(a12a13a12 + 2a12a13a23 — a13a12a23 + a12 — a13)€e,

(2a12a13a12 + a12a13023 + 13012023 — @12 + @13)ec}

then we can see that

(I€)|S3 = We 2] We 2 ngn 2 ngn 2 Wst S Wst S2) Wst @ Wst-

Now we deal with the action of a12. Notice that in the first basis, the matrix of a2
is Eaq1 + Es 3+ Ega+ E10,7 + Fg g + Ei2.11, where E; ; is the matrix whose all its
entries are zero except for the (4,7)-th one, which is a 1. It is possible to change
the basis in such a way that the decomposition in Sz-simple modules is preserved
and the matrix of a;2 becomes:

o 0 0 0 O 0 O O 0 0 0 O
o 00 -1 -1 1 -1 1 -1 1 -1 1

i 0 0 0 O 0O O O 0 O 0 O

0 0 0 0 -2 —2i 2 2 0 0 0 0

-0 0 0o i i 0 0 0O 0 0 O
/' 00 0 —-i -1 0 0O 0O 0O 0 0
w2l =1 % 9 0 0 0 0 < 10 0 0 o0
L 0 0 O O 0O i i 0 0 0 0

# 0 -5 0 0 0 0 0 3 -3 0 0

-5 0 -+ 0 0 0 0 0 & —2 0 0

12 .6 3 3 . .

# 0 ¢ 0 0 0 0 0 0 -3 3

-5 0 & 0 0 0 0 0 0 0 -5 & |

Let {1, x2,y1, Y2, V1, W1, V2, Wa, U3, w3, Vg, Wy} be this new basis. Assume I, =
Uy ® Uy, for Uy, Uy Aj-submodules. Thus, there exists i = 1,2, A # 0, u € k such
that © = Ax1+pay € U;. Acting with a1s we have that yp,v1 +ve—vs—vy € U;. As
y1 € U, acting once again with a2 we have that also vs —wv4 € U; and thus vs+v4 €
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U; (again by the action of aq12). Therefore vs, vy € U; and so xo, Y2, x1,v1 + v € Uj.
But then v — vy € U; and thus U; = I.. O

We are left with finding the projective covers P (0) of the 2-dimensional A;-
modules Sy (+6), 6 € {i, 5}. Since these modules are

Sst (1); Sst (1) & Ssgn; Ssgn ® Sst (1)7 and Ssgn ® Sst (1) & Ssgm

see Prop. 5.12, and Ps(f) = Ajes(f), they will all have the same dimension.
Moreover, we will necessarily have dim Py (0) = 6, V6, by (29).

Proposition 5.15. Let P be the kSs-module with basis {x,y,u,t,v,w}, where
<x>|Ss = Wﬁv <y>\83 = ngn, <uat>\Ss = sty <va>\83 = st- Then P is an
A1 -module via

k{z,y,u,t} =2 M(0,2i,1,1,0,0)[-i], ai2-v=z—-2y+u+t+i(v—w).
Moreover P = Py (i) is the projective cover of the simple module Sg(3).

As a result, we have Pst(—%) = P (1)®Ssgn, Pst(%) = Ssen® Pt (1) and Py (—1) =
Ssgn & Pst (1) X Ssgn-

Proof. The matrix of a2 in the given basis is

o 1.0 0 1 -1
0 0
% 1

2= o 1 5 0 1
0 o S
0 0

Via the action of Hi3, Ho3 we define the matrices of a13, ass and then it is easy to
check that

[Hizlar2] = —[a12][H12],
[a12]2 =0
[a12][a13] + [a13][azs] + [ags][a12] = idexe —[Hi2|[H12],

and thus P is an A;-module.

Now, it is clear that U = k{z, y, u, t} is an A;-submodule and that the canonical
projection 7 : P — P/U gives a surjection over Sg(i). Moreover, this surjection
is essential. In fact, let N C P be an A;-submodule, such that N/U 2 Sg(i).
In particular, there exists A # 0 € k such that Au 4+ v € P. Now, ai2(v + \u) =
x—2iy+ (1= M)u+ (—14+ M)t +i(v—w), and thus x,y € N. Butx € N = u,v € N
and therefore N = P. Consequently, 7 : P — P/U is essential.

Now, if (Ps(i), f) is the projective cover of Sg (i), we have the following com-
mutative diagram

_Pali)
T lf
PEZ 5 P/U S (i).
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As 7 is essential and 7(g(Py(i))) & Ss(i) we must have g(Py(i)) = P. But
then dim P = dim Py (i) = 6 and thus ¢ is an isomorphism. Therefore, (P, 7) is
the projective cover of Sy (i). The claim about the projective covers of the other
Sst(A)’s is now straightforward. O

5.3.6. Representation type of A;.

We show that the algebra A; is not of finite representation type. From Props.
3.12 and 5.7 it follows that Extly (S, 5) = 0 for any simple one-dimensional A;-
module S, and that there is an unique non-trivial extension of S. by Sgen, namely
the A;-module Mgy, .. The same holds for extensions of Sggn by Se, considering
the Aj-module M, ¢en. Prop. 3.7 shows that Extih(SSt()\),SSt(u)) = 0 for any
A p € {#i,+31}. Now, a non-trivial extension of one of the modules S or Seg,
by a two dimensional A;-module Sg(\), or vice versa, must come from a three
dimensional indecomposable A;-module M. We have classified such modules in
Lemma 5.9 and we see then that:

1, if N\ =+i

dim Extly (S, Su (V) = dim Extly (S (V) Segn) = 4 =7 A= ED
: . 0, ifA=+i.
dim Ext!y (Ssgn, Sst(A\)) = dim Extly (St (\), Se) = L, T“ - i?’
! ! 0, if A=+

Let {Se, Ssgn, St (i), Sse(—1), Sst (3), St (—3)} = {1,2,3,4,5,6} be an ordering of
the simple A;-modules. Then the Ext-Quiver of A; is:

Proposition 5.16. A; is not of finite representation type.

Proof. The separation diagram of A; is Dél) 11 Dél), with Dél) the extended affine
Dynkin diagram corresponding to the classical Dynkin diagram Ds;. By Lemma
4.5 we have that A; /J(A;)? (a quotient of A;) is not of finite representation type
(it is, in fact, tame) by Th. 4.4, and so neither is A;. O
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