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Abstract. We show that two competing definitions of a ribbon quasi-Hopf
algebra are actually equivalent. Along the way, we look at the Drinfel’d ele-
ment from a new perspective and use this viewpoint to derive its fundamental
properties.

Introduction

While quasi-Hopf algebras were introduced by V. G. Drinfel’d (cf. [4]), the first
authors to contemplate the notion of a ribbon quasi-Hopf algebra were D. Altschüler
and A. Coste (cf. [1], Par. 4.1, p. 89). They define them as quasitriangular quasi-
Hopf algebras with an additional central element, the ribbon element, that is sub-
ject to four axioms. However, as the authors point out themselves, these axioms
are not completely satisfactory, as they neither reduce directly to the axioms of
a ribbon Hopf algebra, in the case where the quasi-Hopf algebra happens to be
an ordinary Hopf algebra, nor are in complete analogy to the axioms for a ribbon
category. They therefore analyzed their notion further and explained that, in the
case where the evaluation element α is invertible, their axioms are equivalent to a
set of four different axioms which are considerably closer to the notion of a ribbon
Hopf algebra and the notion of a ribbon category.

However, in the case of ribbon Hopf algebras, one of the four axioms is actually a
consequence of the remaining axioms. Therefore D. Bulacu, F. Panaite, and F. van
Oystaeyen proposed a different definition of a ribbon quasi-Hopf algebra, leaving
out this supposedly superfluous axiom (cf. [3], Def. 2.3, p. 6106). Again in the
case where the evaluation element is invertible, they showed that this axiom really
was superfluous, so that their definition was equivalent to the revised version of
Altschüler and Coste (cf. [3], Prop. 5.5, p. 6119).

Of course, this raised the question whether the assumption on the invertibility
of the evaluation element is really necessary to establish these two equivalences, or
whether this assumption was only made to simplify the argument. In the case of
the first equivalence, between the two versions of the definition already proposed
by Altschüler and Coste, this question was addressed by D. Bulacu and E. Nauwe-
laerts, who showed that the assumption is not necessary (cf. [2], Thm. 3.1, p. 667).
In a recent article, when using ribbon quasi-Hopf algebras to exemplify certain
properties of modular data, the authors have claimed that this assumption is also
not necessary for the second equivalence between the definition of Altschüler and
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Coste and the definition of Bulacu, Panaite, and van Oystaeyen (cf. [10], Cor. 5.1,
p. 50). The purpose of the present article is to prove this claim.

To do this, we take a certain viewpoint, which is suitable not only for this proof,
but also for similar questions: The R-matrix can be viewed as a twist that takes
the coproduct into the coopposite coproduct. However, while twisting leaves the
antipode unchanged, the coopposite coproduct naturally comes endowed with the
inverse antipode. The so-called Drinfel’d element now appears as the element that
connects these two choices for the antipode of the coopposite quasi-Hopf algebra.
Viewing the Drinfel’d element in this way enables us not only to give a relatively
easy proof of our claim, but also allows us to give a new derivation of the funda-
mental properties of the Drinfel’d element in a comparatively short and conceptual
way.

The article consists of two sections. The first, preliminary section contains a
brief summary of the basic facts about quasi-bialgebras, quasi-Hopf algebras, qu-
asitriangularity, and twisting. However, we trace more precisely than the avail-
able references how some elements already introduced in Drinfel’d’s original article
transform under twisting and other modifications, as this turns out to be crucial
for our treatment.

The second section contains our main result, Theorem 2.3. As explained above,
we prove it by viewing the R-matrix as a twist, a viewpoint developed in Para-
graph 2.1. The new proof of the fundamental properties of the Drinfel’d element
also mentioned above is given in Paragraph 2.2. The article concludes with Propo-
sition 2.4, a formula for the image of the Drinfel’d element under the antipode.
Although this formula was needed in our earlier proofs of Theorem 2.3, it is not
needed in the proof presented here. We include it nonetheless, because it is of inde-
pendent interest and its proof nicely illustrates the ideas that we have developed.

In the following, we work over a base field that is denoted by K. All vector
spaces that we will consider will be defined over this base field K, and all tensor
products will be taken over K. With respect to enumeration, we use the convention
that propositions, definitions, and similar items are referenced by the paragraph in
which they occur; an additional third digit indicates a part of the corresponding
item. For example, a reference to Proposition 2.2.3 refers to the third assertion of
the unique proposition in Paragraph 2.2.

1. Preliminaries

1.1. Recall that a quasi-bialgebra is a quadruple (A,∆, ε,Φ), where A is an as-
sociative algebra over our base field K, whose multiplication and unit element
we have not explicitly listed as part of the structure elements. Out of the struc-
ture elements that we have listed explicitly, two are algebra homomorphisms,
namely ∆ : A → A ⊗ A, which we call the coproduct, and ε : A → K, which we
call the counit. The remaining structure element is the associator Φ ∈ A⊗A⊗A.
These structure elements are required to satisfy several axioms: Besides that Φ is
required to be invertible, four equations have to be satisfied, which we now list. We
give each equation a name that we will use in later references:
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(1) Quasi-coassociativity: (id⊗∆)∆(a)Φ = Φ(∆⊗ id)∆(a)
(2) Pentagon axiom:

(id⊗ id⊗∆)(Φ)(∆⊗ id⊗ id)(Φ) = (1 ⊗ Φ)(id⊗∆⊗ id)(Φ)(Φ ⊗ 1)

(3) Counitality: (ε⊗ id)∆(a) = a = (id⊗ ε)∆(a)
(4) Counit-associator axiom: (id⊗ ε⊗ id)(Φ) = 1⊗ 1

Here, the first and the third equation are required for all a ∈ A. These axioms
imply another property, which we call the counit-associator property:

Proposition. (ε⊗ id⊗ id)(Φ) = (id⊗ id⊗ ε)(Φ) = 1⊗ 1

Proof. This is proved in [4], Remark on p. 1422. �

We will use the version ∆(a) = a(1) ⊗ a(2) of the Heyneman-Sweedler sigma
notation for the coproduct, and the notation ∆cop(a) = a(2)⊗a(1) for the coopposite
coproduct. Also, it will frequently be necessary to write Φ and its inverse as a sum
of decomposable tensors, which we do in the form

Φ =
n∑

i=1

Xi ⊗ Yi ⊗ Zi Φ−1 =
m∑

j=1

X̄j ⊗ Ȳj ⊗ Z̄j

Because the number of decomposable tensors in these sums is never important in
the sequel, we will also write such equations in slightly abbreviated forms, like
Φ =

∑
iXi ⊗ Yi ⊗ Zi.

1.2. A quasi-bialgebra is a quasi-Hopf algebra if it is endowed with three additional
structure elements: An algebra anti-automorphism S : A → A, called the antipode,
an element α ∈ A, called the evaluation element, and an element β ∈ A, called the
coevaluation element. The axioms that these structure elements have to satisfy are
the following:

(1) Left antipode equation: S(a(1))αa(2) = ε(a)α
(2) Right antipode equation: a(1)βS(a(2)) = ε(a)β

(3) Duality axiom:
∑

iXiβS(Yi)αZi = 1 =
∑

j S(X̄j)αȲjβS(Z̄j)

These structure elements are compatible with the counit as follows:

Lemma. We have ε(S(a)) = ε(a) and ε(α)ε(β) = 1.

Proof. The first assertion is proved in [4], Rem. 7, p. 1425. The second follows by
applying the counit to the duality axiom. �

The antipode is also compatible with the coproduct and the associator. To for-
mulate these compatibilities, we need to define two elements γ and δ in the second
tensor power of A, which are in a sense analogues of the evaluation element α and
the coevaluation element β:

γ :=
∑

i,j

S(X̄iYj)αȲiZj(1) ⊗ S(Xj)αZ̄iZj(2)

δ :=
∑

i,j

Xi(1)X̄jβS(Zi)⊗Xi(2)ȲjβS(YiZ̄j)
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From these elements, we derive the element

F :=
∑

i

(S(X̄i(2))⊗ S(X̄i(1)))γ∆(ȲiβS(Z̄i))

which appears in the compatibility conditions in the following way:

Proposition. F is invertible with inverse

F−1 =
∑

i

∆(S(X̄i)αȲi)δ(S(Z̄i(2))⊗ S(Z̄i(1)))

and we have γ = F∆(α) and δ = ∆(β)F−1. The antipode is compatible with the

coproduct via

∆(S(a)) = F−1(S(a(2))⊗ S(a(1)))F

and with the associator via∑

i

S(Zi)⊗ S(Yi)⊗ S(Xi) = (1⊗ F )(id⊗∆)(F )Φ(∆⊗ id)(F−1)(F−1
⊗ 1)

Proof. This is proved in [4], Prop. 1.2, p. 1426. We note that it is also shown there
that the three properties ∆(S(a)) = F−1(S(a(2)) ⊗ S(a(1)))F , γ = F∆(α), and

δ = ∆(β)F−1 characterize F uniquely; even stronger, it suffices to check one of the
two conditions γ = F∆(α) and δ = ∆(β)F−1. �

1.3. The antipode of a quasi-Hopf algebra is in general not unique; it can be mod-
ified with the help of an invertible element x ∈ A by defining

Sx(a) := xS(a)x−1 αx := xα βx := βx−1

It is easy to check that Sx is again an antipode for A with evaluation element αx

and coevaluation element βx. However, this is the only possible modification: If S′ is
an arbitrary new antipode for the quasi-Hopf algebra A, with evaluation element α′

and coevaluation element β′, then the element

x :=
∑

i

S′(X̄i)α
′ȲiβS(Z̄i)

is invertible with inverse x−1 =
∑

i S(X̄i)αȲiβ
′S′(Z̄i), and we have S′ = Sx,

α′ = αx, and β′ = βx. This fact, which will be important in the sequel, is proved
in [4], Prop. 1.1, p. 1425.

By modifying the antipode as indicated by an invertible element x, we of course
indirectly modify all other elements derived from it; in particular the elements γ,
δ, and F introduced in Paragraph 1.2. The modified elements, which we denote
by γx, δx, and Fx, can be expressed in terms of the unmodified elements as follows:

Proposition.

γx = (x⊗ x)γ δx = δ(x−1
⊗ x−1) Fx = (x⊗ x)F∆(x−1)

Proof. The form of γx follows directly from the definition:

γx =
∑

i,j

xS(X̄iYj)x
−1(xα)ȲiZj(1) ⊗ xS(Xj)x

−1(xα)Z̄iZj(2) = (x⊗ x)γ
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Similarly, the definition of δx is

δx =
∑

i,j

Xi(1)X̄j(βx
−1)xS(Zi)x

−1
⊗Xi(2)Ȳj(βx

−1)xS(YiZ̄j)x
−1

which immediately yields the second assertion. Finally, since

Fx =
∑

i

(Sx(X̄i(2))⊗ Sx(X̄i(1)))γx∆(ȲiβxSx(Z̄i))

=
∑

i

(xS(X̄i(2))x
−1

⊗ xS(X̄i(1))x
−1)(x⊗ x)γ∆(Ȳi(βx

−1)xS(Z̄i)x
−1)

= (x ⊗ x)
∑

i

(S(X̄i(2))⊗ S(X̄i(1)))γ∆(ȲiβS(Z̄i)x
−1) = (x⊗ x)F∆(x−1)

the third assertion also holds. �

1.4. With every quasi-Hopf algebra A, one can associate another quasi-Hopf alge-
bra Acop, which has the same product as A, but the coopposite coproduct. For
this quasi-Hopf algebra, the counit is unchanged, the associator is changed to∑

i Z̄i ⊗ Ȳi ⊗ X̄i, the antipode is changed to its inverse S−1, the evaluation el-
ement is changed to S−1(α), and the coevaluation element is changed to S−1(β)
(cf. [4], Rem. 4, p. 1424; [7], Exerc. XV.6.2, p. 381).

As in Paragraph 1.3, this modification of the defining structure elements also
leads to a modification of the elements γ, δ, and F . In this case, however, we do
not introduce a special notation for the new elements formed in Acop, because their
relation to the original elements is so simple: The new elements are (S−1

⊗S−1)(γ),
(S−1

⊗ S−1)(δ), and (S−1
⊗ S−1)(F ). To see this in the case of γ, we use an

alternative description of γ given in [4], Lem. 1, p. 1427, which yields

(S−1
⊗ S−1)(γ) = (S−1

⊗ S−1)(
∑

i,j

S(YiX̄j(2))αZiȲj ⊗ S(XiX̄j(1))αZ̄j)

=
∑

i,j

S−1(ZiȲj)S
−1(α)YiX̄j(2) ⊗ S−1(Z̄j)S

−1(α)XiX̄j(1)

But this last term is just what we get if we form γ in Acop according to the original
definition in Paragraph 1.2.

In the case of δ, we argue similarly: An alternative formula given in [4], loc. cit.
implies that

(S−1
⊗ S−1)(δ) = (S−1

⊗ S−1)(
∑

i,j

X̄iβS(Z̄i(2)Zj)⊗ ȲiXjβS(Z̄i(1)Yj))

=
∑

i,j

Z̄i(2)ZjS
−1(β)S−1(X̄i)⊗ Z̄i(1)YjS

−1(β)S−1(ȲiXj)

which is again what we get if we form δ in Acop according to the original definition
in Paragraph 1.2.

In the case of F , we argue differently: If we apply S−1
⊗ S−1 to the equation

(S ⊗ S)(∆cop(a)) = F∆(S(a))F−1 in Proposition 1.2 and replace a by S−1(a), we
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get

∆cop(S−1(a)) = (S−1
⊗ S−1)(F−1)(S−1

⊗ S−1)(∆(a))(S−1
⊗ S−1)(F )

Similarly, if we apply S−1
⊗S−1 to the equation γ = F∆(α) in the same proposition

and use what we have just established, we get

(S−1
⊗ S−1)(γ) = (S−1

⊗ S−1)(∆(α))(S−1
⊗ S−1)(F )

= (S−1
⊗ S−1)(F )∆cop(S−1(α))

Finally, if we treat the equation δ = ∆(β)F−1 in the same way, we get

(S−1
⊗ S−1)(δ) = ∆cop(S−1(β))(S−1

⊗ S−1)(F−1)

But this establishes our assertion, since it shows that (S−1
⊗ S−1)(F ) has the

characteristic properties of the element F in Acop, as described in Paragraph 1.2.

1.5. A quasi-Hopf algebra is called quasitriangular if it is endowed with a so-called
R-matrix, which is an invertible element R =

∑
l sl ⊗ tl ∈ A⊗A that satisfies the

following three conditions:

(1) Quasi-cocommutativity: ∆cop(a)R = R∆(a)
(2) Left hexagon axiom:

(∆⊗ id)(R) =
∑

i,j,k,l,q

YislX̄jXk ⊗ ZiZ̄jsqYk ⊗XitlȲjtqZk

(3) Right hexagon axiom:

(id⊗∆)(R) =
∑

i,j,k,l,q

Z̄islYjsqX̄k ⊗ X̄iXjtqȲk ⊗ ȲitlZjZ̄k

Note that the right-hand side in the hexagon axioms factors completely; for
example, the right-hand side in the left hexagon axiom is the product of the tensors∑

i Yi⊗Zi⊗Xi,
∑

l sl⊗1⊗tl,
∑

j X̄j⊗Z̄j⊗Ȳj ,
∑

q 1⊗sq⊗tq, and
∑

k Xk⊗Yk⊗Zk.
The hexagon axioms obviously constitute a compatibility condition between the

R-matrix and the coproduct. But the R-matrix is also compatible with the counit
and the antipode: Denoting by F ′ the image of F under the interchange of the two
tensor factors, we have

Lemma.

(ε⊗ id)(R) = 1 (id⊗ ε)(R) = 1 (S ⊗ S)(R) = F ′RF−1

Proof. The equations involving the counit are proved in [4], Rem. 2, p. 1440; they
are also stated in [1], Eq. (2.23), p. 87. The equation involving the antipode was
stated in [1], Eq. (4.22), p. 96 and proved in [6], Cor. 2.2, p. 559. A proof without
the graphical calculus was given in [2], Lem. 2.3, p. 663. These references also list
additional compatibility conditions between the R-matrix and the antipode. �

From the R-matrix, we derive a special element u, called the Drinfel’d element.
It is defined as

u :=
∑

i,l

S(ȲiβS(Z̄i))S(tl)αslX̄i
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(cf. [1], Eq. (3.2), p. 87; [7], Exerc. XV.6.5, p. 381). This ad hoc definition may
appear unmotivated at this point; we will put it in its context in Paragraph 2.1.
Although we could set down the fundamental properties of the Drinfel’d element
here, as they appear in literature, we defer this to Paragraph 2.2, where we will
actually reconfirm them from the viewpoint developed in Paragraph 2.1, as this
viewpoint allows for a proof that is in our opinion shorter and more conceptual.
Here we only record how the Drinfel’d element changes if the antipode is modified by
an invertible element x as explained in Paragraph 1.3. The new Drinfel’d element ux

relates to the old Drinfel’d element u as follows:

Proposition. ux = xS(x−1)u

Proof. As we have

ux =
∑

i,l

Sx(ȲiβxSx(Z̄i))Sx(tl)αxslX̄i

=
∑

i,l

xS(Ȳi(βx
−1)(xS(Z̄i)x

−1))x−1(xS(tl)x
−1)(xα)slX̄i

=
∑

i,l

xS(ȲiβS(Z̄i)x
−1)S(tl)αslX̄i = xS(x−1)u

we see that this follows directly from the definition. �

1.6. Quasi-Hopf algebras can be twisted to generate new quasi-Hopf algebras. The
ingredient that we need for this is a twisting element; i.e., an invertible element
T ∈ A⊗A in the second tensor power of our quasi-Hopf algebra A that satisfies the
condition (ε⊗ id)(T ) = (id⊗ ε)(T ) = 1. If we then introduce the new coproduct

∆T (a) := T∆(a)T−1

and the new associator

ΦT := (1⊗ T )(id⊗∆)(T )Φ(∆⊗ id)(T−1)(T−1
⊗ 1)

but leave the counit and the antipode unchanged, we get again a quasi-Hopf alge-
bra, at least if we introduce a new evaluation element αT and a new coevaluation
element βT via

αT :=
∑

i

S(f̄i)αḡi βT :=
∑

i

fiβS(gi)

where we have used the notation T =
∑

i fi ⊗ gi and T−1 =
∑

i f̄i ⊗ ḡi (cf. [4],
Rem. 5, p. 1425; [7], Exerc. XV.6.4, p. 381).

As a consequence of these modifications, we also get, according to our definitions
in Paragraph 1.2, new elements γT , δT , and FT . As we will show now, these new
elements can be expressed in terms of the original elements γ, δ, and F . If we
denote, as for F , by T ′ the image of T under the interchange of the two tensor
factors, the corresponding expressions look, in a slightly implicit form, as follows:
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Proposition.

(1) (S ⊗ S)(T ′)γTT =
∑

i

(S ⊗ S)(∆cop(f̄i))γ∆(ḡi)

(2) T−1δT (S ⊗ S)(T ′−1) =
∑

i

∆(fi)δ(S ⊗ S)(∆cop(gi))

(3) FT = (S ⊗ S)(T ′−1)FT−1

Proof. (1) We use the Sweedler notation ∆T (a) = a[1] ⊗ a[2] for the twisted co-
product, and primes for the twisted associator; i.e., we write

ΦT =
∑

i

X ′

i ⊗ Y ′

i ⊗ Z ′

i Φ−1
T =

∑

j

X̄ ′

j ⊗ Ȳ ′

j ⊗ Z̄ ′

j

With this notation, the definition of γT reads

γT =
∑

i,j

S(X̄ ′

iY
′

j )αT Ȳ
′

i Z
′

j[1] ⊗ S(X ′

j)αT Z̄
′

iZ
′

j[2]

=
∑

i,j,k,l

S(f̄kX̄
′

iY
′

j )αḡkȲ
′

i Z
′

j[1] ⊗ S(f̄lX
′

j)αḡlZ̄
′

iZ
′

j[2]

If we multiply this from the right by T =
∑

q fq⊗gq and use the fact that ∆T (a)T =

T∆(a), we get

γTT =
∑

i,j,k,l,q

S(f̄kX̄
′

iY
′

j )αḡkȲ
′

i fqZ
′

j(1) ⊗ S(f̄lX
′

j)αḡlZ̄
′

igqZ
′

j(2)

But from the definition of the twisted associator, we have
∑

i,k,q

f̄kX̄
′

i ⊗ ḡkȲ
′

i fq ⊗ Z̄ ′

igq = (T−1
⊗ 1)Φ−1

T (1⊗ T )

= (∆⊗ id)(T )Φ−1(id⊗∆)(T−1)

If we insert this into our expression, the term (∆⊗ id)(T ) cancels, and we get

γTT =
∑

i,j,k,l

S(X̄if̄kY
′

j )αȲiḡk(1)Z
′

j(1) ⊗ S(f̄lX
′

j)αḡlZ̄iḡk(2)Z
′

j(2)

Multiplying from the left by (S ⊗ S)(T ′) yields

(S ⊗ S)(T ′)γTT =
∑

i,j,k,l,q

S(X̄if̄kY
′

j gq)αȲiḡk(1)Z
′

j(1) ⊗ S(f̄lX
′

jfq)αḡlZ̄iḡk(2)Z
′

j(2)

Now we have, again from the definition of the twisted associator, that
∑

j,k,q

X ′

jfq ⊗ f̄kY
′

j gq ⊗ ḡkZ
′

j = (1⊗ T−1)ΦT (T ⊗ 1)

= (id⊗∆)(T )Φ(∆⊗ id)(T−1) =
∑

j,k,q

fkXj f̄q(1) ⊗ gk(1)Yj f̄q(2) ⊗ gk(2)Zj ḡq
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Inserting this, our expression becomes

(S ⊗ S)(T ′)γTT =
∑

i,j,k,l,q

S(X̄igk(1)Yj f̄q(2))αȲigk(2)(1)Zj(1)ḡq(1)

⊗ S(f̄lfkXj f̄q(1))αḡlZ̄igk(2)(2)Zj(2)ḡq(2)

Using quasi-coassociativity, we can write this as

(S ⊗ S)(T ′)γTT =
∑

i,j,k,l,q

S(gk(1)(1)X̄iYj f̄q(2))αgk(1)(2)ȲiZj(1)ḡq(1)

⊗ S(f̄lfkXj f̄q(1))αḡlgk(2)Z̄iZj(2)ḡq(2)

Here we can use the left antipode equation on the part S(gk(1)(1))αgk(1)(2), and
after that the summations over k and l cancel, so that we are left with

(S ⊗ S)(T ′)γTT =
∑

i,j,q

S(X̄iYj f̄q(2))αȲiZj(1)ḡq(1) ⊗ S(Xj f̄q(1))αZ̄iZj(2)ḡq(2)

=
∑

q

(S(f̄q(2))⊗ S(f̄q(1)))γ(ḡq(1) ⊗ ḡq(2))

which is the first assertion.
(2) The form of δT can be established by a very similar computation. However, this
computation can be avoided by using the argument that we present now. In this
approach, we redefine FT to be what we claim it is according to the third assertion,
i.e., we redefine it as FT := (S ⊗ S)(T ′−1)FT−1. By Proposition 1.2, the original
element F satisfies (S ⊗ S)(∆cop(a)) = F∆(S(a))F−1, so FT satisfies

(S ⊗ S)(∆cop
T (a)) = (S ⊗ S)(T ′∆cop(a)T ′−1)

= (S ⊗ S)(T ′−1)F∆(S(a))F−1(S ⊗ S)(T ′) = FT∆T (S(a))F
−1
T

Furthermore, from the first assertion and the properties of F we have that

(S ⊗ S)(T ′)γTT =
∑

i

(S ⊗ S)(∆cop(f̄i))γ∆(ḡi) =
∑

i

F∆(S(f̄i))F
−1γ∆(ḡi)

= F
∑

i

∆(S(f̄i))∆(α)∆(ḡi) = F∆(αT )

so that γT = (S ⊗ S)(T ′−1)F∆(αT )T
−1 = FT∆T (αT ). But we know from Para-

graph 1.2 that the two properties that we have just established characterize FT , in
other words, the third assertion of our proposition holds.
(3) But then the equation δT = ∆T (βT )F

−1
T holds by Proposition 1.2. Inserting

the form of FT , this says that δT = T∆(βT )F
−1(S ⊗ S)(T ′), so that the left-hand

side of the second assertion of our proposition is

T−1δT (S ⊗ S)(T ′−1) = ∆(βT )F
−1 =

∑

i

∆(fi)∆(β)∆(S(gi))F
−1
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Using the properties of F again, we can rewrite this in the form

T−1δT (S ⊗ S)(T ′−1) =
∑

i

∆(fi)∆(β)F−1(S ⊗ S)(∆cop(gi))

=
∑

i

∆(fi)δ(S ⊗ S)(∆cop(gi))

where the last step uses the original equation δ = ∆(β)F−1 from Proposition 1.2.
But this is exactly the second assertion of our proposition. �

If A is quasitriangular, its twist is also quasitriangular, with respect to the new
R-matrix RT := T ′RT−1 (cf. [4], Eq. (3.11), p. 1439; [7], Prop. XV.3.6, p. 376). This
new R-matrix in principle also gives rise to a new Drinfel’d element uT . However,
this new element coincides with the original one:

Lemma. uT = u

Proof. This is proved in [3], Lem. 4.2, p. 6115, and also in [5], Thm. 4, p. 564. �

2. Ribbon quasi-Hopf algebras

2.1. We can also relate quasitriangularity and twisting in another way: As the
twisting element T , we can choose the R-matrix R, because Lemma 1.5 asserts
that the R-matrix satisfies the conditions that a twist element should satisfy. By
definition, the twisted coproduct is just the coopposite coproduct, which we have
discussed in Paragraph 1.4. However, not all of the other structure elements match:
Although the Yang-Baxter equation (cf. [7], Cor. XV.2.3, p. 372) yields that the
twisted associator is also

∑
i Z̄i ⊗ Ȳi ⊗ X̄i, the antipode remains the same, and is

not changed to its inverse, and for the evaluation element α̂ and the coevaluation

element β̂ we find the expressions

α̂ =
∑

l

S(s̄l)αt̄l β̂ =
∑

l

slβS(tl)

where we have, as before, used the notation R =
∑

l sl ⊗ tl and R−1 =
∑

l s̄l ⊗ t̄l.
This is, however, not a contradiction; we have already discussed in Paragraph 1.3

that the antipode of a quasi-Hopf algebra is not unique, and we have also explained
there how the structures are related: The element

û :=
∑

i

S(Zi)α̂YiS
−1(β)S−1(Xi)

is invertible with inverse û−1 =
∑

i S
−1(Zi)S

−1(α)Yiβ̂S(Xi), and we have

S(a) = ûS−1(a)û−1 α̂ = ûS−1(α) β̂ = S−1(β)û−1

Now we can associate with every R-matrix another one: It follows directly from
the definition in Paragraph 1.5 that R′−1 is also an R-matrix for A, where R′

denotes, as for F and T before, the image of R under the interchange of the two
tensor factors. We can therefore also use this R-matrix to twist the coproduct into
the coopposite coproduct. In this case, the twisted associator is

∑
i Z̄i ⊗ Ȳi ⊗ X̄i
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again, the antipode remains unchanged, and for the evaluation element α̌ and the
coevaluation element β̌ we find the expressions

α̌ =
∑

l

S(tl)αsl β̌ =
∑

l

t̄lβS(s̄l)

Also the discussion in Paragraph 1.3 applies again to tell us the relation of the
structures: The element

ǔ :=
∑

i

S(Zi)α̌YiS
−1(β)S−1(Xi)

is invertible with inverse ǔ−1 =
∑

i S
−1(Zi)S

−1(α)Yiβ̌S(Xi), and we have

S(a) = ǔS−1(a)ǔ−1 α̌ = ǔS−1(α) β̌ = S−1(β)ǔ−1

It is to be expected that there is a connection between these two ways of twisting.
A first connection involves the evaluation and the coevaluation elements:

Lemma. For the evaluation elements, we have

S−1(α̌) = û−1α S−1(α̂) = ǔ−1α

For the coevaluation elements, we have

S−1(β̌) = βû S−1(β̂) = βǔ

Proof. It is easy to solve the definitions of α̂ and α̌ for α; we find

α =
∑

l

S(sl)α̂tl α =
∑

l

S(t̄l)α̌s̄l

If we apply the inverse antipode to the definition of α̌ and use the preceding for-
mulas, we therefore get

S−1(α̌) =
∑

l

S−1(sl)S
−1(α)tl =

∑

l

S−1(sl)û
−1α̂tl = û−1

∑

l

S(sl)α̂tl = û−1α

The formula S−1(α̂) = ǔ−1α can be established by a similar computation, but on
the other hand, it also follows from the first equation by interchanging R and R′−1.

The coevaluation elements can be treated similarly: Solving their definitions
for β, we find

β =
∑

l

s̄lβ̂S(t̄l) β =
∑

l

tlβ̌S(sl)

If we apply the inverse antipode to the definition of β̌ and use the preceding for-
mulas, we therefore get

S−1(β̌) =
∑

l

s̄lS
−1(β)S−1(t̄l) =

∑

l

s̄lβ̂ûS
−1(t̄l) =

∑

l

s̄lβ̂S(t̄l)û = βû

Again, the formula S−1(β̂) = βǔ can be established by a similar computation, or
viewed as a consequence by interchanging R and R′−1. �

There is also a direct connection between the elements û and ǔ, and, what is
important for us, there is a connection to the Drinfel’d element u:
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Proposition. u = ǔ = S(û−1)

Proof. From the preceding lemma, we get that

û−1α = S−1(α̌) = S−2(α)S−1(ǔ) = û−1αûS−1(ǔ)

so that α = αûS−1(ǔ). Now the square of the antipode is both conjugation with
û and conjugation with S−1(ǔ−1), so that ûS−1(ǔ) is a central element. But then
the duality axiom implies that

ûS−1(ǔ) =
∑

i

XiβS(Yi)αûS
−1(ǔ)Zi =

∑

i

XiβS(Yi)αZi = 1

This shows that û−1 = S−1(ǔ) and therefore ǔ = S(û−1).
For the assertion about the Drinfel’d element, we first note that with our new

terminology we can rewrite its definition, given in Paragraph 1.5, in the form

u =
∑

i

S(ȲiβS(Z̄i))α̌X̄i

Applying the inverse antipode and using that S−1(α̌) = û−1α by the preceding
lemma, we get

S−1(u) =
∑

i

S−1(X̄i)û
−1αȲiβS(Z̄i) = û−1

∑

i

S(X̄i)αȲiβS(Z̄i) = û−1

where the last step follows from the duality axiom. This shows that u = S(û−1),
as asserted. �

We note that this proposition and the preceding lemma imply immediately that
α̌ = S(α)u, which is an identity that appears in [1], Eq. (3.9), p. 88.

2.2. The choice of the R-matrix R as the twisting element T does not only lead to

the elements α̂, β̂, and û, but also, as we saw in Paragraph 1.6, to new versions of

the elements γ, δ, and F , which we denote by γ̂, δ̂, and F̂ . Similarly, the choice
of R′−1 as the twisting element T leads to new versions of these elements that we
denote by γ̌, δ̌, and F̌ . We have seen in Proposition 1.6 how the new elements can
be expressed in terms of the old ones; we record here only the form of F̂ and F̌ ,
where this proposition yields that

F̂ = (S ⊗ S)(R′−1)FR−1 F̌ = (S ⊗ S)(R)FR′

We now use all of this to derive the fundamental properties of the Drinfel’d ele-
ment u, as promised in the introduction and in Paragraph 1.5. These fundamental
properties are the following:

Proposition. u is invertible. Moreover, we have

(1) ε(u) = 1
(2) S2(a) = uau−1

(3) ∆(u) = F−1((S ⊗ S)(F ′))(u ⊗ u)(R′R)−1
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Proof. By Proposition 2.1, we have u = ǔ, and we have noted already in Para-
graph 2.1 that ǔ is invertible. By using Lemma 1.2, Lemma 1.5, and the counit-
associator property, it follows directly from the definition that ε(u) = 1, or alter-
natively ε(ǔ) = 1 from its definition. The second property of the Drinfel’d ele-
ment is just one of the properties of ǔ that follow directly from its construction in
Paragraph 2.1. For the third property, recall that we have described the structure
elements of the coopposite quasi-Hopf algebra in Paragraph 1.4; in particular, we
have seen there that the element F , formed in Acop, is just (S−1

⊗ S−1)(F ). On
the other hand, we have explained in Paragraph 2.1 how the coopposite coproduct
arises by twisting the original coproduct with the help of the R-matrix, or alterna-
tively with the help of its variant R′−1. As the two structures were related via û

resp. ǔ, we get from Proposition 1.3 that

F̂ = (û⊗ û)(S−1
⊗ S−1)(F )∆cop(û−1) F̌ = (ǔ ⊗ ǔ)(S−1

⊗ S−1)(F )∆cop(ǔ−1)

Because the Drinfel’d element is equal to ǔ, we focus on the second formula, and
substitute for F̌ the expression from the beginning of this paragraph to get

(S ⊗ S)(R)FR′ = (u⊗ u)(S−1
⊗ S−1)(F )∆cop(u−1)

But we have (S ⊗ S)(R)F = F ′R by Lemma 1.5, and therefore can use the second
property of the Drinfel’d element to rewrite the preceding equation as

F ′RR′ = (S ⊗ S)(F )(u ⊗ u)∆cop(u−1)

Interchanging tensor factors, this becomes FR′R = (S ⊗ S)(F ′)(u ⊗ u)∆(u−1),
which in turn implies R′R∆(u) = F−1(S ⊗ S)(F ′)(u ⊗ u). But by quasi-cocom-
mutativity, we have R′R∆(u) = ∆(u)R′R, and the third assertion follows. �

It must be emphasized that the preceding proposition is not new: The invert-
ibility of u, the first property and in particular the second property were proved by
D. Altschüler and A. Coste in [1], Sec. 3, p. 87f. The third property is stated there
as well (cf. Eq. (4.21), p. 95), and the authors also propose a general strategy for its
proof, of which they carry out the first step explicitly (cf. Eq. (4.20), p. 95), which
however, as they say clearly, only works under the assumption that α is invertible.
The first complete, rigorous proof without this assumption was given by D. Bu-
lacu and E. Nauwelaerts in [2], p. 668ff. As its Hopf-algebraic predecessor (cf. [8],
Thm. 10.1.13, p. 181f), it is based on a comparatively involved computation, but
has the advantage to deduce the result almost directly from the axioms.

2.3. We now use the machinery developed so far to study ribbon quasi-Hopf alge-
bras. A quasitriangular quasi-Hopf algebra is called a ribbon quasi-Hopf algebra if
it contains a ribbon element. This means the following:

Definition. A nonzero central element v ∈ A is called a ribbon element if it

satisfies

∆(v) = (R′R)(v ⊗ v) and S(v) = v

Let us clarify how this definition relates to the various competing definitions of
a ribbon quasi-Hopf algebra that we have already mentioned in the introduction.
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We will prove below that it follows from our definition that a ribbon element is
invertible. The definitions given in [1], [2], and [3] all work instead with the inverse
element; our convention is the one used in [11], Sec. XI.3.1, p. 500. As already
pointed out in [3], Def. 2.3, p. 6106, it follows from the counitality property and
Lemma 1.5 that ε(v) = 1; to see this, one just needs to apply ε ⊗ id to the first
axiom in our definition above. This shows that, modulo the inversion, our definition
matches with the definition in [3], loc. cit.

A different definition was given by D. Altschüler and A. Coste in [1], Par. 4.1,
p. 89. As noted in [2], Thm. 3.1, p. 667, it follows from the formula for the coproduct
of the Drinfel’d element, which we have just reconfirmed in Proposition 2.2.3, that
the definition given by Altschüler and Coste is equivalent to our definition and
the additional requirement that v−2 = uS(u). Furthermore, it was shown in [3],
Prop. 5.5, p. 6119 that this property is automatically satisfied if α is invertible.
We will now show that this restriction is unnecessary. For preparation, we need the
following lemma:

Lemma. We have v2α̌ = α̂ and v2β̂ = β̌.

Proof. Because the ribbon element is central and invariant under the antipode, we
have

v2β̂ =
∑

l

v2slβS(tl) =
∑

l

slvβS(tlv)

The above definition also yields R′−1∆(v) = R(v ⊗ v). Inserting this into the
preceding formula, we get

v2β̂ =
∑

l

t̄lv(1)βS(s̄lv(2)) =
∑

l

t̄lv(1)βS(v(2))S(s̄l) =
∑

l

t̄lβS(s̄l) = β̌

by the right antipode equation and the fact that ε(v) = 1, which we already
recorded above. This proves the second assertion. The proof of the first assertion
is similar: Since ∆(v)R−1 = (v ⊗ v)R′, we have

v2α̌ =
∑

l

S(vtl)αvsl =
∑

l

S(v(1)s̄l)αv(2) t̄l =
∑

l

S(s̄l)αt̄l = α̂

by the left antipode equation. �

The proof of our main result is now almost immediate:

Theorem. v−2 = uS(u)

Proof. By construction, we have S−1(α) = û−1α̂ = ǔ−1α̌. Comparing this with the
first assertion of the lemma, we see that v2α̌ = α̂ = ûǔ−1α̌. Now the duality axiom
for the twisted quasi-Hopf algebra yields

∑

i

S(Zi)α̌Yiβ̌S(Xi) = 1

Because both v2 and ûǔ−1 are central, this implies

v2 =
∑

i

S(Zi)v
2α̌Yiβ̌S(Xi) =

∑

i

S(Zi)ûǔ
−1α̌Yiβ̌S(Xi) = ûǔ−1
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In view of Proposition 2.1, this means that v2 = S−1(u−1)u−1. Inverting this, we
get v−2 = uS−1(u). But as u is invariant under the square of the antipode by
Proposition 2.2.2, this implies the assertion. �

2.4. In Paragraph 1.4, we have described how to turn the coproduct into the coop-
posite coproduct. But we can also simultaneously turn the product into the op-
posite product. In this way, we arrive at the opposite and coopposite quasi-Hopf
algebra Aop cop, which is again a quasi-Hopf algebra with respect to the following
structure elements: Its counit and antipode are unchanged, but its associator is∑

i Zi ⊗ Yi ⊗ Xi, its evaluation element is β, and its coevaluation element is α

(cf. [4], Rem. 4, p. 1424; [7], Exerc. XV.6.2, p. 381). Furthermore, if A was quasi-
triangular, then Aop cop is still quasitriangular with respect to the same R-matrix.
Therefore, its Drinfel’d element is

ũ :=
∑

i,l

Z̄islβS(tl)S(S(X̄i)αȲi)

All the elements that we have introduced in Paragraph 2.1 can also be formed
in Aop cop. But it turns out that we do not get any new elements in this way;
rather these elements coincide with other elements formed in A. For example, the
element α̂, if formed in Aop cop, is equal to the original element β̌ as formed in A.
The following table indicates which elements formed in Aop cop are equal to which
elements formed in A:

In Aop cop α̂ β̂ α̌ β̌ û ǔ

In A β̌ α̌ β̂ α̂ ǔ−1 û−1

These correspondences can be applied to prove the following fact:

Proposition. u = S(ũ)

Proof. By Proposition 2.1, we have u = ǔ. In Aop cop, this means ũ = û−1. But we
have already seen in Proposition 2.1 that ǔ = S(û−1). �

This result can also be proved by direct computation, which is quite tedious.
However, there is another comparatively short proof: The result is a consequence of
Lemma 1.6, because Aop cop is isomorphic to a twist of A by [4], Prop. 1.2, p. 1426.
Let us explain this in greater detail. The element γ introduced in Paragraph 1.2
satisfies (ε⊗id)(γ) = (id⊗ ε)(γ) = ε(α)α by the counit-associator property. It then
follows from the duality axiom that the element F , which we have also defined there,
satisfies (ε⊗ id)(F ) = (id⊗ ε)(F ) = ε(α)1, so that the element T := ε(β)F satisfies
the requirement (ε ⊗ id)(T ) = (id⊗ ε)(T ) = 1 imposed in Paragraph 1.6; recall
that ε(α)ε(β) = 1 by Lemma 1.2. As explained in [4], loc. cit., the compatibility
conditions stated in Proposition 1.2 now yield that the antipode, considered as a
map from Aop cop to AT , is a quasi-bialgebra isomorphism. However, it is not a
quasi-Hopf algebra isomorphism; we rather have

S(β) = ε(β)2αT S(α) = ε(α)2βT
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as we see from [2], Eq. (2.14), p. 665 via a small correction. This means that the
antipode becomes a quasi-Hopf algebra morphism if the evaluation element and
the coevaluation element of AT are adjusted as indicated in Paragraph 1.3, using
the element x := ε(β)21.

On the other hand, the compatibility between the antipode and the R-matrix
stated in Lemma 1.5 then yields that the antipode is in fact an isomorphism of qua-
sitriangular quasi-Hopf algebras. It therefore maps the Drinfel’d element of Aop cop

to the Drinfel’d element of AT , with the adjustments just indicated. By Propo-
sition 1.5, this means in formulas that S(ũ) = xS(x−1)uT . However, we have
S(x) = x in our case, and therefore S(ũ) = uT . But uT = u by Lemma 1.6,
which completes the second derivation of our proposition above.
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