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REPRESENTATIONS OF FINITE DIMENSIONAL POINTED

HOPF ALGEBRAS OVER S3

AGUSTÍN GARCÍA IGLESIAS

Abstract. The classification of finite-dimensional pointed Hopf algebras with
group S3 was finished in [AHS]: there are exactly two of them, the bosoniza-
tion of a Nichols algebra of dimension 12 and a non-trivial lifting. Here we
determine all simple modules over any of these Hopf algebras. We also find
the Gabriel quivers, the projective covers of the simple modules, and prove
that they are not of finite representation type. To this end, we first investigate
the modules over some complex pointed Hopf algebras defined in the papers
[AG1, GG], whose restriction to the group of group-likes is a direct sum of
1-dimensional modules.

1. Introduction

In [AG1], a pointed Hopf algebra Hn was defined for each n ≥ 3. It was shown
there that H3 and H4 are non-trivial pointed Hopf algebras over S3 and S4, respec-
tively. We showed in [GG] that this holds for every n, by different methods. We
started by defining generic families of pointed Hopf algebras associated to certain
data, which includes a finite non-abelian group G. Under certain conditions, these
algebras are liftings of (possibly infinite dimensional) quadratic Nichols algebras
over G. In particular, this was proven to hold for G = Sn. Moreover, the classifi-
cation of finite dimensional pointed Hopf algebras over S4 was finished. We review
some of these facts in Section 2. We investigate, in Section 3, modules over these
algebras whose G-isotypic components are 1-dimensional and classify indecompos-
able modules of this kind. We find conditions on a given G-character under which
it can be extended to a representation of the algebra. We apply these results to
the representation theory of two families of pointed Hopf algebras over Sn. In Sec-
tion 4 we comment on some known facts about simple modules over bosonizations.
We also prove general facts about projective modules over the algebras defined in
[AG1, GG], and recall a few facts about representation type of finite dimensional
algebras. In Section 5 we use some of the previous results to classify simple mod-
ules over pointed Hopf algebras over S3. In addition, we find their projective covers
and compute their fusion rules, which lead to show that the non-trivial lifting is
not quasitriangular. We also write down the Gabriel quivers and show that these
algebras are not of finite representation type.
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52 AGUSTÍN GARCÍA IGLESIAS

2. Preliminaries

We work over an algebraically closed field k of characteristic zero. We fix i =√
−1. For n ∈ N, let [n2 ] denote the biggest integer lesser or equal than n

2 . If V
is a vector space and {xi}i∈I is a family of elements in V , we denote by k{xi}i∈I
the vector subspace generated by it. Let G be a finite group, Ĝ the set of its

irreducible representations. Let Gab = G/[G,G], Ĝab = Hom(G, k∗) ⊆ Ĝ. We

denote by ǫ ∈ Ĝab the trivial representation. If χ ∈ Ĝ, and W is a G-module, we
denote by W [χ] the isotypic component of type χ, and by Wχ the corresponding
simple G-module.

A rack is a pair (X,⊲), where X is a non-empty set and ⊲ : X × X → X
is a function, such that φi = i ⊲ (·) : X → X is a bijection for all i ∈ X and
i⊲(j⊲k) = (i⊲j)⊲(i⊲k), ∀i, j, k ∈ X . A rack (X,⊲) is said to be indecomposable
if it cannot be decomposed as the disjoint union of two sub-racks. We shall always
work with racks that are in fact quandles, that is that i⊲ i = i ∀ i ∈ X . In practice,
we are interested in the case in which the rack X is a conjugacy class in a group;
hence this assumption always holds. We will denote by On

2 the conjugacy class of
transpositions in Sn.

A 2-cocycle q : X × X → k∗, (i, j) 7→ qij is a function such that qi,j⊲kqj,k =
qi⊲j,i⊲kqi,k, ∀ i, j, k ∈ X . See [AG1] for a detailed exposition on this matter.

Let H be a Hopf algebra over k, with antipode S. Let HHYD be the category of
(left-left) Yetter-Drinfeld modules over H . That is, M is an object of HHYD if and
only if there exists an action · such that (M, ·) is a (left) H-module and a coaction
δ such that (M, δ) is a (left) H-comodule, subject to the following compatibility
condition:

δ(h ·m) = h1m−1S(h3)⊗ h2 ·m0, ∀m ∈M,h ∈ H,

where δ(m) = m−1⊗m0. If G is a finite group and H = kG, we write GGYD instead
of HHYD.

Recall from [AG2, Def. 3.2] that a principal YD-realization of (X, q) over a finite
group G is a collection (·, g, (χi)i∈X) where

• · is an action of G on X ;
• g : X → G is a function such that gh·i = hgih

−1 and gi · j = i⊲ j;
• the family (χi)i∈X , with χi : G → k∗, is a 1-cocycle, i. e. χi(ht) =
χi(t)χt·i(h), for all i ∈ X , h, t ∈ G, satisfying χi(gj) = qji.

In words, a principal YD-realization over G is a way to realize the braided vector
space (kX, cq) as a YD-module over G. See [AG2] for details.

2.1. Quadratic lifting data.

Let X be a rack, q a 2-cocycle. Let R be the set of equivalence classes in X×X
for the relation generated by (i, j) ∼ (i ⊲ j, i). Let C ∈ R, (i, j) ∈ C. Take i1 = j,
i2 = i, and recursively, ih+2 = ih+1 ⊲ ih. Set n(C) = #C and

R′ =
{
C ∈ R |

n(C)∏

h=1

qih+1,ih = (−1)n(C)
}
.
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Let F be the free associative algebra in the variables {Tl}l∈X . If C ∈ R′, consider
the quadratic polynomial

φC =

n(C)∑

h=1

ηh(C)Tih+1
Tih ∈ F, (1)

where η1(C) = 1 and ηh(C) = (−1)h+1qi2i1qi3i2 . . . qihih−1
, h ≥ 2.

A quadratic lifting datum Q = (X, q,G, (·, g, (χl)l∈X), (λC)C∈R′), or ql-datum,
[GG, Def. 3.5], is a collection consisting of

• a rack X ;
• a 2-cocycle q;
• a finite group G;
• a principal YD-realization (·, g, (χl)l∈X) of (X, q) over G such that gi 6=
gjgk, ∀ i, j, k ∈ X ;

• a collection (λC)C∈R′ ∈ k such that, if C = {(i2, i1), . . . , (in, in−1)}, and
k ∈ X ,

λC = 0, if gi2gi1 = 1, (2)

λC = qki2qki1λk⊲C , (3)

where k ⊲ C = {(k ⊲ i2, k ⊲ i1), . . . , (k ⊲ in, k ⊲ in−1)}.
In [GG], we attached a pointed Hopf algebra H(Q) to each ql-datum Q. It is
generated by {al, Ht : l ∈ X, t ∈ G} with relations:

He = 1, HtHs = Hts, t, s ∈ G; (4)

Htal = χl(t)at·lHt, t ∈ G, l ∈ X ; (5)

φC({al}l∈X) = λC(1 −Hgigj ), C ∈ R′, (i, j) ∈ C. (6)

Here φC is as in (1) above. We denote by aC the left-hand side of (6). H(Q)
is a pointed Hopf algebra, setting ∆(Ht) = Ht ⊗ Ht, ∆(ai) = gi ⊗ ai + ai ⊗ 1,
t ∈ G, i ∈ X . See [GG] for further details on this construction and for unexplained
terminology.

Notice that by definition of the Hopf algebras H(Q), the group of grouplikes
G(H(Q)) is a quotient of the group G. Thus, any H(Q)-module M is a G-module,
using the corresponding projection. We denote this module byM|G. For simplicity,

we denote M [ρ] =M|G[ρ], ρ ∈ Ĝ.

3. Modules that are sums of 1-dimensional representations

In this Section, we study H(Q)-modules whose underlying G-module is a direct

sum of representations in Ĝab.
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54 AGUSTÍN GARCÍA IGLESIAS

We begin by fixing the following notation. Given a pair (X, q), let

ζh(C) =





(−1)
h
2 −1

(
h
2 −1∏
l=1

qih−2l+1,ih−2l

)
if 2|h,

(−1)
h−1
2

(
h−1
2∏
l=1

qih−2l+1,ih−2l

)
if 2|h+ 1.

(7)

Note that ζ1(C) = ζ2(C) = 1, ζh+1(C)ζh(C) = ηh(C), see (1).

3.1. Modules whose underlying G-module is isotypical.

We first study extensions of multiplicative characters from G to H(Q).

Proposition 3.1. Let ρ ∈ Ĝab. There exists ρ̄ ∈ homalg(H(Q), k) such that
ρ̄|G = ρ if and only if

0 = λC(1 − ρ(gigj)) if (i, j) ∈ C and 2|n(C), (8)

and there exists a family {γi}i∈X of scalars such that

γj = χj(t)γt·j ∀ t ∈ G, j ∈ X, (9)

γiγj = λC(1 − ρ(gigj)) if (i, j) ∈ C and 2|n(C) + 1. (10)

If (8) holds, then the set of all extensions ρ̄ of ρ is in bijective correspondence with
the set of families {γi}i∈X that satisfy (9) and (10). In particular, if

λC 6= 0 ⇒ ρ(gigj) = 1, C ∈ R′, (i, j) ∈ C. (11)

then γi = 0, ∀ i ∈ X defines an H(Q)-module. Moreover, this is the only possible
extension if, in addition,

χi(gi) 6= 1, ∀ i ∈ X. (12)

Remark 3.2. (a) Mainly, we will deal with Nichols algebras for which the following
is satisfied:

χi(gi) = −1, ∀ i ∈ X. (13)

In this case, obviously (12) holds and the class Ci = {(i, i)} belongs to R′.

(b) If X is indecomposable, using (9) and the fact that ∀ i ∈ X ∃ t ∈ G such
that i = t · j, we may replace (10) by

γ2j = λC(1− ρ(gj)
2)χj(t) if (i, j) ∈ C and 2|n(C) + 1. (10’)

Proof. Assume that such ρ̄ exists and let γi = ρ̄(ai). Then (9) follows from (5).
In particular, for p, q ∈ X , we have ρ̄(ap⊲q) = χq(gp)

−1ρ̄(aq). Then, for C ∈ R′,
(i2, i1) = (i, j) ∈ C, it follows that

γih = ρ̄(aih) =

{
(−1)

h−1
2 ζh(C)

−1ρ̄(aj) if 2|h+ 1

(−1)
h
2 −1ζh(C)

−1ρ̄(ai) if 2|h,
(14)

cf. (7). Consequently,

ρ̄(aih+1
aih) = (−1)h+1ηh(C)

−1ρ̄(ai)ρ̄(aj) (15)
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and thus (10) and (8) follow from (6). Conversely, if (8) holds and {γi}i∈X is a
family that satisfies (9) and (10), then we define ρ̄ : H(Q) → k as the unique
algebra morphism such that ρ̄(Ht) = ρ(t) and ρ̄(ai) = γi. If (12) holds, it follows
from (9) for t = gi that ρ̄(ai) = 0 ∀ i ∈ X is a necessary condition. �

Definition 3.3. Let ρ̄ be an extension of ρ ∈ Ĝab and γi = ρ̄(ai), γ = (γi)i∈X ∈
kX . Then we denote the corresponding H(Q)-module by Sγρ . If γ = 0, we set
Sγρ = Sρ.

We now determine all H(Q)-modules whose underlying G-module is isotypical

of type ρ ∈ Ĝab, provided that X is indecomposable and (12) holds.

Proposition 3.4. Assume X is indecomposable. Let M be an H(Q)-module such

that M = M [ρ] for a unique ρ ∈ Ĝab, dimM = n. Then M is simple if and only
if n = 1. If, in addition, (12) holds, M ∼= S⊕n

ρ .

Proof. Let ρ̄ : H(Q) → EndM be the corresponding representation and Γj ∈ kn×n
be the matrix associated to ρ̄(aj) in some (fixed) basis. As in the proof of Prop. 3.1,
{Γi}i∈X satisfies (9). Thus, if we fix j ∈ X , then for each i ∈ X there exists t ∈ G
such that Γi = χj(t)

−1Γj. Thus, there exists a basis {z1, . . . , zn} in which all of
these matrices are upper triangular and so k{z1} generates a submodule M ′ ⊆M .
If (12) holds, then it follows that Γi = 0, ∀ i ∈ X and thus M ∼=

⊕n
j=1 Sρ. �

3.2. Modules whose underlying G-module is a sum of two isotypical com-

ponents.

Let ρ, µ ∈ Ĝab fulfilling (8), γ, δ ∈ kX satisfying (9) and (10) for ρ and µ,
respectively. We begin this Subsection by describing indecomposable modules that
are extensions of Sγρ by Sδµ. For simplicity of the statement of (17) in the following
Lemma, we introduce the following notation. Let C ∈ R′, j ∈ C and let

αj(C) =

[n(C)
2 ]−1∑

r=0

χj(gj)
r, βj(C) =

[n(C)+1
2 ]−1∑

r=0

χj(gj)
r.

Note that if 2|n(C), then αj = βj ; otherwise, βj = αj + χj(gj)
[n(C)+1

2 ]−1.

Lemma 3.5. Let V be the space of solutions {fi}i∈X ∈ kX of the following system

fiµ(t) = χi(t)ft·iρ(t), i ∈ X, t ∈ G and (16)

(αj(C)δj − βj(C)γj)fi = −χi(gi)(αi(C)δi − βi(C)γi)fj , (17)

C ∈ R′, (i, j) ∈ C. Then Ext1H(Q)(S
γ
ρ , S

δ
µ)

∼= V and the set of isomorphism classes

of indecomposable H(Q)-modules such that

0 −→ Sδµ −→M −→ Sγρ −→ 0 is exact (18)

is in bijective correspondence with Pk(V ).
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56 AGUSTÍN GARCÍA IGLESIAS

Proof. LetM = k{z, w} be as in (18), with z ∈M [ρ], w ∈M [µ]. Then there exists
{fi}i∈X such that

aiz = γiz + fiw. (19)

Then (16) follows from (5) and this implies

fih =

{
(−χj(gj))

h
2
−1ζh(C)

−1fi if 2|h,
(−χi(gi))

h−1
2 ζh(C)

−1fj if 2|h+ 1,

since, for τ = ρ or τ = µ,

τ(gi2l+1
) = τ(gi2lgi2l−1

g−1
i2l

) = τ(gi2l−1
) = · · · = τ(gi1 ) = τ(gj),

τ(gi2l+2
) = τ(gi2l+1

gi2lg
−1
i2l+1

) = τ(gi2l ) = · · · = τ(gi2) = τ(gi),

and µ(gk)
ρ(gk)

= χk(gk). Therefore, if (i, j) ∈ C and n = n(C), (6) holds if and only if

n∑

h=1

ηh(C)
(
fihδih+1

+ fih+1
γih
)
= 0, ∀C ∈ R′,

that is, using (14), (6) holds if and only if (17) follows.
Conversely, if {fi}i∈X fulfills (16) and (17), then (19) together with aiw = δiw

define an H(Q)-module which is an extension of Sγρ by Sδµ.
M is indecomposable if and only if fi 6= 0 for some i ∈ X . Assume M is

indecomposable and let M ′ = k{z′, w′} be another indecomposable H(Q)-module
fitting in (18), with z′ ∈M ′[ρ], w′ ∈M ′[µ]. Let {gi}i∈X ∈ V be the corresponding
solution of (16) and (17). Assume φ : M → M ′ is an isomorphism of H(Q)-
modules. In particular, φ is a G-isomorphism and thus there exist σ, τ ∈ k∗ such
that φ(w) = σw′, φ(z) = τz′. But then it is readily seen that σ, τ must satisfy
gi = στ−1fi, i ∈ X . That is, [fi]i∈X = [gi]i∈X in Pk(V ). The converse is clear. �

Remark 3.6. If X is indecomposable, then, up to isomorphism, there is at most
one indecomposable H(Q)-module M as in the Lemma. In fact, if there is one,
let {fi}i∈X ∈ kX be the corresponding solution of (16) and (17). Then, if we fix
j ∈ X and let ti ∈ G be such that i = ti · j, i ∈ X , then

(fi)i∈X = fj

(
χj(ti)

µ(ti)

ρ(ti)

)

i∈X

∈ kX , (20)

and thus M is uniquely determined. In this case, the existence of a solution is
equivalent to (16) and

(αjδj − βjγj)

(
µ(ti)

ρ(ti)
+ χj(gj)

)
fj = 0; (17’)

if (i, j) ∈ C, C ∈ R′, i = ti · j.

Definition 3.7. Assume X is indecomposable and Ext1H(Q)(S
γ
ρ , S

δ
µ) 6= 0. We

denote the corresponding unique indecomposable H(Q)-module by Mγ,δ
ρ,µ . If γ =

δ = 0, then (17’) is a tautology. We set Mρ,µ :=M0,0
ρ,µ.
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Assume that X is indecomposable and that G = 〈{gi}i∈X〉. Let j be a fixed
element in X . Define ℓ : G→ Z, resp. ψ : G→ k∗, as

ℓ(t) = min{n : t = gi1 . . . gin , i1, . . . , in ∈ X},

resp. ψ(t) = χj(gj)
ℓ(t), t ∈ G. Notice that τ(gi) = τ(gj), ∀ i ∈ X , hence τ(t) =

τ(gj)
ℓ(t), for any τ ∈ Ĝab, t ∈ G.

Lemma 3.8. Keep the above hypotheses. If Ext1H(Q)(S
γ
ρ , S

δ
µ) 6= 0, then

µ(s) = ψ(s)ρ(s), ∀s ∈ G. (21)

Therefore ρ determines µ (and vice versa), and ψ is a group homomorphism.
Conversely, if (21) holds, we may replace (16) and (17) by

fiχj(gj)
ℓ(t) = χi(t)ft·i, i ∈ X, t ∈ G and (16’)

0 = fj(αjδj − βjγj)
(
χj(gj)

ℓ(ti)−1 + 1
)
, (17”)

if (i, j) ∈ C, C ∈ R′, i = ti · j.

Proof. Setting i = j and t = gj in (16), and taking the ℓ(s)-th power, we get (21).
The rest is straightforward. �

We will show next that there are no simple modules M of dimension 2 such that
M|G is sum of two (necessarily different) components of dimension 1, provided that
the following holds:

∃C ∈ R′ with n(C) > 1. (22)

Notice that if (22) does not hold and grH(Q) = B(X, q)♯kG, then it follows that
dimH(Q) = ∞, provided that |X | > 1, since {(aiaj)n}n∈N is a linearly independent
set in H(Q).

Lemma 3.9. Assume X is indecomposable, and that (13) and (22) hold. Let

ρ, µ ∈ Ĝab, and let M be an H(Q)-module such that M =M [ρ]⊕M [µ], dimM [ρ] =
dimM [µ] = 1. Then M is not simple.

Proof. Assume that there exists M simple as in the hypothesis. We first claim
that ρ 6= µ and that, if z ∈ M [ρ], then aiz ∈ M [µ]. In fact, let aiz = u + w with
u ∈M [ρ], w ∈M [µ], then

Htaiz = ρ(t)u+ µ(t)w, χi(t)at·iHtz = χi(t)ρ(t)at·iz

and taking t = gi, we get

ρ(gi)u+ µ(gi)w = χi(gi)ρ(gi)(u + w)
(13)
= −ρ(gi)u− ρ(gi)w.

Thus u = 0; hence w 6= 0 because M is simple. Also,

ρ(gi) = −µ(gi), i ∈ X. (23)

By a symmetric argument, ai(M [µ]) =M [ρ].
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Now, fix 0 6= z ∈M [ρ], 0 6= w ∈M [µ]; let fi, i ∈ X , such that aiz = fiw. Then
(fi)i∈X satisfies (16), by (5). As X is indecomposable and M is simple, we have
fi 6= 0, ∀ i ∈ X . We necessarily have

aiw = piz, for pi = f−1
i λi(1− ρ(gi)

2). (24)

Note that pi 6= 0 or otherwise aiw = 0, ∀ i ∈ X . As stated for {fi}, the family {pi}
also satisfies (16), with the roles of ρ and µ interchanged.

Assume that there is C ∈ R′, with n(C) > 1. We now show that this contradicts
the existence of M . Let (i2, i1) = (i, j) ∈ C, then

aCz =

n(C)∑

h=1

ηhfihaih+1
w =

n(C)∑

h=1

ηhfih
λih+1

fih+1

(1− ρ(gih+1
)2)z.

Let t ∈ G such that i = t · j and recall that ih = ih−1⊲ ih−2. Since gs·k = gsgkg
−1
s ,

then

ρ(gih+1
)2 = ρ(gj)

2, ∀h.

Now, by (3), λih = λih−1⊲ih−2
= χih−2

(gih−1
)−2λih−2

, then

λih =

{
ζh(C)

−2χj(t)
−2λj if 2|h,

ζh(C)
−2λj if 2|h+ 1.

Additionally, by (16), we have

fih =




ζh(C)

−1χj(t)
−1µ(t)

ρ(t)
fj if 2|h,

ζh(C)
−1fj if 2|h+ 1,

(25)

for every h = 1, . . . , n(C). Therefore, we have that:

ηh(C)λih+1

fih
fih+1

=





µ(t)

ρ(t)
χj(t)

−1λj if 2|h,

ρ(t)

µ(t)
χj(t)

−1λj if 2|h+ 1.

(26)

Analogously, if we analyze the element aCw, we get

ηh(C)λih+1

pih
pih+1

=





ρ(t)

µ(t)
χj(t)

−1λj if 2|h,

µ(t)

ρ(t)
χj(t)

−1λj if 2|h+ 1.

(27)
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REPRESENTATIONS OF POINTED HOPF ALGEBRAS OVER S3 59

However, notice that, if h > 1,

ηh(C)λih+1

pih
pih+1

= ηh(C)λih+1

λih (1− ρ(gih)
2)fih+1

λih+1
(1− ρ(gih+1

)2)fih

= −ηh−1(C)χih−1
(gih)λih

fih+1

fih

(16)
= −ηh−1(C)λih

fih−1

fih

µ(t)

ρ(t)

(26)
=





−µ(t)
2

ρ(t)2
χj(t)

−1λj if 2|h− 1,

−χj(t)−1λj if 2|h.
And from this equality together with (27), we get

ρ(t) = −µ(t), if (i, j) ∈ C, t · j = i. (28)

But, as i⊲ i = i, we have that µ(git) = −ρ(git) and also

µ(git) = µ(gi)µ(t)
(23)
= −ρ(gi)µ(t) = ρ(gi)ρ(t) = ρ(git),

which is a contradiction.
�

Assume X is indecomposable. Next, we describe indecomposable modules which
are sums of two different isotypical components, provided that (13) and (22) hold.

Theorem 3.10. Let ρ 6= µ ∈ Ĝab. Assume X is indecomposable and both (13) and
(22) hold. LetM =M [ρ]⊕M [µ] be an H(Q)-module, with dimM [ρ], dimM [µ] > 0.
Then M is not simple.

Moreover, M is a direct sum of modules of the form Sγρ , S
δ
µ, M

γ′,δ′

ρ,µ and M δ′′,γ′′

µ,ρ,

for various γ, δ, γ′, δ′, γ′′, δ′′.

Proof. Take 0 6= z ∈ M [ρ]. As in the first part of the proof of Lemma 3.9, it
follows from (13) that ρ 6= µ and that, if 0 6= z ∈ M [ρ], then aiz ∈ M [µ]. Now,
aiw = a2i z = λi(1 − ρ(gi)

2)z, and thus the space k{z, w} is ai-stable. As X is
indecomposable, it follows that this is a submodule. Let K = ker ai. Here we see
ai as an operator in EndM . This subspace is G-stable: if u ∈ K, u = z + w, with
z ∈ M [ρ], w ∈ M [µ], then 0 = aiu = aiz + aiw ⇒ z, w ∈ K, since aiw ∈ M [ρ],
aiz ∈ M [µ]. Thus ρ(t)z = Htz and µ(t)w = Htw ∈ K, ∀ t ∈ G. Therefore
G · u ⊂ K. The same holds for I = im ai. Let T be a G-submodule such that
M = K ⊕ T (recall kG is semisimple). Let

K = kerai = K[ρ]⊕K[µ], T = T [ρ]⊕ T [µ], I = im ai = I[ρ]⊕ I[µ].

Notice that K 6= 0. In fact, if K = 0, then the space k{z, w} would be a simple
2-dimensional H(Q)-module, contradicting Lemma 3.9. Thus K 6= 0. Then γi = 0,
∀ i ∈ X and a2i ·M = 0. Notice that in this case I[ψ] ⊆ K[ψ], for ψ = ρ or µ, and
thus we have K[ψ] = I[ψ]⊕ J [ψ]. As G-modules, we have

M|G
∼=
⊕

ψ=ρ,µ

M [ψ] =
⊕

ψ=ρ,µ

I[ψ]⊕ J [ψ]⊕ T [ψ],
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and this induces the following decomposition of H(Q)-modules:

M ∼= J [ρ]⊕ J [µ]⊕ (I[ρ] + T [µ])⊕ (I[µ] + T [ρ]).

Let ψ = ρ or µ. If J [ψ] 6= 0, then (8) holds for ψ, and J [ψ] is a sum of 1-
dimensional H(Q)-modules, by Prop. 3.4. Let {w1, . . . , wk} be a basis of T [µ].
Then {aiw1, . . . , aiwk} is a basis of I[ρ]. In fact, if z ∈ I[ρ], z = aiw, w ∈ T [µ],

there are σ1, . . . , σk ∈ k such that w =
∑k

j=1 σjwj and then z =
∑k

j=1 σjaiwj . If,

on the other hand, {σj}kj=1 ∈ k satisfy 0 =
∑k

j=1 σjaiwj then
∑k
j=1 σjwj ∈ K[µ],

and as K ∩ T = 0, σj = 0 ∀ j = 1, . . . , k. Thus I[ρ] + T [µ] =
⊕k

j=1〈wj〉 as

H(Q)-modules. By Lemma 3.5, for each j = 1, . . . , k there exists δj , γj ∈ k∗X

such that 〈wj〉 ∼= M
δj ,γj
µ,ρ . A similar statement follows for I[µ] + T [ρ]. Therefore,

there are mρ,mµ, mρ,µ,mµ,ρ ∈ N0, {ξj}mρ

j=1, {πj}
mµ

j=1, {δj}
mρ,µ

j=1 , {γj}
mρ,µ

j=1 , {σj}
mµ,ρ

j=1 ,

{τj}mµ,ρ

j=1 ∈ kX such that

M ∼=
mρ⊕

j=1

Sξjρ ⊕
mµ⊕

j=1

Sπj
ρ ⊕

mρ,µ⊕

j=1

M δj ,γj
µ,ρ ⊕

mµ,ρ⊕

j=1

Mσj ,τj
µ,ρ ,

where mρ (resp. mµ) is non-zero only if (8) holds for ρ (resp. µ), ξj , πj and satisfy
(9) and (10) for ρ, µ respectively. On the other hand, mρ,µ 6= 0 only if (16) holds
for ρ, µ and δj , γj satisfy (17). Similarly for mµ,ρ, σj , τj . �

3.3. The case G = Sn, n ≥ 3.
Let Λ,Γ, λ ∈ k, t = (Λ,Γ), ι : On

2 →֒ Sn the inclusion, · : Sn×X → X the action
given by conjugation, −1 the constant cocycle q ≡ −1 and χ the cocycle given by,
if τ, σ ∈ On

2 , τ = (ij) and i < j:

χ(σ, τ) =

{
1, if σ(i) < σ(j)

−1, if σ(i) > σ(j),
see [MS, Ex. 5.3].

Then the ql-data:

• Q−1
n [t] = (Sn,On

2 ,−1, ·, ι, {0,Λ,Γ}), n ≥ 4;

• Qχ
n[λ] = (Sn,On

2 , χ, ·, ι, {0, 0, λ}), n ≥ 4;

• Q−1
3 [λ] = (S3,O3

2 ,−1, ·, ι, {0, λ});
define pointed Hopf algebras over Sn, for n as appropriate, [AG2, GG].

Remark 3.11. Notice that the racks On
2 , n ≥ 3 are indecomposable and that (13) is

satisfied for both cocycles. In this case, Ĝab = {ǫ, sgn}, where ǫ, resp. sgn, stands
for the trivial, resp. sign, representation. In any case, (11) holds. Bear also in
mind that Sn = 〈On

2 〉. In this case, the function ℓ : G → Z is well-known and
ψ : G→ {±1} ⊂ k∗ coincides with the sign function, by (13). Moreover, (22) holds
in all of these ql-data.

Proposition 3.12. Let A = H(Q−1
n [t]) or H(Q−1

3 [λ]). Let M be an A-module
such that M|Sn =M [ǫ]⊕M [sgn], dimM [ǫ] = p, dimM [sgn] = q. Then

(i) M is simple if and only if M = Sǫ or M = Ssgn.
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(ii) M is indecomposable if and only if M is simple or p = q = 1. In this
last case, there are two non-isomorphic indecomposable modules, namely
Mǫ,sgn and Msgn,ǫ.

Proof. It follows by Props. 3.1 and 3.4, and by Lemma 3.9 that Sǫ and Ssgn are the
unique two simple modules. The second item follows by Thm. 3.10 and Lemma
3.8. �

Proposition 3.13. Let n ≥ 4. Let M be a H(Qχ
n[λ])-module such that M|Sn =

M [ǫ] ⊕M [sgn], with dimM [ǫ] = p, dimM [ǫ] = q, p, q ≥ 0. Then M is indecom-
posable if and only if it is simple if and only if M = Sǫ or M = Ssgn.

Proof. The determination of the simple modules follows from Props. 3.1 and 3.4
and Lemma 3.9. By Lemma 3.8 there are no extensions between 1-dimensional
modules. Hence, the Prop. follows from Thm. 3.10. �

4. General facts

Let H be a Hopf algebra, V ∈ H
HYD. The Nichols algebra B(V ) = ⊕n≥0B

n(V )
is a graded braided Hopf algebra in H

HYD generated by V , in such a way that
V = B1(V ) = P(B(V )), that is, it is generated in degree one by its primitive
elements which in turn coincide with the module V . This algebra is uniquely
determined, up to isomorphism. See [AS] for details.

Let G be a finite group. Let X be a rack, q a 2-cocycle and assume that there
exists a YD-realization of (X, q) over G. We denote by B(X, q) the corresponding
Nichols algebra.

4.1. Simple modules over bosonizations.

Consider the bosonization A = B(X, q)♯kG. As an algebra, A is generated by
B(X, q) and kG; the product is defined by (a♯t)(b♯s) = a(t · b)♯ts, here · stands for
the action in G

GYD. See [AS, 2.5] for details. In what follows, we shall assume that
B(X, q), and thus A, is finite dimensional. The following proposition is well-known.
We state it and prove it here for the sake of completeness.

Proposition 4.1. The simple modules for A are in bijective correspondence with

the simple modules over G: Given ρ ∈ Ĝ, Sρ is the A-module such that

Sρ ∼=Wρ as G-modules, and aiSρ = 0, ∀ i ∈ X.

This correspondence preserves tensor products and duals.

Proof. With the action stated above, it is clear that for each ρ ∈ Ĝ, Sρ is an
A-module. If B(X, q)+ denotes the maximal graded ideal of B(X, q), then the
Jacobson radical J = J(A) is given by J = B(X, q)+♯kG. In fact J is a maxi-
mal nilpotent ideal (since A is graded and finite dimensional) and A/J ∼= kG is

semisimple. This also shows that the list {Sρ : ρ ∈ Ĝ} is an exhaustive list of
B(X, q)-modules, which are obviously pairwise non-isomorphic. The last assertion
follows since ai (Sρ ⊗ Sµ) = 0 and S(ai) = −H−1

gi ai. �
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4.2. Projective covers of modules over quadratic liftings.

Let B be a ring,M a left B-module. A projective cover ofM is a pair (P (M), f)
with P = P (M) a projective B-module and f : P → M an essential map, that
is f is surjective and for every N ⊂ M proper submodule, f(N) 6= M . We will
not explicit the map f when it is obvious. Projective covers are unique up to
isomorphism and always exist for finite-dimensional k-algebras, see [CR, Sect. 6].
Moreover,

BB ∼=
⊕

S∈B̂

P (S)dimS . (29)

Fix G a finite group and H a pointed Hopf algebra over G. Let {ei}Ni=1 be
a complete set of orthogonal primitive idempotents for G and set Ij = Hej , for
1 ≤ j ≤ N .

Lemma 4.2. Ij = IndHkG kGej. In particular, if kGej ∼= kGeh as G-modules, then
Ij ∼= Ih as H-modules.

Moreover, H ∼=
⊕

ρ∈Ĝ I
dim ρ
ρ as H-modules, where Iρ = IndHkGWρ, and thus Iρ

is a projective H-module.

Proof. Let ψ : IndHkG kGej → H be the composition of the multiplication m :
H ⊗kG kG → H with the inclusion H ⊗kG kGej → H ⊗kG kG. It follows that

imψ = Ij . Then Ij = IndHkG kGej and Ij does not depend on the idempotent ej
but on the simple module Wρ = kGej . Therefore, as kG = ⊕Ni=1kGei, we have
that H ∼=

⊕
ρ∈Ĝ I

dim ρ
ρ . �

Let {Hn}n∈N be the coradical filtration of H ,

grnH = Hn/Hn−1, grH = ⊕n≥0 gr
nH.

We know that there exists R ∈ G
GYD such that grH ∼= R♯kG, see [AS, 2.7]. Let

πn : Hn → grnH be the canonical projection. As every Hn is ad(G)-stable, it
follows that πn is a morphism of G-modules. Therefore there exists a section
grnH → Hn and Hn

∼= grnH⊕Hn−1 as G-modules. By an inductive argument we
have that Hn

∼= grnH ⊕ grn−1H ⊕ · · · ⊕ gr0H . And thus it follows that H ∼= grH
as G-modules. Moreover, it follows that, if we consider the adjoint action on kG,
grH ∼= R ⊗ kG as G-modules, via the diagonal action. Thus, H ∼= R ⊗ kG as
G-modules.

Proposition 4.3. Let grH = R♯kG.

(i) Iǫ ∼= R as G-modules.
(ii) Assume there exists a simple H-module M such that M|kG is a simple

G-module Wρ. Then P (M) is a direct summand of Iρ. In particular, if
Iρ is indecomposable, then Iρ ∼= P (M).

(iii) If H = R♯kG, Iρ is the projective cover of Sρ, see Prop. 4.1.

Proof. Let Wǫ be the trivial G-module. Since Iǫ = IndHkGWǫ and H ∼= R⊗ kG, we
have

(Iǫ)|G ∼= ((R ⊗ kG)⊗kGWǫ)|G ∼= R|G.
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Thus the first item follows. Let now M be an H-module such that M|kG =Wρ. If
(P (M), f) is the projective cover of M , we have the commutative diagram:

Iρ

π

����

τ

wwo o
o

o
o

o
o

P (M)
f // // M

where π : Iρ → M is the factorization of the action · : H ⊗ M → M through
H ⊗ M ։ Iρ = H ⊗kG Wρ. As f(τ(Iρ)) = π(Iρ) = M and f is essential, we
have an epimorphism Iρ ։ P (M) and P (M) is a direct summand of Iρ. Thus
Iρ ∼= P (M), if Iρ is assumed to be indecomposable.

Finally, assume H = R♯kG. If P (Sρ) is the projective cover of Sρ, we must have
dimP (Sρ) ≤ dim Iρ = dimR dimWρ. But we see that this is in fact an equality
from the formulas:

dimH = dimR
∑

ρ∈Ĝ

dimW 2
ρ =

∑

ρ∈Ĝ

(dimR dimWρ) dimWρ

dimH =
∑

ρ∈Ĝ

dimP (Sρ) dimSρ =
∑

ρ∈Ĝ

dimP (Sρ) dimWρ.

�

4.3. Representation type.

We comment on some general facts about the representation type of a finite
dimensional algebra, that will be employed in 5.2.2 and 5.3.6. Let B be a finite

dimensional k-algebra, B̂ = {S1, . . . , Sn} a complete list of non-isomorphic simple
B-modules. The Ext-Quiver (also Gabriel quiver) of B is the quiver ExtQ(B)
with vertices {1, . . . , n} and dimExt1B(Si, Sj) arrows from the vertex i to the ver-
tex j. Then B is Morita equivalent to the basic algebra kExtQ(B)/I(B), where
kExtQ(B) is the path algebra of the quiver ExtQ(B) and I(B) is an ideal con-
tained in the bi-ideal of paths of length greater than one. Recall that for any two
B modules M1,M2 there is an isomorphism of abelian groups

Ext1B(M1,M2) = {equivalence classes of extensions of M1 by M2},
where the element 0 is given by the trivial extension M1 ⊕M2.

Given a quiver Q with vertices V = {1, . . . , n}, its separation diagram is the
unoriented graph with vertices {1′, . . . , n′, 1′′, . . . , n′′} and with an edge i′—j′′ for
each arrow i → j in Q. If B is algebra, we speak of the separation diagram of B
referring to the separation diagram of its Ext-Quiver.

Theorem 4.4. [ARS, Th. 2.6] Let B be an Artin algebra with radical square zero.
Then B is of finite (tame) representation type if and only if its separated diagram
is a disjoint union of finite (affine) Dynkin diagrams. �

Next lemma is well-known by mathematicians working on representation theory
of algebras.
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Lemma 4.5. Let J be the radical of B. Then ExtQ(B) = ExtQ(B/J2).

Proof. First, it is immediate that B̂ = B̂/J2. Let S, T ∈ B̂. As any B/J2-module
is a B-module, we have Ext1B/J2(S, T ) ⊆ Ext1B(S, T ). Now, let

0 → T →֒ V ։ S → 0 ∈ B −mod, x ∈ V, a1, a2,∈ J.

If x ∈ T ⊂ V , then a1x = 0 ⇒ a2a1x = 0. If x /∈ T , then 0 6= x̄ ∈ V/T ∼= S and
thus a1x̄ = 0, that is a1x ∈ T , and therefore a2a1x = 0. Thus, the above exact
sequence in B −mod gives rise to an exact sequence in B/J2 −mod, proving the
lemma. �

5. Representation theory of pointed Hopf algebras over S3

In this Section we investigate the representations of the finite dimensional pointed
Hopf algebras over S3. We will denote by Aλ, λ ∈ k, the algebra H((Q−1

3 [λ])).
This algebra was introduced in [AG1]. Explicitly, it is generated by elements Ht,
ai, t, i ∈ O3

2; with relations

HtHsHt = HsHtHs, H
2
t = 1, s 6= t ∈ O3

2;

Htai = −atσiHt, t, i ∈ O3
2;

a212 = 0,

a12a23 + a23a13 + a13a12 = λ(1 −H12H23).

Aλ is a Hopf algebra of dimension 72. If H is a finite-dimensional pointed Hopf
algebra with G(H) ∼= S3, then either H ∼= kS3, H ∼= A0 or H ∼= A1 [AHS, Theorem
4.5], together with [MS, AG1, AZ].

We will determine all simple modules over A0 and A1, along with their pro-
jective covers and fusion rules. We will also show that these algebras are not of
finite representation type and classify indecomposable modules satisfying certain
restrictions.

Remark 5.1. Notice that to describe anAλ-module supported on a givenG-module,
it is enough to describe the action of a12, since a13, a23 ∈ ad(G)(a12).

5.1. Simple kS3-modules. We will need some facts about the representation
theory of S3, which we state next. Besides the modules Wǫ and Wsgn associated to
the characters ǫ and sgn, respectively, there is one more simple kS3-module, namely
the standard representationWst. This module has dimension 2. We fix {v, w} as its
canonical basis. In this basis the representation is given by the following matrices:

[H12] =

(
0 1
1 0

)
, [H23] =

(
1 0
−1 −1

)
, [H13] =

(
−1 −1
0 1

)
.

Given a kS3-module W , we denote by W [st] the isotypical component correspond-
ing to this representation.
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5.2. Representation theory of A0.

Proposition 5.2. There are exactly three simple A0-modules, namely the exten-
sions Sǫ, Ssgn and Sst of the simple kS3-modules.

Proof. Follows from Prop. 4.1. �

5.2.1. Some indecomposable A0-modules.
Fix 〈x〉S3 =Wǫ, 〈y〉S3 =Wsgn, 〈v, w〉S3 =Wst.

Lemma 5.3. There are exactly four non-isomorphic non-simple indecomposable
A0-modules of dimension 3:

Mst,ǫ = k{x, v, w}, with a12 · v = x, a12 · x = 0; (i)

Mst,sgn = k{y, v, w}, with a12 · v = y, a12 · y = 0; (ii)

Mǫ,st = k{x, v, w}, with a12 · x = v − w, a12 · v = 0; (iii)

Msgn,st = k{y, v, w}, with a12 · y = v + w, a12 · v = 0. (iv)

In particular, dimExt1A0
(Sst, Sσ) = dimExt1A0

(Sσ, Sst) = 1, σ ∈ {ǫ, sgn}.
Proof. By Prop. 3.12, we know that such an A0-module M must contain a copy
of Wst. Thus M|S3

∼=Wǫ ⊕Wst or M|S3
∼=Wsgn ⊕Wst. The lemma now follows by

straightforward computations. �

Proposition 5.4. The non-isomorphic indecomposable modules which are exten-
sions of Sst by itself are indexed by P1

k
. In particular, it follows that dimExt1A0

(Sst,
Sst) = 1.

Proof. If {v1, v2, w1, w2} is basis of such a module, with {v2, w2}|S3 =Wst, {v1, w1}
∼=Mst, then a necessary condition is that a12v2 = av1 + bw1, a 6= 0 or b 6= 0. It is
easy to see that this formula defines in fact an indecomposable A0 module M(a,b)

for each (a, b) and that two of these modules, M(a,b) and M(a′,b′), are isomorphic
if and only if ∃ γ 6= 0 such that (a, b) = γ(a′, b′). �

5.2.2. Representation type of A0.

Proposition 5.5. A0 is of wild representation type.

Proof. From Lemmas 3.8 and 5.3 together with Prop. 5.4, we see that the Ext-
Quiver of A0 is

•1 ++

��

•3kk

ww

gg

•2

WW 77

where we have ordered the simple modules as {Sǫ, Ssgn, Sst} = {1, 2, 3}. Thus, the
separation diagram of A0 is

•1 •2′ •3

•3′

nnnnnnnnnnnnnnn
•2 •1′
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which implies that A0 is wild. �

5.3. Representation theory of A1.

We investigate now the simple modules of A1, their fusion rules and projective
covers, and also the representation type of this algebra.

5.3.1. Modules that are sums of 2-dimensional representations. We first focus our
attention on those A1-modules supported on sums of standard representations of
kS3.

Lemma 5.6. Let Mst = k{v, w}. Then, the following formulas define four non-
isomorphic A1-modules supported on Mst:

a12v = i(v − w), a12w = i(v − w); (i)

a12v = −i(v − w), a12w = −i(v − w); (ii)

a12v =
i

3
(v + w), a12w = − i

3
(v + w); (iii)

a12v = − i

3
(v + w), a12w =

i

3
(v + w). (iv)

They are simple modules, and we denote them by Sst(i), Sst(−i), Sst(
i
3 ), Sst(− i

3 ),
respectively.

Proof. Straightforward. �

Proposition 5.7. Let p ∈ N and let M be an A1-module such that M = M [st],
dimM = 2p. Then M is completely reducible.
M is simple if only if p = 1. In this case, it is isomorphic to one of the modules

Sst(i), Sst(−i), Sst(
i
3 ), Sst(− i

3 ).

Proof. Let {vi, wi}pi=1 be copies of the canonical basis of Wst such that {vi, wi}pi=1

is a linear basis of M . Let v = (v1, . . . , vp), w = (w1, . . . , wp). Now, there must
exist matrices α, β ∈ kp×p such that a12 ·v = αv+βw and thus a12 ·w = −βv−αw,
by acting with H12. By acting with the rest of the elements Ht we get:

a13 · v = −(α+ β)v + 2(α+ β)w, a13 · w = −βv + (α+ β)w,

a23 · v = −(α+ β)v + βw a23 · w = −2(α+ β)v + (α+ β)w.

Now, 0 = a212v = αa12 · v + βa12 · w = (α2 − β2)v + (αβ − βα)w, and this implies
that α2 = β2, αβ = βα. Hence,

(a12a13 + a13a23 + a23a12) · v = (−5α2 − 4αβ)(v + w),

while (1−H12H13) · v = v + w,

and thus −5α2 − 4αβ = id.
Now, we have that, in particular, −5α − 4β = α−1 and therefore β = − 5

4α −
1
4α

−1. Thus,

α2 = β2 =
1

16
(5α+ α−1)2 =

1

16
(25α2 + α−2 + 10 id),
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from where it follows (α2)−1 = −9α2 − 10 id and id = −9α4 − 10α2, which is
equivalent to

(α2 +
5

9
id)2 =

16

81
id . (30)

This gives, in particular, that if θ ∈ k is an eigenvalue of α, then θ ∈ L(α) :=
{±i,± i

3}. Now, let α ∈ kp×p be a matrix satisfying equation (30). A simple
analysis of the possible Jordan forms J(α) of α gives J(α) = diag(θ1, . . . , θp), for
some θi ∈ L(α), i = 1, . . . , p. If p > 1, we get that there is a basis of M in which
α (and consequently β) is a diagonal matrix, and so M is completely reducible.

On the other hand, if p = 1, α ∈ L(α) and β = ±α give the module structures
defined in Lemma 5.6. �

5.3.2. Classification of simple modules over A1. Now, we present the classification
of all simple A1-modules.

Theorem 5.8. Let M be a simple A1-module. Then M is isomorphic to one and
only one of the following:

• Sǫ;
• Ssgn;

• Sst(i), Sst(−i), Sst(
i
3 ) or Sst(− i

3 ).

Proof. We know that the listed modules are all simple. In view of Props. 3.12
and 5.7, we are left to deal with the case in which M|S3 = M [ǫ] ⊕ M [sgn] ⊕
M [st], with dimM [ǫ] = n, dimM [sgn] = m, dimM [st] = p, n + m, p > 0. Let
{x1, . . . , xn, y1, . . . , ym, v1, . . . , vp, w1, . . . , wp} be a basis of M such that k{xi} ∼=
Wǫ, i = 1, . . . , n, k{yj} ∼=Wsgn, j = 1, . . . ,m, k{vk, wk} ∼=Wst, k = 1, . . . , p. Using
the action of H12, we find that there are matrices α ∈ kn×m, β ∈ kn×p, γ ∈ km×n,
η ∈ km×p, a ∈ kp×n, b ∈ kp×m and c, d ∈ kp×p, such that, if x = (x1, . . . , xn),
y = (y1, . . . , ym), v = (v1, . . . , vp), w = (w1, . . . , wp), the action of a12 is determined
by the following equations:

a12 · x = αy + β(v − w), a12 · y = γx+ η(v + w)

a12 · v = ax+ by + cv + dw, a12 · w = −ax+ by − dv − cw.

We deduce as in Prop. 5.7 the action of every aσ:

a13 · x = αy − βv, a13 · v = −2ax− (c+ d)v + 2(c+ d)w,

a13 · y = γx+ η(v − 2w) a13 · w = −ax− by − dv + (c+ d)w,

a23 · x = αy + βw, a23 · v = ax− by − (c+ d)v + dw,

a23 · y = γx+ η(w − 2v), a23 · w = 2ax− 2(c+ d)v + (c+ d)w.

Recall that it is enough to find a subspace stable under the action of a12 and the
elements Ht, by Rem. 5.1. Now,
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0 = a212x = (αγ + 2βa)x+ (αη + β(c+ d))(v + w);

0 = a212y = (γα+ 2ηb)y + (γβ + η(c− d))(v − w);

0 = a212v = (bγ + (c− d)a)x+ (aα+ (c+ d)b)y

+ (aβ + bη + c2 − d2)v + (−aβ + bη + cd− dc)w;

0 = (a12a13 + a13a23 + a23a12) · x = (3αγ − 3βa)x− 3βby;

0 = (a12a13 + a13a23 + a23a12) · y = 9ηax+ 3(γα− ηb)y;

v + w = (a12a13 + a13a23 + a23a12) · v
= (−3aβ − 3bη − c2 − 4d2 − 2dc− 2cd)v

+ (3aβ + 3bη − 4c2 − d2 − 2dc− 2cd)w.

Then we have the following equalities:




0 = γα = αγ = βa = βb = ηa = ηb,

β(c+ d) + αη = 0 = η(c− d) + γβ,

bγ + (c− d)a = 0 = aα+ (c+ d)b,

d2 − c2 = aβ + bη, cd− dc = aβ − bη

3aβ + 3bη = −c2 − 4d2 − 2dc− 2cd− id

3aβ + 3bη = 4c2 + d2 + 2dc+ 2cd+ id .

(31)

From the last two equations:

c2 − d2 = 2(aβ + bη), 5(c2 + d2) + 4(dc+ cd) = −2 id,

and thus aβ+ bη = 0, c2 = d2. Notice that the matrix of a12 in the chosen basis is:

[a12] =




0 tγ ta − ta
tα 0 tb tb
tβ tη tc − td

− tβ tη td − tc


 .

Now we make the following

Claim. If α or γ have a null row, then M is not simple.

In fact, assume (α11, . . . , α1n) = 0. We have a12 · x1 =
∑

j β1j(vj − wj), if this

is zero, then 〈x1〉 ∼= Sǫ ⊂M and M is not simple. If not, let

v̄1 =
∑

j

β1jvj , w̄1 =
∑

j

β1jwj .

Thus, a12 · x1 = v̄1 − w̄1 and as 0 = a212x1 we have that a12v̄1 = a12w̄1. But,
moreover, we also have that

a12v̄1 =
∑

i

(βa)1ixi +
∑

k

(β(c + d))1k(vk + wk) = 0,
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since βa = 0 and (β(c+d))1k = −(αη)1k = −∑l α1lηlk = 0. Then v̄1 = 0, Sǫ ⊂M
and M is not simple.

The claim when a row of γ is null follows analogously, or just tensoring with the
representation Ssgn, since it interchanges the roles of α and γ.

Then we see that, forM to be simple, we necessarily must have tα, tγ injective.
But 0 = t(αγ) = tγ tα⇒ α = 0. ThusM cannot be simple if n,m > 0. Therefore,
we are left with the (equivalent) cases

M|S3 =M [ǫ]⊕M [st], with dimM [ǫ] = n, dimM [st] = p, n, p > 0;

M|S3 =M [sgn]⊕M [st], with dimM [sgn] = m, dimM [st] = p, m, p > 0.

Assume we are in the first case. Thus, the equations above become:
{

aβ = βa = 0, β(c+ d) = 0, (c− d)a = 0,

d2 = c2, cd = dc, c(−5c− 4d) = id .
(32)

Now, in particular, if tβ is injective, we have ta = 0 and thus A1 ·M [st]  M [st].
But if tβ is not injective, we may find a non-trivial linear combination x of the
elements {xi}ni=1 making Sǫ = 〈x〉 into an A1-submodule of M . �

5.3.3. Some indecomposable A1-modules.
We start by studying the 3-dimensional indecomposable modules. As said in

Lemma 5.3, it follows that for such a module M , it holds either that M|S3
∼=

Wǫ⊕Wst orM|S3
∼=Wsgn⊕Wst. Take x, y, v, w such that 〈x〉|S3 =Wǫ, 〈y〉|S3 =Wsgn,

〈v, w〉|S3 =Wst.

Lemma 5.9. There are exactly eight non-isomorphic non-simple indecomposable
A1-modules of dimension 3:

Mst,ǫ[±
i

3
] = k{x, v, w}, a12 · v = ± i

3
(v + w) + x, a12 · x = 0; (i)

Mst,sgn[±i] = k{y, v, w}, a12 · v = ±i(v − w) + y, a12 · y = 0; (ii)

Mǫ,st[±i] = k{x, v, w}, a12 · v = ±i(v − w), a12 · x = v − w; (iii)

Msgn,st[±
i

3
] = k{y, v, w}, a12 · v = ± i

3
(v + w), a12 · y = v + w. (iv)

Proof. It is straightforward to check that the listed objects are in fact A1-modules
and that they are not isomorphic to each other. Now, assume M|S3 = Wǫ ⊕Wst,
the other case being analogous. If M is not simple, then there is N ⊂ M and
necessarily N|S3 = Wst or N|S3 = Wǫ. Then, the lemma follows specializing the
equations in (31) to this case. �

Proposition 5.10. Let M be an indecomposable non-simple A1-module such that
M|S3 =M [ǫ]⊕M [st], with dimM [ǫ] = p, dimM [st] = q or M|S3 =M [sgn]⊕M [st],
with dimM [sgn] = p, dimM [st] = q for p, q > 0. Then p = q = 1 and M is
isomorphic to one and only one of the modules defined in Lemma 5.9.

Proof. We work with the caseM|S3 =M [ǫ]⊕M [st], with dimM [ǫ] = p, dimM [st] =
q, p, q ≥ 1, the other resulting from this one by tensoring with Ssgn. Let M [ǫ] =
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k{xi}pi=1, M [st] = k{vi, wi}qi=1 and a, β, c, d be as in the proof of Th. 5.8. Recall
that they satisfy the system of equations (32). The last three conditions from that
system imply, as in the proof of Prop. 5.7, that c, d may be chosen as

c =

(
δ 0
0 δ′

)
, d =

(
−δ 0
0 δ′

)
,

for δ ∈ kq1×q1 , δ′ ∈ kq2×q2 diagonal matrices with eigenvalues in {±i} and {± i

3
},

respectively, q1 + q2 = q. Consequently,

β =

(
β1 0
β2 0

)
, a =

(
0 0
a1 a2

)
, with a1β1 + a2β2 = 0,

a12 =




0 0 0 ta1 0 − ta1
0 0 0 ta2 0 − ta2
tβ1

tβ2 δ 0 δ 0
0 0 0 δ′ 0 −δ′

− tβ1 − tβ2 −δ 0 −δ 0
0 0 0 δ′ 0 −δ′



.

Assume q2 > 0. In this case, ã =
(

ta1
ta2

)
must be injective. Otherwise, we may

change the basic elements {vq1+1, . . . , vq, wq1+1, . . . , wq} in such a way that, for
some q1 + 1 ≤ r < q, the last q − r columns of ã are null and in that case

M = 〈vq1−r+1, . . . , vq〉 ⊕ 〈xi, vj : i = 1, . . . , p; j = 1, . . . , q − r〉.
Thus ã is injective. Change the basis {xi : i = 1, . . . , p} in such a way that

a12 · vq1+i = xi +
i

3
(vq1+i + wq1+i), i = 1, . . . , q2.

Notice that, as a12(vq1+i + wq1+i) = 0 for every i and a212 = 0, then a12 · xi = 0,
i = 1, . . . , q2. But then

M =

q2⊕

i=1

〈xi, vq1+i〉 ⊕ 〈xq2+1, . . . , xp, v1, . . . , vq1〉.

Therefore, if q2 > 0 and M is indecomposable, then q1 = 0, p = q2 = 1, and this
gives us the modules in the first item of Lemma 5.9.

Analogously, if q1 > 0, β̃ = ( tβ1
tβ2 ) must be injective, and q2 = 0. If v1, . . . , vp

are chosen in such a way that a12·xi = vi−wi, i = 1, . . . , p, thenM =
⊕p

i=1〈xi, vi〉⊕⊕q1
i=p+1〈vi〉 and therefore p = q1 = 1, giving the modules in the third item of the

lemma. The modules in the other two items result from these ones by tensoring
with Ssgn. �

5.3.4. Tensor product of simple A1-modules. Here we compute the tensor product
of two given simpleA1-modules, and show that it turns out to be an indecomposable
module.

First, we list all of the indecomposable A1-modules of dimension 4. Notice that
if M is such an indecomposable module, then we necessarily must have M|S3 =
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Wǫ⊕Wsgn ⊕Wst, by Props. 5.7 and 5.10. In the canonical basis, the matrix of a12
is given by

[a12] =




0 γ a −a
α 0 b b
β η c −d
−β η d −c


 ,

for some α, γ, a, b ∈ k and c = d = ± i
3 or c = −d = i. For every c = θ ∈ {±i,± i

3}
and for each collection (α, β, γ, η, a, b) which defines representation, we denote by
M(α, β, γ, η, a, b)[θ] the corresponding module.

Proposition 5.11.

• Let θ = ± i
3 . There are exactly four non-isomorphic indecomposable mod-

ules M(α, β, γ, η, a, b)[± i
3 ]. They are defined for (α, β, γ, η, a, b) in the

following list:

(i) (0, 0, 1, 0, 1, 0),

(ii) (0, 0, 1, 1, 0, 0),

(iii) (1, 0, 0, 0,∓ 2i
3 , 1),

(iv) (1, 1, 0,∓ 2i
3 , 0, 0).

• Let θ = ±i. There are exactly four non-isomorphic indecomposable mod-
ules M(α, β, γ, η, a, b)[±i]. They are defined for (α, β, γ, η, a, b) in the fol-
lowing list:

(i) (1, 0, 0, 0, 0, 1),

(ii) (1, 1, 0, 0, 0, 0),
(iii) (0,∓2i, 1, 1, 0, 0),

(iv) (0, 0, 1, 0, 1,∓2i).

The next proof is essentially interpreting the equations (31) in this case.

Proof. We have the following identities

αγ = γα = 0, βa = βb = ηa = ηb = 0. (33)

Assume c = d = ± i
3 , then to the equations listed above we must add:

0 = 2βc+ αη = aα+ 2cb, 0 = γβ = bγ.

We compute the solutions. Notice that α = 0 ⇒ β = 0 ⇒ b = 0 ⇒ ηa = 0. Then
according to η = 0 or a = 0 we have:





a12 · x = 0,

a12 · y = γx,

a12 · v = ax+ c(v + w)

or





a12 · x = 0,

a12 · y = γx+ η(v + w),

a12 · v = c(v + w).

Notice that, in any case, we cannot have γ = 0, otherwise the module would
decompose. We may thus assume γ = 1, changing y by 1

γ y. For the same reason,

we cannot have a = η = 0. In the first case, we may take a = 1, changing v by 1
av

and in the second case, changing v by ηv we may take η = 1.
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On the other hand, γ = 0 ⇒ α 6= 0; and, according to β = 0 or β 6= 0,

β = 0 ⇒





a12 · x = αy,

a12 · y = 0

a12 · v = ax+ by + c(v + w), for a = −2cbα−1

β 6= 0 ⇒





a12 · x = αy + β(v − w),

a12 · y = η(v + w),

a12 · v = c(v + w), for η = −2βcα−1.

In the first case we may assume α = b = 1, and thus a = −2c and, in the second,
α = β = 1, and thus η = −2c.

Assume now c = −d = ±i, then to the identities (33) we had we must add:
{
0 = 2bγ + 2ca = γβ + 2cη

0 = aα = αη.

We find the solutions:

(i)





a12 · x = αy,

a12 · y = 0,

a12 · v = by + c(v − w).

(ii)





a12 · x = αy + β(v − w),

a12 · y = 0,

a12 · v = c(v − w).

(iii)





a12 · x = β(v − w),

a12 · y = γx+ η(v + w),

a12 · v = c(v − w),

β = −2ηcγ−1.

(iv)





a12 · x = 0,

a12 · y = γx,

a12 · v = ax+ by + c(v − w),

b = −2caγ−1.

Therefore, changing conveniently the basis on each case (by scalar multiple of its
components), we have the four modules from the second item. �

Let sgn : iR→ {±1}, sgn(it) = sgn(t).

Proposition 5.12. The following isomorphisms hold:

(i) Sǫ ⊗ S ∼= S ∼= S ⊗ Sǫ for every simple A1-module S;
(ii) Ssgn⊗Sst(θ) ∼= Sst(ϑ), for θ, ϑ ∈ {±i,± i

3} with sgn(θ) = sgn(ϑ), |θ| 6= |ϑ|;
(iii) Sst(θ) ⊗ Ssgn

∼= Sst(ϑ), for θ, ϑ ∈ {±i,± i
3} with sgn(θ) = − sgn(ϑ), |θ| 6=

|ϑ|.
(iv) • Sst(i)⊗ Sst(i) ∼= Sst(− i

3 )⊗ Sst(
i
3 )

∼=M(0, 2i, 1, 1, 0, 0)[−i],

• Sst(i)⊗ Sst(−i) ∼= Sst(− i
3 )⊗ Sst(− i

3 )
∼=M(1, 0, 0, 0,−2 i

3 , 1)[
i
3 ],

• Sst(i)⊗ Sst(
i
3 )

∼= Sst(− i
3 )⊗ Sst(i) ∼=M(0, 0, 1, 0, 1, 2i)[−i],

• Sst(i)⊗ Sst(− i
3 )

∼= Sst(− i
3 )⊗ Sst(−i) ∼=M(1, 1, 0,−2 i

3 , 0, 0)[
i
3 ],

• Sst(−i)⊗ Sst(i) ∼= Sst(
i
3 )⊗ Sst(

i
3 )

∼=M(1, 0, 0, 0, 2 i
3 , 1)[− i

3 ],
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• Sst(−i)⊗ Sst(−i) ∼= Sst(
i
3 )⊗ Sst(− i

3 )
∼=M(0,−2i, 1, 1, 0, 0)[i],

• Sst(−i)⊗ Sst(
i
3 )

∼= Sst(
i
3 )⊗ Sst(i) ∼=M(1, 1, 0, 2 i

3 , 0, 0)[− i
3 ],

• Sst(−i)⊗ Sst(− i
3 )

∼= Sst(
i
3 )⊗ Sst(−i) ∼=M(0, 0, 1, 0, 1,−2i)[i].

Proof. Item (i) is immediate.
We check item (ii): let θ ∈ {±i,± i

3}, Ssgn = k{z}; Sst(θ) = k{v, w}, a12 · v =
cv + dw. Then (Ssgn ⊗ Sst)|S3 =Wst with the canonical basis given by

u = z ⊗ v − 2z ⊗ w, t = 2z ⊗ v − z ⊗ w,

and then

a12u =
5c+ 4d

3
u− 4c+ 5d

3
t.

Thus, the claim follows according to c = ±i or c = ± i
3 .

Item (iii) follows analogously: in this case

u = v ⊗ z − 2w ⊗ z and a12u = −5c+ 4d

3
u+

4c+ 5d

3
t.

Now, we have to compute Sst(θ) ⊗ Sst(ϑ), for θ, ϑ ∈ {±i,± i
3}. Let Sst(θ) =

k{v, w}, Sst(ϑ) = k{v′, w′}, a = v ⊗ v′, b = v ⊗ w′, c = w ⊗ v′, d = w ⊗ w′. First,

Wst ⊗Wst
∼=Wǫ ⊕Wsgn ⊕Wst = k{x} ⊕ k{y} ⊕ k{v, w},

for x = 2a−b−c+2d, y = b−c, v = a−b−c, w = d−b−c. Now, if a12 ·v = αv+βw
and a12 · v′ = α′v′ + β′w′, then

a12 · a = αa+ (β + α′)c+ β′d, a12 · b = αb− β′c+ (β − α′)d,

a12 · c = (α′ − β)a+ β′b− αc, a12 · d = −β′a− (α′ + β)b − αd;

and thus

a12 · x = (−α− 2β − 2α′ − β′)y + (2α+ β − α′ − 2β′)(v − w),

a12 · y =
1

3
(α+ 2β − 2α′ − β′)x+ (−2α− β + α′ + 2β′)(v + w),

a12 · v =
1

6
(2α+ β + α′ + 2β′)x +

1

2
(−2α− β − α′ − 2β′)y

+
1

3
(α+ 2β − 4α′ − 2β′)v +

1

3
(−2α− 4β + 2α′ + β′)w.

For each θ, ϑ ∈ {±i± i
3}, we get the identities in item (iv) by inserting the corre-

sponding values of α, α′, β, β′. �

Corollary 5.13. A1 is not quasitriangular.

Proof. If H is a quasitriangular Hopf algebra and M,N are H-modules, then M ⊗
N ∼= N ⊗ M as H-modules. We see that this does not hold for A1, from, for
instance, the second item of Prop. 5.12. �
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5.3.5. Projective covers. Recall that a linear basis for A1 is given by the set S =
{xHt |x ∈ X, t ∈ S3}, where X = {1, a12, a13, a23, a12a13, a12a23, a13a23,
a13a12, a12a13a23, a12a13a12, a13a12a23, a12a13a12a23} [AG2].

Proposition 5.14. Iχ is the projective cover of Sχ, χ ∈ {ǫ, sgn}.

Proof. In view of Prop 4.3, we only have to check that Iχ is indecomposable. We
work with χ = ǫ, the other case being analogous, or follows by tensoring with
Ssgn. Let eǫ =

∑
t∈S3

Ht ∈ A1, then it is clear that {xeǫ |x ∈ X} is a basis of Iǫ.
Moreover, if we change this basis by the following one:

{eǫ} ∪ {(a12a13a12a23 − a12a23)eǫ} ∪ {(a12 + a13 + a23)eǫ}
∪ {(a12a13a12 − a12a13a23 − a13a12a23 − a13 − 2a12)eǫ}
∪ {(a12 − 2a13 + a23)eǫ, (2a23 − a12 − a13)eǫ}
∪ {(a13a23 − a13a12)eǫ, (a12a13 − a12a23 + a13a23 − a13a12)eǫ}
∪ {(a12a13 + a12a23 + a13a12)eǫ, (−a12a13 + a13a23 − a13a12)eǫ}
∪ {(a12a13a12 + 2a12a13a23 − a13a12a23 + a12 − a13)eǫ,

(2a12a13a12 + a12a13a23 + a13a12a23 − a12 + a13)eǫ}
then we can see that

(Iǫ)|S3
∼=Wǫ ⊕Wǫ ⊕Wsgn ⊕Wsgn ⊕Wst ⊕Wst ⊕Wst ⊕Wst.

Now we deal with the action of a12. Notice that in the first basis, the matrix of a12
is E2,1 +E5,3 +E6,4 +E10,7 +E9,8 +E12,11, where Ei,j is the matrix whose all its
entries are zero except for the (i, j)-th one, which is a 1. It is possible to change
the basis in such a way that the decomposition in S3-simple modules is preserved
and the matrix of a12 becomes:

[a12] =




0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 −1 1 −1 1 −1 1 −1 1
1
3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −2i −2i 2i 2i 0 0 0 0

− 1
12 0 0 0 i i 0 0 0 0 0 0
1
12 0 0 0 −i −i 0 0 0 0 0 0

− 1
12 0 0 0 0 0 −i −i 0 0 0 0
1
12 0 0 0 0 0 i i 0 0 0 0
1
12 0 − i

6 0 0 0 0 0 i
3 − i

3 0 0
− 1

12 0 − i
6 0 0 0 0 0 i

3 − i
3 0 0

1
12 0 i

6 0 0 0 0 0 0 0 − i
3

i
3

− 1
12 0 i

6 0 0 0 0 0 0 0 − i
3

i
3




.

Let {x1, x2, y1, y2, v1, w1, v2, w2, v3, w3, v4, w4} be this new basis. Assume Iǫ =
U1 ⊕ U2, for U1, U2 A1-submodules. Thus, there exists i = 1, 2, λ 6= 0, µ ∈ k such
that x = λx1+µx2 ∈ Ui. Acting with a12 we have that y1, v1+v2−v3−v4 ∈ Ui. As
y1 ∈ Ui, acting once again with a12 we have that also v3−v4 ∈ Ui and thus v3+v4 ∈
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Ui (again by the action of a12). Therefore v3, v4 ∈ Ui and so x2, y2, x1, v1+v2 ∈ Ui.
But then v1 − v2 ∈ Ui and thus Ui = Iǫ. �

We are left with finding the projective covers Pst(θ) of the 2-dimensional A1-
modules Sst(±θ), θ ∈ {i, i

3}. Since these modules are

Sst(i), Sst(i)⊗ Ssgn, Ssgn ⊗ Sst(i), and Ssgn ⊗ Sst(i) ⊗ Ssgn,

see Prop. 5.12, and Pst(θ) ∼= A1est(θ), they will all have the same dimension.
Moreover, we will necessarily have dimPst(θ) = 6, ∀ θ, by (29).

Proposition 5.15. Let P be the kS3-module with basis {x, y, u, t, v, w}, where
〈x〉|S3 = Wǫ, 〈y〉|S3 = Wsgn, 〈u, t〉|S3 = Wst, 〈v, w〉|S3 = Wst. Then P is an
A1-module via

k{x, y, u, t} ∼=M(0, 2i, 1, 1, 0, 0)[−i], a12 · v = x− 2iy + u+ t+ i(v − w).

Moreover P = Pst(i) is the projective cover of the simple module Sst(i).

As a result, we have Pst(− i
3 ) = Pst(i)⊗Ssgn, Pst(

i
3 ) = Ssgn⊗Pst(i) and Pst(−i) =

Ssgn ⊗ Pst(i)⊗ Ssgn.

Proof. The matrix of a12 in the given basis is

[a12] =




0 1 0 0 1 −1
0 0 0 0 −2i −2i
2i 1 −i −i 1 −1
−2i 1 i i 1 −1
0 0 0 0 i i
0 0 0 0 −i −i



.

Via the action of H13, H23 we define the matrices of a13, a23 and then it is easy to
check that

[H12][a12] = −[a12][H12],

[a12]
2 = 0

[a12][a13] + [a13][a23] + [a23][a12] = id6×6 −[H12][H12],

and thus P is an A1-module.
Now, it is clear that U = k{x, y, u, t} is an A1-submodule and that the canonical

projection π : P ։ P/U gives a surjection over Sst(i). Moreover, this surjection
is essential. In fact, let N ⊂ P be an A1-submodule, such that N/U ∼= Sst(i).
In particular, there exists λ 6= 0 ∈ k such that λu + v ∈ P . Now, a12(v + λu) =
x−2iy+(1−λi)u+(−1+λi)t+i(v−w), and thus x, y ∈ N . But x ∈ N ⇒ u, v ∈ N
and therefore N = P . Consequently, π : P → P/U is essential.

Now, if (Pst(i), f) is the projective cover of Sst(i), we have the following com-
mutative diagram

Pst(i)

f

��

g

vvl l
l l l l l

l l

P
π // // P/U

∼=
Sst(i).
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As π is essential and π(g(Pst(i))) ∼= Sst(i) we must have g(Pst(i)) = P . But
then dimP = dimPst(i) = 6 and thus g is an isomorphism. Therefore, (P, π) is
the projective cover of Sst(i). The claim about the projective covers of the other
Sst(λ)’s is now straightforward. �

5.3.6. Representation type of A1.
We show that the algebra A1 is not of finite representation type. From Props.

3.12 and 5.7 it follows that Ext1A1
(S, S) = 0 for any simple one-dimensional A1-

module S, and that there is an unique non-trivial extension of Sǫ by Ssgn, namely
the A1-module Msgn,ǫ. The same holds for extensions of Ssgn by Sǫ, considering

the A1-module Mǫ,sgn. Prop. 3.7 shows that Ext1A1
(Sst(λ), Sst(µ)) = 0 for any

λ, µ ∈ {±i,± i
3}. Now, a non-trivial extension of one of the modules Sǫ or Ssgn

by a two dimensional A1-module Sst(λ), or vice versa, must come from a three
dimensional indecomposable A1-module M . We have classified such modules in
Lemma 5.9 and we see then that:

dimExt1A1
(Sǫ, Sst(λ)) = dimExt1A1

(Sst(λ), Ssgn) =

{
1, if λ = ±i,

0, if λ = ± i
3 .

dimExt1A1
(Ssgn, Sst(λ)) = dimExt1A1

(Sst(λ), Sǫ) =

{
1, if λ = ± i

3 ,

0, if λ = ±i.

Let {Sǫ, Ssgn, Sst(i), Sst(−i), Sst(
i
3 ), Sst(− i

3 )} = {1, 2, 3, 4, 5, 6} be an ordering of
the simple A1-modules. Then the Ext-Quiver of A1 is:

•1

wwooooooooooooooo

����
��

��
��

��

Q(A1) : •3

''OOOOOOOOOOOOOOO •4

��?
??

??
??

? •5

__????????

•6

ggOOOOOOOOOOOOOOO

•2

??��������

77ooooooooooooooo

KK

.

Proposition 5.16. A1 is not of finite representation type.

Proof. The separation diagram of A1 is D
(1)
5

∐
D

(1)
5 , with D

(1)
5 the extended affine

Dynkin diagram corresponding to the classical Dynkin diagram D5. By Lemma
4.5 we have that A1/J(A1)

2 (a quotient of A1) is not of finite representation type
(it is, in fact, tame) by Th. 4.4, and so neither is A1. �
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