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ON TWISTED HOMOGENEOUS RACKS OF TYPE D

N. ANDRUSKIEWITSCH, F. FANTINO, G. A. GARCÍA AND L. VENDRAMIN

Abstract. We develop some techniques to check when a twisted homoge-
neous rack of class (L, t, θ) is of type D. Then we apply the obtained results
to the cases L = An, n ≥ 5, or L a sporadic group.

Dedicado a Hans-Jürgen Schneider en ocasión de sus 65 años.

1. Introduction

A rack is a pair (X, ⊲) where X is a non-empty set and ⊲ : X × X → X is
an operation such that the map ϕx = x ⊲ is bijective for any x ∈ X , and
x ⊲ (y ⊲ z) = (x ⊲ y) ⊲ (x ⊲ z) for all x, y, z ∈ X . For instance, a conjugacy class in
a group is a rack with ⊲ given by conjugation. We are interested in the following
class of racks.

Definition 1.1. A rack X is of type D if there exists a decomposable subrack
Y = R

∐

S of X such that

r ⊲ (s ⊲ (r ⊲ s)) 6= s, for some r ∈ R, s ∈ S. (1)

Racks appear in the classification problem of finite-dimensional pointed Hopf
algebras over C. Let us explain very briefly this relation. A finite-dimensional
pointed Hopf algebra H has attached some basic invariants: a rack X , n ∈ N and
a 2-cocycle q : X ×X → GL(n,C); these satisfy that the Nichols algebra B(X,q)
has finite dimension. This has been explained at length in several papers, see
[AG, AFGV1, AFGV2]. We refer to [AS] for a detailed exposition of the notion of
Nichols algebra of a Yetter-Drinfeld module, of crucial importance in this project.
Therefore, a fundamental step for the classification problem is to solve the following
question.

Question 1. For any finite rack X, and for any cocycle q, determine if B(X,q)
is finite-dimensional.

This question is related to racks of type D by the following result, a reinterpre-
tation of [HS, Thm. 8.6], in turn a consequence of [AHS].

Theorem 1.2. [AFGV1, Th. 3.6] If X is a finite rack of type D, then X collapses,

that is dimB(X,q) = ∞ for any q. �
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Consequently, it is natural to address the following question.

Question 2. Determine all simple racks of type D.

Indeed, any indecomposable rack Z admits a rack epimorphism π : Z → X with
X simple; and if X is of type D, then Z is of type D.

Now, finite simple racks have been classified in [AG, 3.9, 3.12], see also [J].
Succinctly, any simple rack belongs to one of the following classes:

(1) Simple affine racks.
(2) Non-trivial (twisted) conjugacy classes in simple groups.
(3) Simple twisted homogeneous racks of class (L, t, θ); these are twisted con-

jugacy classes corresponding to (G, u), where

• G = Lt, with L a finite simple non-abelian group, t > 1 and θ ∈ Aut(L),
• u ∈ Aut(Lt) acts by

u(ℓ1, . . . , ℓt) = (θ(ℓt), ℓ1, . . . , ℓt−1), ℓ1, . . . , ℓt ∈ L.

See Subsection 3.2 below.

The goal of the present paper is to study when a simple twisted homogeneous
rack, that is case (3), is of type D. We first show that twisted homogeneous racks
(THR, for short) of class (L, t, θ) are parameterized by twisted conjugacy classes
in L with respect to θ, see Proposition 3.3. For example, assume that L = An,
n ≥ 5, and θ = ι(1 2) (conjugation in Sn). Then the THR of type (An, t, ι(1 2)) are
parameterized by the conjugacy classes in Sn not contained in An; this explains
the notation in Table 2. Then we develop some techniques to check that a twisted
homogeneous rack is of type D, see Section 3; neither of these results requires the
simplicity of L. Our main results are proved in Section 4:

Theorem 1.3. Let L be An, n ≥ 5, θ ∈ Aut(L), t ≥ 2 and ℓ ∈ L. If Cℓ is a twisted

homogeneous rack of class (L, t, θ) not listed in Tables 1, 2, then Cℓ is of type D.

Theorem 1.4. Let L be a sporadic group, θ = id, t ≥ 2 and ℓ ∈ L. If Cℓ is a

twisted homogeneous rack of class (L, t, θ) not listed in Table 3, then Cℓ is of type

D.

We have a computer program based on GAP to check that a conjugacy of some
group is of type D. Some of us are presently trying to deal with the inconclusive
results as to the racks in the theorems above are of type D or not. Although there
are infinitely many such inconclusive cases of THR unknown to be of type D, and
therefore the problem could not be solved merely by using this computer program,
we do expect that the treatment of some examples would illuminate and give us a
hint to more general cases. Alas, the program takes a lot of time and even some
simpler cases like L = A5, ℓ = e and t = 4 are very hard and we still do not have
an answer.

The case: L a sporadic group, θ 6= id, will be treated in another paper. See
however a preliminary discussion in Subsection 4.4.
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Table 1. THR Cℓ of type (An, t, θ), θ = id, t ≥ 2, n ≥ 5, not
known of type D. Those not of type D are in bold.

n ℓ Type of ℓ t
any e (1n) odd, (t, n!) = 1
5 (15) 2

5 (15) 4
6 (16) 2

5 involution (1, 22) 4, odd
6 (12, 22) odd
8 (24) odd

any order 4 (1r1 , 2r2 , 4r4), r4 > 0, r2 + r4 even 2

Table 2. THR Cℓ of type (An, t, θ), θ = ι(1 2), t ≥ 2, n ≥ 5, not
known of type D.

n Type of ℓ(1 2) t
any (1s1 , 2s2 , . . . , nsn), s1 ≤ 1 and s2 = 0 any

sh ≥ 1, for some h, 3 ≤ h ≤ n

(1s1 , 2s2 , 4s4), s1 ≤ 2 or s2 ≥ 1, 2
s2 + s4 odd, s4 ≥ 1

5 (13, 2) 2, 4
6 (14, 2) 2

(23) 2
7 (1, 23) 2, odd
8 (12, 23) odd
10 (25) odd

Table 3. THR Cℓ of type (L, t, θ), with L a sporadic group, θ =
id, not known of type D.

sporadic group Type of ℓ or t
class name of OLℓ

any 1A (t, |L|) = 1, t odd
ord(ℓ) = 4 2

T , J2, Fi22, Fi23, Co2 2A odd
B 2A, 2C odd
Suz 6B, 6C any
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2. Preliminaries

2.1. Glossary. If t, n ∈ N, then (t, n) denotes their highest common divisor. If G
is a group and x ∈ G, then 〈x〉 denotes the cyclic subgroup generated by x; ιx, the
inner automorphism associated to x; OGx , the conjugacy class of x, and CG(x) its
centralizer. We say that x is an involution if it has order 2. If u ∈ Aut(G), then
Gu denotes the subgroup of points fixed by u. The trivial element of G is denoted
by e. The type of a permutation identifies the size and number of disjoint cycles
the permutation splits into. For example, e ∈ Sn has type (1n) and (1 2) ∈ Sn has
type (1n−2, 2). A decomposition of a rack X is a presentation as a disjoint union of
two subracks X = Y

∐

Z. A rack is indecomposable if it admits no decomposition.

2.2. Affine racks of type D. Let A be a finite abelian group and g ∈ Aut(A). We
denote by (A, g) the rack with underlying set A and rack multiplication x ⊲ y :=
g(y) + (id−g)(x), x, y ∈ A; this is a subrack of the group A ⋊ 〈g〉. Any rack
isomorphic to some (A, g) is called affine.

Remark 2.1. Notice that (A, g) is indecomposable if and only if id−g is invertible.
For, assume that Im(id−g) 6= A; since x⊲y = g(y)+(id−g)(x) = y+(id−g)(x−y),
the decomposition of A in cosets with respect to Im(id−g) is a decomposition in
the sense of racks. In fact, if Y is any coset, then A ⊲ Y = Y ; thus, the union of
any two different cosets is a decomposable subrack of A. For the converse, note
that for any y, z ∈ A, x = (id−g)−1(z − g(y)) satisfies z = x ⊲ y; hence (A, g) is
indecomposable.

For instance, consider the cyclic group A = Z/n and the automorphism g given
by the inversion; the rack (A, g) is denoted Dn and called a dihedral rack. Thus, a
family (µi)i∈Z/n of distinct elements of a rack X is isomorphic to Dn if µi ⊲ µj =
µ2i−j for all i, j.

Lemma 2.2. If m > 2, then the dihedral rack D2m is of type D.

Proof. Since id−g = 2 is not invertible, X = D2m = {1, 2, 3, ..., 2m} is decom-
posable. Indeed, if Y = {1, 3, 5, ..., 2m − 1}, then X ⊲ Y ⊆ Y and therefore
X = Y

∐

(X\Y ) is a decomposition. Let r = 1 ∈ Y and s = 2 ∈ X\Y . Then
r ⊲ (s ⊲ (r ⊲ s)) 6= s, since r ⊲ (s ⊲ (r ⊲ s)) = −2 + 2m and m > 2. �

We now consider a generalization of this example. Let k, t ∈ N, k > 1, t > 2
and consider the affine rack (A, g) where A = (Z/k)t−1 and

g(a1, . . . , at−1) =

(

−
t−1
∑

i=1

ai, a1, . . . , at−2

)

. (2)

Note that the case t = 2 corresponds to the dihedral rack.

Lemma 2.3. If (t, k) 6= 1, and k > 2 when t = 4, then (A, g) is of type D.

Proof. First we show that (A, g) contains at least two cosets with respect to
Im(id−g). Indeed, consider (1, 0, . . . , 0) ∈ A. Then (1, 0, . . . , 0) /∈ Im(id−g),
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since otherwise there exists (c1, . . . , ct−1) such that

(1, 0, . . . , 0) = (id−g)(c1, . . . , ct−1) = (c1 +
t−1
∑

i=1

ci, c2 − c1, . . . , ct−1 − ct−2)

which implies that ci = cj and 1 = tc1 in Z/k, a contradiction. Now, take s =
(0, . . . , 0) and r = (1, 0, . . . , 0); then

r ⊲ (s ⊲ (r ⊲ s)) =











(2,−2, 2,−1, 0, . . . , 0), t ≥ 5;

(2,−2, 2), t = 4;

(1,−2), t = 3.

This is different from s, by hypothesis ∗. Thus (A, g) is of type D. �

3. General techniques

3.1. Twisted conjugacy classes. Let G be a finite group and u ∈ Aut(G). G
acts on itself by y ⇀u x = y xu(y−1), x, y ∈ G. Let OG,ux be the orbit of x ∈ G by
this action; we call it the twisted conjugacy class of x. Then OG,ux is a rack with
operation

y ⊲u z = y u(z y−1), y, z ∈ O
G,u
x . (3)

The verification that this is a rack is straightforward, see [AG, Remark 3.8]. For
instance, if y = h ⇀u x and z = v ⇀u x, then y ⊲u z = w ⇀u x, where w =
hxu(h−1v)x−1. We denote this rack by (G, u). Of course, if u = id, then this is
just the rack structure on a conjugacy class.

For fixed G, these racks only depend on the class of u ∈ Out(G). For, if n ∈ G
and u′ = uιn, where ιn is the inner automorphism associated to n, then R :
(G, u) → (G, u′), R(x) = xu(n−1), is an isomorphism of racks. Indeed, if x, y ∈ G,
then

R(x ⊲ y) = xu(yx−1n−1) = xu(n−1)u(nyx−1n−1) = R(x) ⊲′ R(y).

Lemma 3.1. Let x ∈ G with ord(x) = 2m > 4 and u(x) = x−1. If 〈x〉 ⊆ O
G,u
x ,

then OG,ux is of type D.

The hypothesis “〈x〉 ⊆ OG,ux ” is equivalent to the existence of y ∈ G such that
y ⇀u x = x2.

Proof. Since xi ⊲u x
j = xiu(xj−i) = x2i−j , 〈x〉 is a subrack of G isomorphic to

D2m; hence Lemma 2.2 applies. �

The following consequence of (3) helps the search of twisted homogeneous racks
of type D.

Remark 3.2. If x ∈ Gu, then OG
u

x is a subrack of OG,ux .

Note that, if u is an involution, then

O
G,u
x ∩Gu 6= ∅ ⇐⇒ ∃z ∈ G : zxz = u(x) and ∃y ∈ G : z = u(y−1)y. (4)

∗ If k = 2 and t = 4, then (A, g) is not of type D.
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3.2. Twisted homogeneous racks. We fix a finite group L, t ∈ N, t > 1, and
θ ∈ Aut(L). Furthermore, we fix the following notation for the rest of this section:

• G = Lt,
• u ∈ Aut(G), u(ℓ1, . . . , ℓt) = (θ(ℓt), ℓ1, . . . , ℓt−1), ℓ1, . . . , ℓt ∈ L.

The twisted conjugacy class of (x1, . . . , xt) ∈ Lt, equipped with the operation
defined in (3), will be called a twisted homogeneous rack of class (L, t, θ) and de-
noted C(x1,...,xt). It is also useful to denote Cℓ := C(e,...,e,ℓ), ℓ ∈ L, as will be seen
below in Proposition 3.3. We first describe the twisted homogeneous racks of class
(L, t, θ).

Proposition 3.3. (i) If (x1, . . . , xt) ∈ Lt and ℓ = xtxt−1 · · ·x2x1, then

C(x1,...,xt) = Cℓ.

(ii) Cℓ = Ck iff k ∈ O
L,θ
ℓ ; hence

Cℓ = {(x1, . . . , xt) ∈ Lt : xtxt−1 · · ·x2x1 ∈ O
L,θ
ℓ }.

(iii) There exists a bijection ϕ between the set of twisted conjugacy classes of

L and the set of twisted homogeneous racks of class (L, t, θ), given by

ϕ(OL,θℓ ) = Cℓ.

(iv) |Cℓ| = |L|t−1|OL,θℓ |.

Proof. (i). Let uj = (xj . . . x1)
−1; then

(u1, u2, . . . , ut−1, e)⇀ (x1, . . . , xt)

= (u1x1, u2x2u
−1
1 , . . . , ut−1xt−1u

−1
t−2, xtu

−1
t−1)

= (e, . . . , e, xtxt−1 · · ·x2x1).

(ii). Suppose that there exists (a1, . . . , at) ∈ Lt such that (a1, . . . , at)⇀ (e, . . . , e, ℓ)
= (e, . . . , e, k). Then at−1 = at−2 = . . . = a2 = a1 = θ(at), hence k = atℓθ(a

−1
t ).

Conversely, assume that k = bℓθ(b−1); if at = b, at−1 = at−2 = . . . = a2 = a1 =
θ(b), then (a1, . . . , at) ⇀ (e, . . . , e, ℓ) = (e, . . . , e, k). The second claim follows at
once from the first and (i). Now (iii) is immediate.

(iv). Define the map ψ : Lt−1 × O
L,θ
ℓ → Cℓ by

ψ(b1, . . . , bt−1, c) = (b1, . . . , bt−1, θ
−1(bt−1 · · · b1)

−1c).

It is a well-defined map by (ii) and it is clearly injective. Moreover, by the proof
of (ii) we know that if (b1, . . . , bt) ∈ Cℓ, then bt = θ−1(bt−1 · · · b1)−1c for some

c ∈ O
L,θ
ℓ . Thus (b1, . . . , bt) = ψ(b1, . . . , bt−1, c) by definition and ψ is surjective,

implying that |Cℓ| = |L|t−1|OL,θℓ |. �

3.3. Twisted homogeneous racks intersecting the diagonal. Clearly,

Gu = {(a, . . . , a) : a ∈ Lθ}, (5)

hence, by Proposition 3.3

Cℓ ∩G
u 6= ∅ ⇐⇒ ∃ a ∈ Lθ : at = ℓ. (6)
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If this happens, then we have an inclusion of racks OL
θ

a →֒ Cℓ, see Remark 3.2.
In the particular case θ = id, if there exists a ∈ L such that at = ℓ, we have an
inclusion of racks OLa →֒ Cℓ.

3.4. Affine subracks of twisted homogeneous racks.

Lemma 3.4. Let ℓ ∈ L. Assume that there exists x ∈ L such that

θ(ℓxℓ−1) = x; (7)

moreover if k = ord(x), then we also require

(k, t) 6= 1, and additionally (8)

k 6= 2, 4, when t = 2 and (9)

k > 2, when t = 4. (10)

Then Cℓ is of type D.

When θ = id, (7) just means that x ∈ CL(ℓ).

Proof. Let X = {(xa1 , xa2 , . . . , xat−1 , ℓxat) :
∑t

i=1 ai ≡ 0 mod k}. Then X is a
subrack of Cℓ since X ⊆ Cℓ, by Proposition 3.3 (ii), and

(xa1 , . . . , ℓxat) ⊲ (xb1 , . . . , ℓxbt) =

= (xa1 , . . . , ℓxat)u((xb1 , . . . , ℓxbt)(x−a1 , . . . , x−atℓ−1))

= (xa1 , . . . , ℓxat)(θ(ℓxbt−atℓ−1), . . . , xbt−1−at−1)

= (xa1+bt−at , . . . , ℓxat+bt−1−at−1).

Moreover, let (A, g) be the affine rack considered in Lemma 2.2 or Lemma 2.3.
Then by the calculation above, there exists a rack isomorphism

(A, g)
ϕ
−→ X, (a1, . . . , at−1) 7→ (xa1 , . . . , xat−1 , ℓx−

∑
t−1

i=1
ai),

which implies that X is of type D, by Lemma 2.2 or Lemma 2.3. �

Corollary 3.5. Assume that t ≥ 6 is even. If ℓ ∈ Lθ, with ord(ℓ) even, then Cℓ is

of type D.

Proof. Take x = ℓ and apply Lemma 3.4. �

Lemma 3.6. Assume t = 2 and θ = id. Let ℓ ∈ L. Suppose that there exists

x, y, a ∈ L such that

ℓ = xy = yx, x 6= e 6= y, x2 = e,

a ∈ CL(x) ∩ CL(y), a4 6= e, x /∈ 〈a〉.
(11)

Then Cℓ is of type D.
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Proof. Let X = {(xai, a−iy) : 0 ≤ i < ord(a)} and Y = {(ai, a−iℓ) : 0 ≤
i < ord(a)}. Both are subracks of Cℓ by Proposition 3.3 (ii) and the fact that
a ∈ CL(x) ∩CL(y). Since x /∈ 〈a〉, we have that X ∩ Y = ∅. Moreover, X

∐

Y is a
subrack of Cℓ since

(xai, a−iy) ⊲ (aj , a−jℓ) = (a2i−j , a−2i+jℓ) and

(ai, a−iℓ) ⊲ (xaj , a−jy) = (xa2i−j , a−2i+jy).

Taking r = (x, y) and s = (a, a−1ℓ) we get that r ⊲ (s ⊲ (r ⊲ s)) = (a−3, a3ℓ).
Since a4 6= e by assumption, it follows that Cℓ is of type D. �

Corollary 3.7. Assume t = 2 and θ = id. Let ℓ ∈ L. If ord(ℓ) = 2m with m odd,

then Cℓ is of type D.

Proof. The elements x = ℓm, y = a = ℓ1−m satisfy ord(y) = m and (11). �

Denote by Dn = 〈x, y | x2 = 1 = yn, xyx = y−1〉 the dihedral group of 2n
elements.

Lemma 3.8. Assume t = 2 and θ = id. If there exists ψ : Dn → L a group

monomorphism, with n ≥ 3 odd, then Cψ(x) is of type D.

Proof. Let z = ψ(y), b1 = ψ(x) and bj = b1z
j−1, 2 ≤ j ≤ n. Then zibj = bj−i and

biz
j = bi+j , for all 1 ≤ i, j ≤ n.
Let R = {(zi, z−ibj) | 1 ≤ i, j ≤ n} and S = {(z−kbl, zk) | 1 ≤ k, l ≤ n}. They

are disjoint since otherwise there exist i, k, l ∈ {1, . . . , n} such that zi = z−kbl;
this implies that zi+k = bl, which is a contradiction because bl is an involution
and z has odd order. Note that (zi, z−ibj) = (zi, bj+i) and (z−kbl, z

k) = (bl+k, z
k).

Hence R and S are subracks of Cψ(x) since

(zi, bj+i) ⊲ (z
k, bl+k) = (z2i+j−k−l, bk+j),

(bj+i, z
i) ⊲ (bl+k, z

k) = (bk+j , z
2i+j−k−l).

Moreover, T = R
∐

S is a decomposable subrack of Cψ(x) because

(zi, bj+i) ⊲ (bl+k, z
k) = (bj−k, z

−(2i+j−k−l)),

(bl+k, z
k) ⊲ (zi, bj+i) = (z−(2k+l−j−i), b l−i).

If we take r = (1, b1) and s=(b2, 1), then r ⊲ (s ⊲ (r ⊲ s)) = (b1b2b1, b1b2b1b2) 6= s.
Therefore, Cψ(x) is of type D. �

3.5. Twisted homogeneous racks with quasi-real ℓ. Let ℓ ∈ L and j ∈ N.
Recall that ℓ, or OLℓ , is quasi-real of type j if ℓj 6= ℓ and ℓj ∈ OLℓ . We observe that
ℓ might be quasi-real of different types. For example, if ℓ is real, that is ℓ−1 ∈ OLℓ ,
but not an involution, then it is quasi-real of type ord(ℓ)− 1.

We partially extend this notion to twisted conjugacy classes. We shall say

that ℓ ∈ Lθ is θ-quasi-real of type j ∈ N if ℓj 6= ℓ and ℓj ∈ O
L,θ
ℓ . Note that

if ℓ ∈ Lθ is quasi-real of type j in Lθ, then it is θ-quasi-real, but the converse
is not true. Indeed, if we take L = A11, θ = ι(1 2) the conjugation by (1 2),
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ℓ = (1 2)(3 4)(5 6 7 8 9 10 11) and y = (1 4)(2 3)(5 6 8)(7 10 9), then y ⇀θ ℓ = ℓ2,

but ℓ2 6∈ O
A

θ

11

ℓ .

Lemma 3.9. Assume that ℓ ∈ Lθ is θ-quasi-real of type j. If t ≥ 3 or t = 2 and

ord(ℓ) ∤ 2(1− j), then Cℓ is of type D.

Proof. Let

X = {(ℓa1 , . . . , ℓat) :
∑t
i=1 ai = j},

Y = {(ℓa1 , . . . , ℓat) :
∑t
i=1 ai = 1}.

By definition, X ∩ Y = ∅. We have

(ℓa1 , . . . , ℓat) ⊲ (ℓb1 , . . . , ℓbt) = (ℓa1+bt−at , ℓa2+b1−a1 , . . . , ℓat+bt−1−at−1). (12)

Hence X and Y are subracks of Cℓ, X⊲Y ⊆ Y , Y ⊲X ⊆ X , and X
∐

Y is a subrack
of Cℓ.

Take r = (1, . . . , 1, ℓj) ∈ X and s = (1, . . . , 1, ℓ) ∈ Y . We show that r ⊲ (s ⊲ (r ⊲
s)) 6= s. Assume first that t ≥ 4. Then by (12) we have that

r ⊲ (s ⊲ (r ⊲ s)) = r ⊲ (s ⊲ (ℓ1−j , 1, . . . , 1, ℓj)) = r ⊲ (ℓj−1, ℓ1−j , 1, . . . , 1, ℓ)

= (ℓ1−j , ℓj−1, ℓ1−j, 1, . . . , 1, ℓj) 6= (1, . . . , 1, ℓ).

If t = 3, then r = (1, 1, ℓj), s = (1, 1, ℓ) and the computation yields

r ⊲ (s ⊲ (r ⊲ s)) = r ⊲ (s ⊲ (ℓ1−j , 1, ℓj)) = r ⊲ (ℓj−1, ℓ−j+1, ℓ)

= (ℓ1−j , ℓj−1, ℓ) 6= (1, 1, ℓ).

Finally if t = 2, then r = (1, ℓj), s = (1, ℓ) and we have

r ⊲ (s ⊲ (r ⊲ s)) = r ⊲ (s ⊲ (ℓ1−j , ℓj)) = r ⊲ (ℓj−1, ℓ−j+2) = (ℓ−2j+2, ℓ2j−1).

Thus, Cℓ is of type D if (ℓ−2j+2, ℓ2j−1) 6= (1, ℓ) which amounts to ord(ℓ) ∤ 2(1 −
j). �

3.6. Summary. The following proposition registers the results proved in the pre-
ceding subsections which will be useful in the sequel.

Proposition 3.10. Let ℓ ∈ Lθ.

(i) If ℓ is quasi-real of type j, t ≥ 3 or t = 2 and ord(ℓ) ∤ 2(1 − j), then Cℓ is

of type D.

(ii) If ord(ℓ) is even and t ≥ 6 is even, then Cℓ is of type D.

(iii) If ℓ is an involution, t is odd and OL
θ

ℓ is of type D, then so is Cℓ.

(iv) If t = 4 and there exists x ∈ CLθ(ℓ) with ord(x) = 2m > 2, m ∈ N, then

Cℓ is of type D.

(v) If t = 2 and there exists x ∈ CLθ(ℓ) with ord(x) = 2m > 4, m ∈ N, then

Cℓ is of type D.

(vi) If ℓ is an involution, t = 2, and there exists ψ : Dn → Lθ a group monomor-

phism, with n ≥ 3 and ℓ = ψ(x) for some x ∈ Dn involution, then Cℓ is of

type D.
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(vii) If (t, |Lθ|) is divisible by an odd prime p, then Ce is of type D.

(viii) If (t, |Lθ|) is divisible by p = 2 and t ≥ 6, then Ce is of type D.

(ix) If t = 4 and there exists x ∈ Lθ with ord(x) = 2m > 2, m ∈ N, then Ce is

of type D.

(x) If t = 2, and there exists x ∈ Lθ with ord(x) = 2m > 4, m ∈ N, then Ce is

of type D.

Proof. (i) is Lemma 3.9; (ii) is Corollary 3.5; (iii) follows from the discussion in
Subsection 3.3, since (ℓ, . . . , ℓ) ∈ Cℓ. Case (vi) follows by Lemma 3.8. Finally, the
remaining cases follow from Lemma 3.4: in cases (vii) and (viii), take x of order p,
and in cases (iv), (v), (ix) and (x) the given x. �

4. Simple twisted homogeneous racks

We now explore when Proposition 3.10 applies to a simple twisted homogeneous
rack with L an alternating group An, n ≥ 5, or a sporadic group.

Remark 4.1. If L is simple and θ = id, t 6= 4, 2 and (t, |L|) 6= 1, then Ce is of type
D. This follows from Proposition 3.10 (vii) and (viii).

4.1. L = An, n ≥ 5, θ = id. In this subsection we prove Theorem 1.3 in this case
by applying the results obtained above.

4.1.1. ℓ = e. We now treat the Table 1.

• If t ≥ 6 even or t odd with (t, n!) 6= 1, then Ce is of type D, by Remark 4.1.
• Assume that t = 4. If n ≥ 6, then Ce is of type D, by Proposition 3.10 (ix)

with x = (1 2)(3 4 5 6). If n = 5, we do not know if Ce is of type D.
• Assume that t = 2. If n ≥ 7, then Ce is of type D, by Proposition 3.10 (x)

with x = (1 2)(3 4)(5 6 7). If n = 5 or 6, then Proposition 3.10 (x) does
not apply because the only possible even orders of elements are 2 and 4.
Nonetheless, we have checked that Ce is not of type D, using GAP.

4.1.2. ℓ an involution. The type of ℓ is (1r1 , 2r2), with n = r1 + 2r2 and r2 even.
Assume that ℓ = (i1 i2)(i3 i4) · · · (i2r2−1 i2r2). Then

• By [AFGV1, Thm. 4.1], OLℓ is of type D, except for the following cases:

(1, 22), n = 5; (12, 22), n = 6; (24), n = 8.

In particular, Cℓ is of type D for all t odd, except for the cases above.
• If t ≥ 6 is even, then Cℓ is of type D, by Proposition 3.10 (ii).
• Assume that t = 4. If r2 ≥ 4, then Cℓ is of type D by Proposition 3.10 (iv)

with

x = (i1 i2)(i3 i5 i7 i4 i6 i8). (13)

Suppose that r2 = 2. If r1 ≥ 2, then Cℓ is of type D by Proposition 3.10
(iv) with x = (i1 i3 i2 i4)(j1 j2), where j1, j2 are fixed by ℓ. In the case
r1 = 1, Proposition 3.10 (iv) does not apply because the only possible even
order of elements is 2.
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• Assume that t = 2. If r2 ≥ 4, then Cℓ is of type D by Proposition 3.10 (v)
with x as in (13). Suppose that r2 = 2. If r1 ≥ 3, then Cℓ is of type D
by Proposition 3.10 (v) with x = (i1 i2)(i3 i4)(j1 j2 j3), where j1, j2, j3
are fixed by ℓ. In the case r1 = 1 or 2, Cℓ yields of type D, by Lemma 3.8
taking ψ : D3 ≃ 〈x := (1 2)(3 4), (1 2)(3 5)〉 →֒ L.

4.1.3. ord(ℓ) > 2. It is known that:

O
L
ℓ is quasi-real of type 4, if ord(ℓ) > 3 is odd,

O
L
ℓ is quasi-real of type ord(ℓ)− 1, if ord(ℓ) is even or 3.

(14)

Indeed, if ord(ℓ) > 3 is odd, then ℓ2 ∈ O
Sn

ℓ , hence ℓ4 ∈ OLℓ ; whereas if ord(ℓ) is

even or 3, then OLℓ = O
Sn

ℓ , see [JL, Prop. 12.17] or [FH, Exerc. 3.4], hence ℓ is real.
Now, if t > 2 or t = 2 and ord(ℓ) 6= 4, then Cℓ is of type D, by Proposition 3.10
(i). On the other hand, if t = 2 and ord(ℓ) = 4, then Proposition 3.10 (i) does not
apply and we do not know if Cℓ is of type D.

4.2. L = An, n ≥ 5, θ 6= id. We may suppose that θ is the inner automorphism
associated with an element σ in Sn − An. We choose σ = (1 2); thus, θ(ℓ) =
(1 2) ℓ (1 2), for all ℓ ∈ An. Hence,

Aθn =
(

{(1 2)} × (S{3,...,n} − A{3,...,n})
)

∐

A{3,...,n} (15)

and the order of Lθ is (n− 2)!.

Let ℓ ∈ An. Recall that Cκ = Cℓ if and only if κ ∈ O
An,θ
ℓ , by Proposition 3.3 (ii),

and notice that κ ∈ O
An,θ
ℓ amounts to κ(1 2) ∈ O

Sn

ℓ(1 2), the conjugacy class of ℓ(1 2)

in Sn. Thus, we will proceed with our study according to the type (1s1 , 2s2 , . . . , nsn)
of ℓ(1 2).

Notice that ord(ℓ(1 2)) is even, since ℓ(1 2) ∈ Sn − An, and ord(ℓ(1 2)) ≥ 4 if
and only if sh ≥ 1, for some h ≥ 4, or s2 ≥ 1 and s3 ≥ 1.

Now, we want to give a description analogous to (14) for the case θ 6= id. First,

we note that OAn,θ
ℓ ∩Aθn 6= ∅ if and only if s1 ≥ 2 or s2 ≥ 1. Indeed, this follows from

the form of Aθn described in (15) for the only if part and checking the possibilities
for the if part.

Assume that s1 ≥ 2 or s2 ≥ 1 and let κ ∈ O
An,θ
ℓ ∩Aθn. Since OAn,θ

ℓ = O
Sn

ℓ(1 2) ·(1 2),

it is clear that

κ is θ-quasi-real of type j if and only if κj(1 2) ∈ O
Sn

ℓ(1 2) and κj 6= κ. (16)

If ord(ℓ(1 2)) ≥ 4, then κ(1 2) is quasi-real of type j in Sn with j = ord(ℓ(1 2))− 1,

by (14). Thus, κj(1 2) = (κ(1 2))j and κj(1 2) ∈ O
Sn

ℓ(1 2). Hence, κ is θ-quasi-real

of type j, by (16); moreover, κ yields quasi-real of type j in Aθn. On the other

hand, if ord(ℓ(1 2)) = 2, then κ ∈ O
Sn

ℓ(1 2) is θ-quasi-real (of type j = 0) if and only

if OAn,θ
ℓ contains e, i. e. O

Sn

ℓ(1 2) is the conjugacy class of the transpositions in Sn.
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We study now the twisted homogeneous racks (An, t, θ), n ≥ 5 and θ 6= id, for
different t′s according to the type (1s1 , 2s2 , . . . , nsn) of ℓ(1 2). If s1 ≤ 1 and s2 = 0,

then O
An,θ
ℓ ∩Aθn = ∅, and we do not know if Cℓ is of type D for any t.

From now on we will assume that s1 ≥ 2 or s2 ≥ 1 and let κ ∈ O
An,θ
ℓ ∩ Aθn.

Notice that Cℓ = Cκ and that ℓ(1 2) and κ(1 2) have the same type, hence the same
order. Moreover, if we denote the type of κ by (1r1 , 2r2 , . . . , nrn), then rh = sh, for
all h, 3 ≤ h ≤ n; thus, ord(κ) divides ord(ℓ(1 2)).

We will consider different cases. If sh ≥ 1 for h = 3 or 5 ≤ h ≤ n, then
ord(ℓ(1 2)) > 4 and Cℓ is of type D for all t, by Proposition 3.10 (i). Assume that
sh = 0 for h = 3 and 5 ≤ h ≤ n. Suppose that s4 ≥ 1; thus ord(ℓ(1 2)) = 4. If
t ≥ 3, then Cℓ is of type D for all t, by Proposition 3.10 (i); whereas if t = 2, we
do not know if Cℓ is of type D. Assume that s4 = 0. Thus, the type of ℓ(1 2) is
(1s1 , 2s2), with s2 ≥ 1 odd.

Suppose that s2 = 1; thus, e ∈ O
An,θ
ℓ . If t ≥ 3, then Cℓ = Ce is of type D for all

t, by Proposition 3.10 (i); whereas if t = 2, n ≥ 7 and take κ = e, then Cℓ = Ce is
of type D, by Proposition 3.10 (x) choosing x = (1 2)(3 4)(5 6 7).

Suppose that s2 > 1 odd. Then the type of κ ∈ O
An,θ
ℓ ∩ Aθn is (1r1 , 2r2), with

n = r1 +2r2 and r2 ≥ 2 even, i. e. κ = (i1 i2)(i3 i4) · · · (i2r2−1 i2r2). We determine

now when O
A

θ

n

κ is of type D. We have two possibilities.

(i) Assume that κ fixes 1 and 2. If the type (1r1−2, 2r2) is distinct from (1, 22),

(12, 22) and (24), then O
A

θ

n

κ is of type D, by [AFGV1, Thm. 4.1]; otherwise,

O
A

θ

n

κ is not of type D.
(ii) Assume that κ does not fix 1 nor 2; thus κ = (12)(i3i4) · · · (i2r2−1i2r2). If

the type (1r1 , 2r2−1) is distinct from (23) and (1r1 , 2), then O
A

θ

n

κ is of type

D, by [AFGV1, Thm. 4.1]; otherwise, O
A

θ

n

κ is not of type D.

We consider now different values of t.

• Assume that t is odd. If κ fixes 1 and 2 and the type of κ is distinct
from (13, 22), (14, 22) and (12, 24), then Cℓ is of type D, by (i) above and
Proposition 3.10 (iii). On the other hand, if κ does not fix 1 nor 2 and the
type of κ is distinct from (24) and (1r1 , 22), for any r1, then Cℓ is of type
D, by (ii) above and Proposition 3.10 (iii).

• If t ≥ 6 even, then Cℓ is of type D, by Proposition 3.10 (ii).

• Assume that t = 4. We will determine when there exists x ∈ Aθn such
that ord(x) ≥ 4 even and θ(κxκ) = x, i. e. (1 2)κxκ(1 2) = x. If κ
fixes 1 and 2, take x = (1 2)(i1 i3 i2 i4). If κ(1) = 2 and κ(2) = 1, take
x = (1 2)(i3 i5 i4 i6) when r2 ≥ 4 and x = (1 j1 2 j2)(i3 i4) when r2 = 2
and r1 ≥ 2, j1, j2 are fixed by κ. In all these cases, Cℓ is of type D, by
Lemma 3.4. For the remaining cases we do not know if Cℓ is of type D.

• Assume that t = 2. We will determine when there exists x ∈ Aθn such that
ord(x) ≥ 6 even and θ(κxκ) = x, i. e. (1 2)κxκ(1 2) = x. If κ fixes 1 and 2,
take x = (1 2)(i3 i5 i7 i4 i6 i8) when r2 ≥ 4 and x = (1 i1 i3 2 i2 i4)(j1 j2)
when r2 = 2 and r1 ≥ 4, j1, j2 are fixed by κ. If κ(1) = 2 and κ(2) = 1,
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take x = (1 2)(i3 i5 i7 i4 i6 i8) when r2 ≥ 4 and x = (1 2)(i3 i4)(j1 j2 j3)
when r2 = 2 and r1 ≥ 3, j1, j2, j3 are fixed by κ.

Therefore the cases where Cℓ is not known to be of type D are the following

(a) ℓ(1 2) of type (1s1 , 2s2 , . . . , nsn), s1 ≤ 1 and s2 = 0 for any t;
(b) ℓ(1 2) of type (1s1 , 2s2 , 4s4), s1 ≤ 2 or s2 ≥ 1, s2 + s4 odd, s4 ≥ 1 and

t = 2;

and those in Table 4. Finally, from (a), (b) and Table 4 we obtain Table 2.

Table 4.

n Type of ℓ ℓ t
6 (12, 22) involution 2
7 (13, 22) fixing 1 and 2 2, odd
8 (14, 22) odd
10 (12, 24) odd
5 (1, 22) involution 2, 4
6 (12, 22) permuting 1 and 2 2
8 (24) odd

4.3. L = sporadic group, θ = id. In this subsection we prove Theorem 1.4.

4.3.1. ℓ = e.

• If (t, |L|) 6= 1, with t odd or t ≥ 6 even, then Ce is of type D; see Table 5 for
the prime numbers dividing the order of a sporadic group. In particular, if
t ≥ 6 even, then Ce is of type D since |L| is even.

• If t = 2 or t = 4, then Ce is of type D, by Proposition 3.10 (ix) and (x),
since there always exists an element x ∈ L of order 6.

4.3.2. ℓ an involution.

• By [AFGV3, Thm. II], if ℓ is an involution then, OLℓ is of type D, except
for the cases listed in Table 6; in particular, Cℓ is of type D for all t odd,
except for these cases.

• If t ≥ 6 is even, then Cℓ is of type D, by Proposition 3.10 (ii).
• If t = 2 or 4, then Cℓ is of type D by Proposition 3.10 (iv) and (v), since

there always exists x ∈ CL(ℓ) with ord(x) > 4 even. To see this we use
[BR, Bo, Br, GAP, Iv, W, W+].

4.3.3. ord(ℓ) > 2. The class OLℓ is real or quasi-real, except the classes 6B, 6C of
the Suzuki group Suz.

• Assume that ℓ does not belong to the class 6B or 6C of the Suzuki group
Suz. If t ≥ 3 or t = 2 and ord(ℓ) 6= 4, then Cℓ is of type D, by Proposition
3.10 (i).
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Table 5. Prime divisors of orders of sporadic groups.

L Prime divisors L Prime divisors

M11, M12 2, 3, 5, 11 Co1 2, 3, 5, 7, 11, 13, 23
M22, HS,
McL

2, 3, 5, 7, 11 J1,
HN

2, 3, 5, 7, 11, 19

M23, M24,
Co2, Co3

2, 3, 5, 7, 11, 23 O′N 2, 3, 5, 7, 11, 19, 31

J2 2, 3, 5, 7 J3 2, 3, 5, 17, 19
Suz, Fi22 2, 3, 5, 7, 11, 13 Ru 2, 3, 5, 7, 13, 29
T 2, 3, 5, 13 Fi23 2, 3, 5, 7, 11, 13, 17, 23
He 2, 3, 5, 7, 17 Fi′24 2, 3, 5, 7, 11, 13, 17, 23, 29
Th 2, 3, 5, 7, 13, 19, 31 B 2, 3, 5, 7, 11, 13, 17, 19, 23,

31, 47
J4 2, 3, 5, 7, 11, 23, 29, 31,

37, 43
M 2, 3, 5, 7, 11, 13, 17, 19, 23,

29, 31, 41, 47, 59, 71
Ly 2, 3, 5, 7, 11, 31, 37, 67

Table 6. Classes of involutions not known of type D;
those which are NOT of type D appear in bold.

G Classes G Classes G Classes

J2 2A Fi22 2A Co2 2A

B 2A, 2C Fi23 2A T 2A

• Suppose that ℓ belongs to the class 6B or 6C of the Suzuki group Suz. If
t ≥ 6 even, then Cℓ is of type D by Proposition 3.10 (ii); whereas if t = 2,
then Cℓ is of type D by Corollary 3.7.

4.4. L = sporadic, θ 6= id. The sporadic groups with non-trivial outer automor-
phism group are M12, M22, J2, Suz, HS, McL, He, Fi22, Fi

′
24, O

′N , J3, T and
HN . For these groups the outer automorphism group is Z/2 in all cases. In Table
7 we give the orders of Lθ when L 6= HN ; we cannot determine the order of HNθ

with our computational resources. We will assume L 6= HN .

Table 7. Orders of Lθ.

L |Lθ| L |Lθ| L |Lθ|
M12 120 M22 1344 J2 336
Suz 1209600 HS 40320 McL 7920
He 7560 Fi22 54 Fi′24 4089470473293004800
T 96 O′N 175560 J3 2448
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We describe the case ℓ = e. The remaining cases will be treated in a separate
paper.

• If t ≥ 6 even or t ≥ 3 odd and (t, |Lθ|) 6= 1, then Ce is of type D, by
Proposition 3.10 (vii) and (viii). In particular, if t ≥ 6 even, then Ce is of
type D since |Lθ| is even.

• Assume that t = 2 or t = 4. We have checked with GAP that there exists
x ∈ Lθ such that ord(x) > 4 even. Then Ce is of type D, by Proposition
3.10 (ix) and (x).
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