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GLOBAL DIMENSIONS FOR LIE GROUPS AT LEVEL k AND

THEIR CONFORMALLY EXCEPTIONAL QUANTUM

SUBGROUPS

R. COQUEREAUX

Abstract. We obtain formulae giving global dimensions for fusion categories
defined by Lie groups G at level k and for the associated module-categories
obtained via conformal embeddings. The results can be expressed in terms of
Lie quantum superfactorials of type G which are related, for the type Ar , to
the quantum Barnes function.

1. Introduction

1.1. Purpose. To every simple complex Lie group G and to every positive integer
k (the level), one associates a fusion category Ak = Ak(G), which is modular,
and which is usually described in terms of integrable representations of affine Lie
algebras, or in terms of a particular class of representations of quantum groups at
roots of unity. If G is semi-simple, not simple, the theory is similar but the level
k now refers to a multi-index of positive integers. Such fusion categories somehow
generalize, at the quantum level, the theory of representations of Lie groups and
Lie algebras. In classical group theory, groups may have non trivial subgroups and
the space of characters of a subgroup is a module over the ring of characters of the
group. In the present situation, we have a fusion ring, the Grothendieck ring of the
monoidal category Ak, and one may consider quantum analogs of subgroups (or
modules) by looking at module-categories E over which the given fusion category
acts. The purpose of the present article is mostly to present general formulae giving
global dimensions for categories such as Ak and for a particular type of associated
module-categories, that we call “conformally exceptional quantum subgroups of
Lie groups”. In the process, we are led to define Lie quantum superfactorials for
all simple Lie groups. If G = Ar their values can be obtained from the quantum
Barnes function when the argument is a positive integer and the q-parameter is
an appropriate root of unity. In this paper, everything is done over the complex
numbers. From the theoretical physics point of view, the results can be interpreted
in the framework of boundary conformal field theories (WZW-models), or in the
discussion of Chern-Simons topological field theories defined over S3.
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18 R. COQUEREAUX

1.2. Structure of the paper. In the next subsection, we set the stage, sum-
marizing the necessary information. In section 2 we consider fusion categories of
type Ak(G) and obtain formulae for their global dimensions. The argument goes
as follows: 1) the global dimension can be obtained from the square inverse of a
particular element of the modular matrix S implementing the SL(2,Z) action on
this modular category, 2) this matrix element is proportional to the quantum Weyl
denominator, 3) The latter is found, by inspection, to be equal to a product of
quantum factorials over the exponents of G (some care has to be taken in the non
simply laced cases). In section 3 we consider associated module-categories, called E .
Thinking of Ak(G)/E as a homogenous space, both discrete and quantum, we dis-
cuss a quantum analog of the Peter-Weyl theorem leading to an expression relating
the global dimensions of Ak(G) and E to the dimension of a particular subcategory
(called ambichiral) of EndAk(G)E . When E is obtained from a conformal embed-
ding, the ambichiral dimension is particularly simple to calculate. We therefore
restrict our framework to those cases in order to obtain explicit formulae for global
dimensions. Several remarks relating those results to geometry and physics are
gathered in the last section.

1.3. Background: General framework. As discussed in [12, 13, 19, 29], action
of the monoidal categoryAk on the category E (assumed to be additive, semi-simple
and indecomposable but not necessarily monoidal) is obtained when we are given
a monoidal functor from Ak to the monoidal category of endofunctors of E . Simple
objects a, b, . . . of the module-category E can also be thought as right modules over
a Frobenius algebra F , which is a particular object in the monoidal category Ak.
From now on, Ak(G) is defined by the choice of a simple or semi-simple Lie group
G at level k (see [18]). Using affine algebras or quantum groups is not necessary
since all the tools that we need can be discussed within the framework of the theory
of usual finite dimensional Lie groups (see 2.1). The reader only interested in the
calculation of global dimensions of Lie groups at level k may jump directly to the
next section, but we gather below some standard material that will be used later.

The fusion ring of Ak comes with a special basis corresponding to simple objects
m,n, . . ., and its structure constants (non - negative integers) are encoded by the
so - called fusion matrices (Nn)

p
q . The Grothendieck group of E is a module over

the Grothendieck ring of Ak, and it is automatically a Z+ module: its structure
constants are non negative integers often called annulus coefficients in string theory;
they are encoded by “annular matrices” Fn = (Fn)ab, where a, b, . . . refer to the
simple objects of E . The rigidity property of Ak implies that the module E is
rigid (or based [29]). In other words: (Fn)ab = (Fn)ba. The fusion graphs of Ak

are Cayley graphs describing multiplication by the generators (the corresponding
matrices Nf are their adjacency matrices). The fusion graphs of E are Cayley
graphs describing the module action of the generators (the corresponding matrices
Ff are their adjacency matrices). It is often useful to introduce the rectangular
“essential matrices” Ea = (Ea)nb = (Fn)ab.

Given a module-category E over a monoidal category Ak, we consider its en-
domorphism category O(E) = EndAE , which is also monoidal (call x, y, . . . its
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GLOBAL DIMENSIONS FOR LIE GROUPS AT LEVEL k 19

simple objects). In practice one prefers to think in terms of rings and modules
and use the same notations to denote them: given a quantum module E over the
fusion ring Ak, one obtains an algebra O(E) “of quantum symmetries” (or double
triangle algebra DTA [26]) which acts on E in a way compatible with the Ak ac-
tion. The generators of Ak(G), i.e., those fundamental representations of G that
exist at the given level, also act on O(E), and in particular on its simple objects,
in two possible ways [22, 4]. One associates to each of them two matrices with
non negative entries describing these left and right (bimodule) multiplications, and
therefore two graphs, called left and right chiral graphs, whose union is a non con-
nected graph called the Ocneanu graph. The chiral graphs associated with one or
another fundamental object of Ak can themselves be disconnected. More generally,
the bimodule structure of O(E) is described by “toric matrices” Wxy defined by
mxn =

∑
y(Wxy)m,n y. In particular, to every quantum module E is associated

a matrix Z = W00, where 0 is the unit object of O(E); it is such that Z00 = 1
and it has the special property of being modular invariant, i.e., it commutes with
the action of the modular group SL(2,Z). This particular toric matrix (or its as-
sociated sesquilinear form) is often called in physics “the modular invariant”, or
“the partition function”. If E = Ak it is just the identity matrix. The other toric
matrices Wxy can be physically interpreted in terms of twisted partition functions
(presence of defects in boundary conformal field theories, see [31]). Two distinct
quantum modules E sometimes lead to the same partition function, the classifica-
tion issues are therefore different. Finally, following the lines of [26], see also [29],
one can associate a quantum groupöıd B to every module-category E over Ak(G).
It is a finite dimensional weak Hopf algebra which is simple and co-semi-simple.

1.4. Novelty of the results. Although they may be written differently or using
another terminology, the relations between the global dimension of a fusion category
defined by G at level k, the matrix element S00 of the modular generator, and
the quantum version of the Weyl denominator, are of course well known, both in
algebra (affine Lie algebras) and physics (conformal field theory). The fact that
the quantum Weyl denominator can be written in terms of generalizations of a
quantum version of the superfactorial function involving the exponents of the Lie
group is, to our knowledge, a new observation; these Lie quantum superfactorials
are defined here for the first time. In our examples, several calculations involving
classical or quantum dimensions for irreducible representations of Lie groups are
performed with a technique that displays roots as a ribbon diagram (a kind of
periodic quiver); these calculations could certainly be done in another way, but the
technique that we describe, whose origin can be traced back to [27], is both handy
and non standard, although it has been used by us in [9]; some other aspects of
this “ribbon” have been recently discussed in [20]. The explicit results given at the
end of section 2.3 for many examples of global dimensions of fusion categories are
consequences of the general formulae given previously, they nevertheless require
rather long calculations that we have chosen not to present. The formula for A1 is
of course standard, those for the first few Ar could be extracted, with some work,
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from [17], and they are probably known to experts. We did not find similar results
in the literature for the other displayed examples.

The second part of the paper deals with module-categories obtained by confor-
mal embeddings, and their global dimensions. Conformal embeddings belong to
the panoply of tools used in conformal field theory and in the study of affine Lie
algebras. For completeness sake we have only rephrased, in our framework, the
necessary ingredients and the known classification. Using the terminology of CFT,
global dimensions for all module-categories associated with A1, A2 or A3 (alias
non-diagonal Wess-Zumino models for Lie algebras of those types) can be found
in the literature (for conformally exceptional cases of type A3, see [9]), and a few
other examples are known (see for instance [8]). However the very general – and
very simple – formula described in Theorem 4 seems to be new; it had been already
obtained by us in a number of low rank situations. Among its consequences, for
example in the study of examples worked out in the last part, one of course recovers
particular expressions that are already known and have been obtained in the past
“by adding squares”, but one can determine in this way a number of new results
that would have been totally out of reach by using such elementary techniques (like
the global dimension of the largest conformally exceptional module-category of E8,
which occurs at level 30 !). Incidentally, the proof of theorem 4 uses, among other
ingredients, a determination of the quantum dimensions for simple objects that
relies on an adapted quantum version of the theory of induced representations, in
particular the existence of an induction-restriction functor, which is known to exist
in this context but which did not seem to have been put to work for such practical
calculations.

2. Global dimensions for Lie groups at level k

2.1. Lie groups at level k.

Simple objects of Ak(G). Although usually defined in terms of affine Lie algebra
or quantum groups concepts, they can be simply obtained as follows.

Definition 1. Let n denote an irreducible representation of the simple Lie group
G, with highest weight λn. We define its level as the integer 〈λn, θ〉 where θ is the
highest root of Lie(G) and 〈.., ..〉 is the fundamental quadratic form. We shall say
that n is integrable at level k (or that “it exists at level k”) if and only if its level
is smaller than k or equal to k.

The condition of existence at level k selects a finite set, with cardinal rA, of
irreducible representations m,n . . . of G that are parametrized by r-tuples in the
basis of fundamental weights, r being the rank of G. This set can be conveniently
ordered by increasing values of the level; at a given level the r-tuples are sorted
in a standard way, starting from the end (see examples later). In the case G =
SU(N) all fundamental representations already appear at level 1. This is usually
not so for other choices of G. We call “basic representations” those fundamental
representations of G that have smallest classical dimension. Quantum dimension
(or “categorical dimension) qdim(n) of a simple object n can be calculated from the
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GLOBAL DIMENSIONS FOR LIE GROUPS AT LEVEL k 21

quantum version of the Weyl formula, together with the choice of a root of unity
q = exp(iπ/κ), for an altitude κ = k + g, where g is the dual Coxeter number of
G. The order of Ak, or global dimension, is |Ak| =

∑
n(qdim(n))2. It is sometimes

called the mass of G at level k and denoted mass(G, k).

Action of SL(2,Z) and the Kac-Peterson formulae. Action of the group SL(2,Z)
on the vector space spanned by the simple objects m,n . . . of the modular category
Ak(G) is described by matrices S and T representing the two generators τ 7→ −1/τ
and τ 7→ τ+1 of the modular group. This representation (actually a representation
of the double cover), known by Hurwitz long ago [14] for G = SU(2), is given, in
general, by the following formulae [16]:

Smn =
iΣ+

√
∆

(g + k)r/2



∑

w

ǫw e
−
2iπ〈w(m + ̺), n+ ̺〉

g + k


 ,

Tmn = e
2iπ





〈m+ ̺,m+ ̺〉
2(g + k)

−
〈̺, ̺〉
2g





δmn,

where g is the dual Coxeter number, k is the level, w runs over the Weyl group of
G, ǫw is its signature, r is the rank of G, ̺ is the Weyl vector, Σ+ is the number
of positive roots (also equal to the sum of exponents, i.e., to r γ/2 where γ is the
Coxeter number), and ∆ is the determinant of the fundamental quadratic form
(also the inverse of the “long index” i.e., the index, in the weight lattice, of the
sublattice of long roots). With these definitions one has (S T )3 = S2 = C, the
“charge matrix” satisfying C2 = l1. S is unitary and symmetric. Remember that
T is related as follows to other group theoretical quantities: The eigenvalue of the
quadratic Casimir for a representation λ is C(λ) = 〈λ, λ+2̺〉, the classical Dynkin
index is dim(λ)C(λ)/2d, where d = dim(G), and, at level k, the conformal weight
of λ is defined as∗ h(λ) = C(λ)/2(k + g). Some authors, like [3], prefer to use
a matrix t that differs from the one introduced previously by a modular phase:
t = T exp(2iπc/24) where c is the central charge c = d k/(g + k).

Intertwining operators (morphisms) and the Verlinde formula. Simple objects of
the categoryAk(G) have been discussed in the previous subsection. There is a mor-
phism from m⊗ n to p whenever (Nm)np 6= 0. One way to obtain the morphisms,
in practice, is to use the Verlinde formula. We recall it below for the convenience
of the reader. It expresses the fusion matrices in terms of the modular generator
S of SL(2,Z):

(Nm)np =
∑

q

SmqSnqS
⋆
pq

S0q

where m,n, p are simple objects and 0 refers to the trivial object.

2.2. Weyl formula, S matrix and quantum dimensions.

∗The coefficient 2 stands for 〈λ, λ〉, the usual convention for long roots.
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22 R. COQUEREAUX

The quantum Weyl formula and the quantum Weyl denominator. If a representa-
tion n exists at level k, its quantum dimension at level k is given by the quantum
version of the Weyl formula, given below, with q = exp(iπ/(g + k)). The classical
dimension is obtained by taking q = 1. This formula can be obtained from the
theory of quantum groups or from the theory of affine Lie algebras, but in our
framework we take this formula as a definition. Supposing that n is irreducible, we
use the same notation for the representation and for its highest weight.

qdim(n) =
∏

α>0

〈n+ ρ, α〉q
〈ρ, α〉q

where ρ is the Weyl vector and α belongs to the set of positive roots. Here 〈.., ..〉q
denotes the q-number [〈.., ..〉]q corresponding to the inner product of the chosen
weights, but we do not write the enclosing square bracket. Warning: there are two
standard definitions for q-numbers, nq = [n]q, that is used in the above formula,
and [[n]]q

[n]q =
qn − q−n

q − q−1
and [[n]]q =

1− qn

1− q

The quantum Weyl denominator defined below would have been different if we
had made the other choice. Using q-numbers [n]q, and with the same notations as
before, one defines:

Definition 2. The quantum Weyl denominator of a Lie group G at level k (a non
negative integer), is the number DW =

∏
α>0 〈ρ, α〉q.

SU(2)-fusion and the ribbon diagram of G. It is convenient to display the scalar
products between a chosen weight and all the roots of G in the Ocneanu ribbon
diagram (seen as a generalized root set [28]) associated with the Dynkin diagram of
G. It is a periodic strip of size r×γ (actually a Z2 quotient of a rectangle (2r)×γ),
with vertical period equal to 2γ.

If G is simply laced (g = γ), and since-module categories of type SU(2) are
classified by ADE Dynkin diagrams [7, 19], to every vertex a of its Dynkin diagram,
with r vertices and Coxeter number γ, one can associate both a fundamental weight
ωa of a Lie group G and a simple object a of an SU(2) module-category at level ν =
γ−2 (this 2 stands for the Coxeter number of A1 ∼ SU(2)). The Dynkin diagram,
that we call also G, like its adjacency matrix, is the fundamental fusion graph
of the latter. The adjacency matrix determines both the fundamental quadratic
form (inverse of the Cartan matrix 2 l1 − G) of the root system, and the family
of all annular matrices Fn = (Fn)a,b labelled by simple objects n of Aν(SU(2)),
identified with integers, thank’s to the usual Tchebychef recurrence formula Fn =
Fn−1G − Fn−2, F0 = l1, F1 = G. When γ is finite this defines a periodic family
of r × r matrices, with period 2γ. It is convenient to define essential (rectangular)
matrices Ea = (Ea)nb = (Fn)ab. The key observation [28] is that because of
the ubiquitous role of the adjacency matrix G, matrix elements (Ea)nb can be
interpreted either as scalar products between the fundamental weight ωa and all
the r γ roots, or as fusion coefficients (also as the number of essential paths of
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length† n from a to b on the graph G). More generally, the same ribbon can be
used to display and calculate scalar products between arbitrary weights and all the
roots.

If G is not simply laced, one can still draw the ribbon diagram, but one has
to be careful since the ribbon of roots and the ribbon of coroots are not equal
(the columns associated with short roots differ from the same columns for coroots
by constant scaling coefficients). To illustrate this we display below the scalar
products between an arbitrary weight ω =

∑
a λa ωa of A5, of D4 and of G2 and

all the positive roots of the chosen Lie groups (so only half of the Ocneanu ribbon
is drawn). We also give the Weyl vector ρ. For all three cases, γ = 6, but g = 6
for A5 and D4 whereas g = 4 for G2. The obtained values for scalar products
are immediately obtained from fusion matrices (for A5) or annular matrices (for
D4) describing respectively the fusion category A4(SU(2)) and the SU(2) module-
category with fusion graph D4. In the case of G2 one has to rescale the last column.
The three cases are obtained from the study of SU(2) at level ν = 4 since ν = γ−2.

Case A5:

ω =

λ1 λ3 λ5

λ1 + λ2 + λ3 λ3 + λ4 + λ5

λ2 + λ3 λ1 + λ2 + λ3 + λ4 + λ5 λ3 + λ4

λ2 + λ3 + λ4 + λ5 λ1 + λ2 + λ3 + λ4

λ4 + λ5 λ2 + λ3 + λ4 λ1 + λ2

λ4 λ2

ρ =

1 1 1
3 3

2 5 2
4 4

2 3 2
1 1

@@ �� @@ ��rr

r r r

Case D4:
@@ �������

r

r r r

ω =

λ1 λ3 λ4

λ1 + λ2 + λ3 + λ4

λ2 + λ3 + λ4 λ1 + λ2 + λ4 λ1 + λ2 + λ3

λ1 + 2λ2 + λ3 + λ4

λ1 + λ2 λ2 + λ3 λ2 + λ4

λ2

, ρ =

1 1 1
4

3 3 3
5

2 2 2
1

Case G2:

ω =

λ1

λ1 +
λ2
3

2λ1 + λ2

λ1 +
2λ2
3

λ1 + λ2
λ2
3

, ρ =

1
4
3

3
5
3

2
1
3

@
@@տ3

ց1

t

t

In the case of G2 for instance, the quantum dimension of a representation of highest
weight {λ1, λ2}, in the basis of fundamental weights, is read from the last ribbon
diagrams as

(λ1 + 1)q
(
λ2

3 + 1
3

)
q

(
λ1 +

λ2

3 + 4
3

)
q

(
λ1 +

2λ2

3 + 5
3

)
q
(λ1 + λ2 + 2)q (2λ1 + λ2 + 3)q(

1
3

)
q
1q

(
4
3

)
q

(
5
3

)
q
2q3q

†In the case of SU(2) irreducible representations are labelled by a single integer.
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Notice that the Weyl denominator of G is directly obtained by multiplying all the
entries of the ribbon diagram associated with the weight ρ.

From the matrix element S00 to the quantumWeyl denominator. Let α be a positive
root, ρ the Weyl vector, and q = exp(iπ/(g + k)). The q-scalar product 〈ρ, α〉q =

(q〈ρ,α〉 − q−〈ρ,α〉)/(q − q−1), where 〈., .〉 is the fundamental quadratic form, can be
written

〈ρ, α〉q = (exp(
α

2
)− exp(

−α

2
)) [

2iπ

k + g
] / (2i sin

π

g + k
)

where eλ is a formal exponential defined by eλ[µ] = e〈λ,µ〉, for λ, µ, arbitrary
elements of the space of weights. A standard manipulation (see for instance [10])
allows one to write ∏

α>0

(eα/2 − e−α/2) =
∑

w∈W

ǫw ewρ

where W is the Weyl group. Taking m = n = 0, the trivial weight, in the Kac-
Peterson formula for Smn, and using the fact that the number of positive roots is
rγ/2, we obtain the following (notice that the i factors cancel).

Theorem 1. The element S00 of the modular matrix S and the quantum Weyl
denominator DW =

∏
α>0 〈ρ, α〉q are related as follows:

S00 =
2

rγ
2

√
∆

(g + k)
r/2

(
sin

π

g + k

) rγ
2

DW

Remark: One should remember that there are two standard definitions for q-
numbers, nq = [n]q, that we use in this paper, and [[n]]q. The quantum Weyl
denominator, together with the above relation, look different if we make the other
choice. The above relation between S00 and DW , although written differently (for
instance in [10]), is, of course, hardly new.

Quantum dimensions and the S matrix. From the quantum Weyl formula, and
performing standard manipulations, like those done above, one obtains the well
known relation:

qdim(n) = Sn0/S00

Both the numerator and the denominator are positive real numbers. Unitarity of
the S matrix implies

∑
n |Sn0|2 = 1. In particular, the global dimension |Ak(G)|,

defined as the sum of squares of the q-dimensions of its simple objects, is obtained
as:

∑

n

qdim(n)2 =
1

S2
00
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Classical character polynomials and the S matrix. The following result is quite
handy but does not seem to be so well known. We mention it without proof.
Call χ(m) = χ(m; t1, t2, . . . tr) the classical character polynomial of the Lie group
G, associated with an irreducible representation m defined by its highest weight
also denoted m. It encodes the weight system of m: each weight p occurring
with multiplicity a in this weight system gives a term a tp1

1 tp2

2 . . . tpr
r in the poly-

nomial. Here (p1, p2, . . . pr) are the components of p on the basis of fundamental
weights. We know how to evaluate a monomial of the type tp1

1 tp2

2 . . . tpr
r (pow-

ers can be positive or negative) on a weight n: This value, by definition, is
exp[2iπ/(g+k) 〈p1ω1+p2ω2+ . . .+prωr, n〉] where ωi are the fundamental weights.
This evaluation is extended by linearity so that one can evaluate the character
polynomial χ(m) on arbitrary weights n. The obtained value is denoted χ(m)[n].
Assuming that m and n are two irreducible representations of G existing at level
k, one finds the following relation between the matrix elements of S and the char-
acter polynomial (remember that the Weyl group permutes the weights of a weight
system):

Smn/S00 = qdim[n] χ(m)[n+ ρ]

It gives a way to calculate the matrix Smn/S00 from known classical character poly-
nomials. The above relation looks highly asymmetrical but implies qdim[n]χ(m)[n+
ρ] = qdim[m]χ(n)[m+ ρ] since S is symmetric. In particular Sm0/S00 = χ(m)[ρ].
Now, since ρ = ω1 + ω2 + . . . + ωr, where ωj are fundamental weights, ρj =
〈ωj , ρ〉 are the components of the Weyl vector on the base of simple coroots and

exp( 2iπ
g+k p1 〈ωj , ρ〉) = q2p1ρ

j

. Assuming that m exists at level k, we have also

qdim(m) = χ(m; q2ρ
1

, q2ρ
2

, . . . q2ρ
r

)

where χ(m) = χ(m; t1, t2, . . . tr) is the classical character polynomial of m and (ρj)
are the components of the Weyl vector on the base of simple coroots.

Quantum dimensions and the Perron-Frobenius vector. In some cases the fusion
graphs of the studied example are somehow given. In such a situation, it is usually
simpler to calculate the quantum dimensions of simple objects from the Perron-
Frobenius vector associated with adjacency matrices (fusion matrices) of these
graphs, since it coincides, up to normalization, with the first line of the modu-
lar matrix S, thought as an analog of a character table for finite groups. It is
actually enough to consider the fusion graph relative to a basic representation.

2.3. Global dimensions and Lie superfactorials.

Lie superfactorial and quantum Lie superfactorial.

Definition 3. Let G be a simply laced complex simple Lie group and q be a complex
number. Call E the multi-index of exponents of G. We define the quantum Lie
superfactorial of type G as follows:

sfG[q] =
∏

s∈E

[s]!q
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26 R. COQUEREAUX

Here [s]!q denotes the quantum factorial of s, i.e.,

[s]!q =

n=s∏

n=1

[n]q with [n]q =
qn − q−n

q − q−1

Expressions for the quantum Lie superfactorial:

• If G = Ar ∼ SU(r + 1), then E = {1, 2, . . . , r}, and sfq(r)
.
= sfAr

[q] =∏s=r
s=1 [s]!q.

Notice that sf(r)
.
= limq→1 sfAr

[q] =
∏s=r

s=1 s!
The classical limit of the quantum Lie superfactorial of type Ar therefore
coincides with the superfactorial function defined in [33].

• If G = Dr ∼ SO(2r), set g = 2r− 2, then E = {1, 3, 5, . . . g − 3, g − 1; g/2}
(when r is even, g/2 appears twice), and sfDr

[q] = [g/2]!q
∏s=g−1

s=1,3,5,... [s]!q.

• If G = E6 then sfE6 [q] = [1]!q [4]!q [5]!q [7]!q [8]!q [11]!q
Its classical limit is the integer sfE6 = 2253105573111.

• If G = E7 then sfE7 [q] = [1]!q [5]!q [7]!q [9]!q [11]!q [13]!q [17]!q
Its classical limit is the integer sfE7 = 24732251076113132171.

• If G = E8 then sfE8 [q] = [1]!q [7]!q [11]!q [13]!q [17]!q [19]!q [23]!q [29]!q
Its classical limit is the integer sfE8 = 297347521714118136174193232291.

Definition 4. Let G be a non-simply laced complex simple Lie group and q be a
complex number. Call E the multi-index of exponents of G. We define the quantum
Lie superfactorial of type G as follows:

• If G = Br ∼ SO(2r + 1), then E = {1, 3, 5, . . . , 2r − 1}

sfBr
[q] =

∏

s∈E

[̃s]!q with [̃s]!q = [
s

2
]q [s−1]q [s−2]q . . . [3]q [2]q [1]q, and [̃1]!q = [1/2]q

Its classical limit is the rational sfBr
= 1

2r

∏2r−1
s,odd=1 s!

• If G = Cr ∼ Sp(2r), then E = {1, 3, 5, . . . , 2r − 1}

sfCr
[q] =

∏

s∈E

[̃s]!q with

[̃s]!q =
[s
2

]
q

[
s− 1

2

]

q

. . .

. . .

[
s− s−3

2

2

]

q

[
s− s− 1

2

]

q

[
s− s+1

2

2

]

q

. . .

[
2

2

]

q

[
1

2

]

q

and [̃1]!q = 1. Its classical limit is the rational sfCr
=

1

2r(r−1)

∏2r−1
s,odd=1 s!

• If G = F4

sfF4 [q] =

[
1

2

]2

q

13q

[
3

2

]

q

23q

[
5

2

]2

q

33q

[
7

2

]

q

42q

[
9

2

]

q

52q

[
11

2

]

q

6q7q8q

Its classical limit is the integer sfF4 = (1/212) 1! 5! 7! 11! = 215375472111

• If G = G2

sfG2 [q] =

[
5

3

]

q

[
4

3

]

q

3q 2q 1q

[
1

3

]

q
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Its classical limit is the rational sfG2 =
1! 5!

33
= 40/9.

Remarks:

• Warning: There are two non-equivalent standard definitions for q-numbers,
and, correspondingly, two non-equivalent definitions for the quantum facto-
rials and the quantum Lie superfactorials of type G. The other possibility‡

(using a notation with double bracket) is indeed to set:

[[s]]!q =

n=s∏

n=1

[[n]]q with [[n]]q =
1− qn

1− q

We shall use mostly the first, namely [s]q rather than [[s]]q because it is
real when q is a root of unity. The two factorials related as follows can be
used for non integer values of their argument by using the q-Pochhammer
symbol (a; q)n = (a; q)∞/(aqn; q)∞, with (a; q)∞ =

∏∞
k=0 (1 − aqk).

[s]!q = q−
s(s−1)

2 [[s]]!q2 = q−
s(s−1)

2 (1 − q2)−s (q2; q2)s

For quantum superfactorials of type G, we shall use mostly sfG[q], as
defined above. However, it may be convenient, sometimes, to use [[n]]q
rather than [n]q. For this reason we introduce the definition and nota-
tion SfG[q], with a capital S, by just replacing [s]!q by [[s]]!q in the above
definitions. For instance, Sfq(r)

.
= SfAr

[q] =
∏s=r

s=1 [[s]]!q. Notice that

Sfq2(r) = q(r+1)r(r−1)/6 sfq(r).
• The definition of the quantum superfactorial, for the non-simply laced
cases, has been chosen in such a way that it agrees with the value of the
quantum Weyl denominator.

• Warning: At the classical level, the correcting factors (rational numbers)
appearing, for non-ADE Lie groups, in the numerator and in the denomi-
nator of the Weyl formula, cancel out. One should be tempted of defining
classical Lie superfactorials for non-ADE Lie groups as the product of fac-
torials of their exponents, like for the ADE cases, however, such functions
would do not coincide with the q 7→ 1 limit of their quantum counterparts.

Theorem 2. The quantum Weyl denominator of G is equal to the quantum su-
perfactorial of type G. We have: DW = sfG[q].

In the case G = An the fact that the denominator is a product of successive
factorials is a familiar result, often used when manipulating Young tableaux to-
gether with the Schur dimension formula to calculate dimensions of irreducible
representations. Writing the result in terms of exponents is immediate since they
are consecutive integers {1, 2, . . . n}. For the other ADE Lie groups, the theorem
is obtained by inspection, namely from the explicit determination of the Weyl de-
nominator in all cases (we found convenient to do these calculations by using the
ribbon diagram of G introduced in a previous section). For the non-simply laced

‡[[s]]!q and (a; q)s coincides with the functions QFactorial[s, q] and QPochhammer[a, q, s] of

Mathematica
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cases, the theorem results from our definition of quantum superfactorials involving
non trivial pre-factors, since they were precisely chosen to match the calculated
Weyl denominator.

Global dimensions and quantum Lie superfactorials. Putting all previous results
together, we obtain

Theorem 3. Let G a simple Lie group with rank r, Coxeter number γ, dual Coxeter
number g, and k a non-negative integer. The global dimension of the fusion category
Ak(G) is given explicitly by

|Ak(G)| .
=

∑

n

qdim(n)2 =
(g + k)r

2rγ ∆

(
sin

π

g + k

)rγ

(sfG[q])
2

where sfG[q] is the quantum Lie superfactorial of type G, ∆ is the determinant of
the fundamental quadratic form, and q = exp iπ/(g + k).

Classical limits. When q 7→ 1 (or k 7→ ∞), the Lie quantum superfactorials go
to their classical limits, the Lie classical superfactorials (remember that for ADE
cases they are just equal to the product of the corresponding exponents, but they
involve non trivial pre-factors for non-ADE cases). Remember also that r + rγ is
equal to the dimension of the Lie group G. Therefore,

|Ak(G)| ∼
k→∞

1

2rγ ∆πrγ (sfG)
2 × kdimG

It is pleasant to notice that the coefficient in front behaves like the square of
the volume of G. Indeed, as shown by [23], the volume is given, up to some
normalization factor, by a product of volumes 2πn+1/n! of the spheres of dimensions
2n+ 1, n running over exponents, that enter the De Rham cohomology of G.

On the classical and quantum Barnes G-function. The classical Barnes G-function
is an entire function that obeys the functional equation G(z+ 1) = Γ(z)G(z). For
n = 1, 2, 3, . . . it is related to the superfactorial: G(n+2) = sf(n). The functions z,
Γ(z) andG(z) are actually the first three members of a hierarchy of functions known
as Barnes multigamma functions G(d)(z) satisfying G(d)(1) = 1 and G(d)(z + 1) =
G(d−1)(z)G(d)(z). The first three members are G(0)(z) = z, G(1)(z) = Γ(z) and
G(2)(z) = G(z). Quantum analogs of these functions have been defined (see [21],

[24] for details), they also obey G
(d)
q (1) = 1 and G

(d)
q (z + 1) = G

(d−1)
q (z)G

(d)
q (z),

with G
(0)
q (z) = [[z]]q, G

(1)
q (z) = Γq(z) and G

(2)
q (z) = Gq(z). Here Γq is the Jackson

deformation [1] of the Euler Gamma function. One explicit formula is:

Gq(z) =
(1− q)−

1
2 (z−2)(z−1) ((q; q)∞) z−1

(∏∞
s1=0

∏∞
s2=0

(
1− qs1+s2+z

))
∏∞

s1=0

∏∞
s2=0 (1− qs1+s2+1)

When the argument is a positive integer r, the quantum Barnes G-function is
related as follows to the quantum superfactorial: Gq(r+2) = Sfq(r). Notice that
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with this definition of the Gq, the function Sf, not sf, appears on the right hand
side of the above relation.
In the particular case G = Ar ∼ SU(r + 1), the results obtained for global dimen-
sions can therefore be expressed in terms of the quantum Barnes function, since, if
r is a positive integer,

sfq(r) = q−(r+1)r(r−1)/6Gq2(r + 2)

In our approach, the classical and quantum Barnes functions G(z) and Gq(z)
should be considered as associated with the Lie group SU(r + 1). There should
be generalizations of these functions (with complex arguments) for all simple Lie
groups.

Some explicit results. The obtained formulae, in terms of quantum factorials of
type G, are explicit enough, but for the convenience of the reader we give a few
expressions in terms of trigonometric lines, for Ar:

|Ak(A1)| =
1

2
(k + 2) csc2

(
π

k + 2

)

|Ak(A2)| =
3

256
(k + 3)2 csc6

(
π

k + 3

)
sec2

(
π

k + 3

)

|Ak(A3)| =
(k + 4)3 csc12

(
π

k+4

)
sec4

(
π

k+4

)

16384
(
2 cos

(
2π
k+4

)
+ 1

)2

|Ak(A4)| =
5(k + 5)4 csc20

(
π

k+5

)
sec8

(
π

k+5

)
sec2

(
2π
k+5

)

230
(
2 cos

(
2π
k+5

)
+ 1

)4

For other series we only give the first few terms corresponding to levels k = 1, 2, . . .

|Ak(E6)| = {3, 21

2
(

1− sin
(

3π
14

)) , 45
(

5 + 2
√
5
)

, 96
(

22 + 15
√
2 + 4

√

58 + 41
√
2
)

, . . .}

|Ak(E7)| =
{
2, 2

(
5 +

√
5
)
, 21

(
5 +

√
21
)
, . . .

}

|Ak(E8)| = {1, 4, ǫ, . . .}, ǫ ∼ 34.64, the highest root of x5 − 55x4 +847x3 − 5324x2 +

14641x− 14641

|Ak(B2)| = |Ak(C2)| = {4, 20, 24(2+
√
3), . . .}

|Ak(B3)| = {4, 28, 16(4+ 2
√
2 +

√
20 + 14

√
2), . . .}

|Ak(C3)| =
{
5 +

√
5, 24(2 +

√
3), . . .

}

|Ak(D4)| = {4, 32, , . . .}
|Ak(D5)| = {4, 40, . . .}
|Ak(F4)| = { 1

2 (5 +
√
5), ǫ, 48(5 + 2

√
6), . . .}

|Ak(G2)| = { 1
2 (5 +

√
5), 3

√
3
(
5 + 4

√
3 cos

(
π
18

)
+ 2 cos

(
π
9

))
, 21

2 (5 +
√
21), . . .}

Level rank duality for Ar. The level-rank duality property for Ar ∼ SU(g = r+1)
Lie groups was observed in [15]. For the coefficient S00 of the modular matrix S
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it implies:
√
g S00[Ag−1, k] =

√
k S00[Ak−1, g]. In terms of global dimensions, the

property reads:

k |Ak(Ag−1)| = g |Ag(Ak−1)|

It can be used to get simple enough expressions for these quantities when the rank r
is big and when the level k is reasonably small. For instance if we want to calculate
|A2(A9)| it is easier to calculate (10/2)× |A10(A1)| = 5× 24 (2 +

√
3) than to use

a general formula for A11.
This property implies a duality formula for the quantum factorials sfq(r) of type

Ar, or for the quantum Barnes function Gq(z) when z is a positive integer and q
a particular root of unity. When g and k are positive integers, the two following
expressions are equal:

2
1
2 (g−1)g (g + k)

1−g
2

(
sin

(
π

g + k

)) 1
2 (g−1)g

sf
e

iπ
g+k

(g − 1)

2
1
2 (k−1)k (g + k)

1−k
2

(
sin

(
π

g + k

)) 1
2 (k−1)k

sf
e

iπ
g+k

(k − 1)

From an already obtained explicit expression giving for instance |Ak(A1)|, i.e.,
all levels k in rank 1, we obtain immediately an explicit result giving |A2(Ar)| =
1
4 (r + 1)(r + 3) csc2

(
π

r+3

)
i.e., all ranks r at level 2. We also obtained previously

an asymptotic expression for global dimensions when the level goes to infinity. The
duality relation implies immediately, in the case Ar, an asymptotic expression when
the level is fixed and the rank goes to infinity:

|Ak(Ar)| ∼
r→∞

1

(2π)(k−1)k (G(k + 1))
2 × r(k

2)

3. Global dimensions for conformally exceptional quantum

subgroups at level k

3.1. Comments.

Purpose. We now suppose that the fusion category Ak(G) is given. We consider
module-categories E associated with it and we wish to calculate their global di-
mensions. There are several methods to do that and everything depends on what
is already known for the chosen example. The necessary background material was
summarized in section 1.3. The simplest situation is when E is associated with a
conformal embedding: There is still a lot of work to do if we want to determine
explicitly the module structure, i.e., the fusion graphs (annular matrices) of E , the
ring of its endomorphism category O(E) = EndAE and its action, but the value of
|E| is particularly simple to obtain from the embedding. This is the simple situation
that we choose to analyze in the present section.
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Terminological comment. We often call “Lie groupG at level k” the fusion category
Ak(G). In the same way, the module-category E will simply be called an “associated
quantum module”. In what follows, we shall restrict our attention to quantum
modules obtained from conformal embeddings. For a given G, the number of such
quantum modules is finite, hence the adjective “conformally exceptional”. In that
case the fusion graph of E can be obtained from the study of the endomorphism
O(E) and inherits a multiplication (self-fusion) from the monoidal structure of
the latter, for this reason E is called an exceptional quantum subgroup. From
the study of the same ring of endomorphisms, one sometimes discovers one or
several others quantum modules (also called exceptional) but without self-fusion.
There may be others module-categories, not obtained from conformal embedding,
but nevertheless enjoying a self-fusion compatible with the action of Ak(G), so
we decide to write “conformally exceptional quantum subgroups” to refer to those
particular quantum subgroups (existence of a compatible self-fusion) that can be
constructed from conformal embeddings. This will be made more precise in a next
section.

3.2. Conformal embeddings of Lie groups at level k.

Definition. The definition of conformal embeddings belongs to the lore of affine
Lie algebras. However we re-write it here in a way that uses only the properties of
finite dimensional Lie algebras.

Definition 5. Let G and J be simple Lie groups, and k, ℓ be positive integers.
There is a conformal embedding of G at level k, in J at level ℓ, if the following
three conditions are satisfied: 1) There is an embedding of Lie algebras Lie(G)
into Lie(J), 2) The Dynkin index of the embedding is equal to k, 3) The following

equality holds: dim(G)×k
k+gG

= dim(J)×ℓ
ℓ+gJ

. Here gG and gJ are the dual Coxeter numbers

of G and J . One call c the common value of the last two expressions. When§ the
integer ℓ is not specified, it is understood that ℓ = 1. If G is semi-simple, not
simple, we have the same definition but now k = (ki) is a multi-index, the quantity
ci is defined for each simple component Gi of G and the equality of central charges
should hold for c =

∑
ci.

Remark: In the framework of affine Lie algebras, c is interpreted as a central charge
and the numbers k and 1 denote the respective levels for the affine algebras corre-
sponding to G and J . The list of conformal embeddings has been known for more
than twenty years, see [2, 17, 32]. Here we are interested in conformally excep-
tional quantum subgroups of G at level k, so there is a slight change of perspective,
in comparison with the quoted literature, since rather than listing conformal sub-
algebras of J we fix G and look for “overgroups” J such that the embedding is
conformal. Warning: it is not difficult to find (non conformal) embeddings G ⊂ J ,
and appropriate values of k for which the equality of central charges is satisfied,
but where k is not the Dynkin index.

§This is what will be assumed, from now on: in the rest of this paper ℓ = 1.
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Examples. For the sake of illustration and in order to discuss a few examples, we
shall only remind the reader what is the list of conformal embedding for G = SU(g)
Lie groups. There are three regular series and a few sporadic cases.

Regular series. The following embeddings are respectively called antisymmetric,
adjoint and symmetric (take G = SU(g) in all cases):

k k = g − 2, k = g, k = g + 2,
g ≥ 4 g ≥ 3 g ≥ 2

J SU(g(g − 1)/2) Spin(g2 − 1) SU(g(g + 1)/2)

Sporadic cases:

G SU(2) SU(3) SU(4) SU(6) SU(8) SU(9)
k 10 28 9 21 8 6 1 10 1
J Spin(5) G2 E6 E7 Spin(20) Sp(10) E7 Spin(70) E8

Remarks: All quantum modules of SU(2), SU(3) and SU(4) are known [7, 11,
27]. For SU(2), their fusion graphs are classified by ADE Dynkin diagrams. The
E6 = E10(SU(2)) and E8 = E28(SU(2)) cases respectively corresponds to the above
sporadic conformal embeddings into Spin(5) and G2. The E7 = E18(SU(2)) case
(no self-fusion) can be obtained from a semi-simple conformal embeddings SU(2)×
SU(3) ⊂ E8 followed by contraction, so it is not “conformally exceptional” in our
sense. The Dr cases, r ≥ 4 (self-fusion only when r is even), can be obtained
from semi-simple conformal embeddings SU(2) × SU(q) ⊂ SU(2q) followed by
contraction, so they are not “conformally exceptional” either, with the exception of
the smallest, D4 = D4(SU(2)), because it can also be constructed from the smallest
symmetric regular embedding (g = 2). We have something similar for g = 3 and
g = 4 because D3(SU(3)) and D2(SU(4)) can be respectively constructed from
the smallest adjoint and smallest antisymmetric regular embeddings. The regular
series of adjoint conformal embeddings actually exists for all Lie groups: G at level
k = g (its dual Coxeter number) is conformally embedded in Spin(dim(G)). Notice
finally that the embedding¶ of SU(4) in Spin(20) that was flagged as sporadic from
the point of view of SU(g) is actually the smallest member of a regular series of
embeddings for Dr (indeed A3 ∼ D3).

3.3. From conformal embeddings to module-categories. There are several
ways to construct quantum modules or quantum subgroups from conformal em-
beddings. No categorical description of these constructions seems to be available
so far but it is not the purpose of the present article to enter this discussion. Nev-
ertheless we need to briefly summarize the strategy, in order to specify our own
framework. Starting with some conformal embedding of G, at level k in J , we
consider the partition function associated with the fusion category A1(J). Its ma-
trix is the unit matrix of size |A1(J)| × |A1(J)| with lines and columns labelled by
the simple objects of J at level 1. There is a known procedure (see for instance

¶Quantum symmetries of conformally exceptional quantum subgroups of SU(4) are studied in
[9].
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[10]) to restrict the representations of J to representations of G existing at level
k; this can be done, for instance in the framework of affine Lie algebras but the
algorithm can be described in terms of usual Lie groups (one should be cautious
since the branching rules do not usually coincide with those given by the classi-
cal theory). By restriction, the previous partition function gives a new partition
function, which is block diagonal (there are |A1(J)| blocks). It is now described
by a block diagonal but not diagonal matrix Z of size |Ak(G)| × |Ak(G)|, with line
and columns labelled by simple objects of |Ak(G)|, and still commuting with the
action of SL(2,Z). The problem is then to construct a module-category E , with
an action of a |Ak(G)|, that will have Z as partition function. Several techniques
are available. One possibility, rather systematic but involving huge calculations,
is to construct directly the endomorphism category O(E) from the given Z. This
is done by using the fact that the Grothendieck ring of the latter (the “algebra of
quantum symmetries”) should be a bi-module over the fusion algebra of |Ak(G)|,
and by solving the associativity equation (mn)x(pq) = (m(nxp)q) where m,n, p, q
refer to simple objects of |Ak(G)| and x to simple objects of O(E). At the end

of the day, one usually‖ ends up with a unique solution for the bimodule action
of the fundamental generators of the fusion ring O(E). This action is encoded by
matrices with non-negative integer coefficients and by two graphs (because they
can act from the left and from the right) for each generator; their collection is
the Ocneanu graph. The intersection of the connected components of the graphs
associated with left and right generators, and containing the unit of O(E), defines
a finite subset of objects, that are called “ambichiral vertices”. The construction
of the endomorphism algebra, that we just sketched, is fairly general and does not
apply only to those examples obtained from conformal embeddings, but this last
case possess specific extra features, that we list below.

• The fusion graph of E is discovered twice by looking at the connected com-
ponents (containing the unit object ofO(E) of the left and right generators.

• The intersection of the two chiral copies gives defines a finite subset of
objects, that are called “modular vertices” (as objects of E) in one to one
correspondence with the ambichiral vertices of O(E).

• The space spanned by the vertices of the fusion graph of E is naturally a
module over the fusion ring and over the ring of quantum symmetries, but
it also inherit from the latter a self-multiplication compatible with both
actions.

• From the fusion graph of E , one can always read the annular matrices
Fn describing the module action of |Ak(G)| or, equivalently, the essential
matrices Ea, labelled by simple objects of E ; the columns of E0 describe
induction rules. The extra feature, in the present case, is that the induction
rules associated with modular objects correspond exactly to the various
blocks of the partition function Z, i.e., to the simple objects of A1(J).

‖If one finds several solutions, one should check that coherence equations for triangular cells
are satisfied [27].
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The obtained module-category E is what we call a “conformally exceptional quan-
tum subgroup” of G at level k. If G is semi-simple but not simple (remember that
J is assumed to be simple), the level k is a pair of integers (k1, k2) and there is still
another construction that we want to briefly mention. Writing G ∼ G1×G2, there
is a way to perform a reduction with respect to one of the two factors (there are
actually several possibilities at this point), so that one can end up with a module-
category E1 associated with, say, |Ak1(G1)|. E has self-fusion, but this is not always
so for E1. Moreover the modular invariant Z1 of the latter is not necessarily of type
1 (not a sum of blocks). This type of construction, i.e., conformal embedding
followed by reduction, is of course interesting, and leads to nice examples, but a
quantum module (which may be, in some cases, a quantum subgroup) obtained in
this way, will not be called a “conformally exceptional quantum subgroup”. When
G = SU(g), rank-level duality implies the existence, for each quantum module,
of a quantum module partner. The rank-level dual of a conformally exceptional
quantum subgroup is certainly an exceptional quantum subgroup, but it is not
always “conformally exceptional” in our sense, because its construction may re-
quire a semi-simple, non simple, conformal embedding followed by some kind of
non-diagonal reduction.

3.4. On the global dimension of exceptional quantum subgroups.

Constraints from induction-restriction rules. It is convenient to think of Ak(G)/E
as a homogenous space, both discrete and quantum. Classically, the dimension of
the space Γa of vector valued functions defined on the quotient of a finite group A
by a subgroup E, and valued in a vector space a, can be calculated either trivially
as dim(a) × |A/E| or non trivially, when a is a representation space for E, by
decomposing this space of functions into a sum of irreducible representations of A;
this applies in particular to the case where a is the trivial representation 0 of E, so
that we obtain a decomposition of the space F (actually the algebra) of complex
valued functions over A/E, and |F| = dim(Γ0). Here F refers both to a discrete set
and to its algebra of functions. In our situation, there is an induction-restriction
functor [29], so that the above still makes sense. In this analogy, vertices of the
fusion graphs of E do not only label simple objects a of this category but also
spaces Γa of sections of quantum vector bundles which can be decomposed, using
induction, into simple objects n of Ak(G): We write Γa =

∑
n↑Γa

n. Like in the

classical situation, the (quantum) dimension of Γa can be calculated in two ways:

qdim(Γa) =
∑

n↑Γa

qdim(n) and qdim(Γa) = qdim(a)× |Ak(G)/E|

There is a special object of E , denoted 0, with quantum dimension is equal to 1,
and whose space of sections F .

= Γ0 plays the role of an algebra of functions over
a “quantum space”, it is actually a Frobenius algebra. When a = 0, the previous
equation gives:

|F| =
∑

n↑Γ0

qdim(n) = |Ak(G)/E|
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If E is associated with a conformal embedding, 0 plays the role of unity for self-
fusion. As already mentioned the modular invariant is then a sum of blocks (we
are in the so-called “type I” case) and the decomposition of F into simple objects
can be read from the first modular block of the partition function Z, or from the
first line of the associated matrix.

Constraints on quantum dimensions from the modular invariant. Call Z the par-
tition function of E . We shall need later the known identity:

∑

m,n

qdim(m)Zm,n qdim(n) =
∑

n

qdim(n)2 = |Ak(G)|

Indeed, from the expression of quantum dimensions of simple objectsm,n of Ak(G)
in terms of matrix elements of the modular generator S, the left hand side reads∑

m,n S0mZmnS0n/S
2
00. But S0m is real and S is symmetric, so that the l.h.s.

reads (SZS†)00/S
2
00, or (ZSS†)00/S

2
00 since SZ = ZS from modular invariance of

Z. Unitarity of S together with the normalization condition Z00 = 1 imply that
the l.h.s. is just 1/S2

00, hence the result. Incidentally, this relation can be used to
provide a check of the correctness of the calculated modular invariant Z.

The simple objects of Ak(G) labelling non-zero diagonal entries of the modular
invariant matrix Z define the family (possible multiplicity) Exp of generalized ex-
ponents of E . When G = SU(2), one recovers the usual exponents for ADE Lie
groups. In those cases obtained from conformal embeddings, Z is a sum of blocks
(type I), we have therefore a partition of the set of exponents. The different parts
of this partition are in one to one correspondence with the modular vertices of E .

A simple formula for |E|. As usual, m,n, . . . label simple objects of A (we suppress
below the reference to the group G and to the level k), and a, b, . . ., simple objects
of E . The formula that we shall obtain for |E| relies on the following steps:

(1) By definition, |A| = ∑
n qdim(n)2, |E| = ∑

a qdim(a)2, and |F| = |A|/|E|.
(2) For the special object 0 of E , we haveF = ⊕n↑Γ0 n. Then |F| = qdim(Γ0) =∑

n↑Γ0
qdim(n).

(3) For simple objects of E we have, more generally, qdim(a)×|F| = qdim(Γa) =∑
n↑Γa

qdim(n).

(4) From unitarity of the modular matrix S (see above),
∑

m,n qdim(m)Zm,n

qdim(n) =
∑

n qdim(n)2 = |A|, where Z = (Zm,n) is the matrix defining
the partition function.

(5) For conformally exceptional quantum subgroups, Z is a sum of blocks (type
I) labelled by modular vertices a ∈ J . Moreover, for a ∈ J and defining

Z
(a)
m,n by (qdim(Γa))

2 =
∑

m,n↑Γa
qdim(m)Z

(a)
m,n qdim(n), the l.h.s. of the

relation obtained in step 4 can be re-written
∑

a∈J

∑
m,n↑Γa

qdim(m)Z
(a)
m,n

qdim(n). Therefore,
∑

a∈J (qdim(Γa))
2 = |A|.

(6) From the relation obtained in step 3, and defining |J | =
∑

a∈J qdim(a)2,

the equality obtained in step 5 reads |J | × |F|2 = |A|. But |F| = |A|/|E|,
therefore |A| = |E|2/|J |.
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This last equality has actually a range of validity wider than the one discussed
in this article and relies on the fact [25] that the ring of O(E) = EndAk(G)(E)
is isomorphic to EL ⊗ ER/J , i.e., to the tensor product of left and right chiral
subalgebras over the ambichiral subalgebra. The previous equality relating global
dimensions then follows from |Ak(G)| = |O(E)| and from the fact that, in the case
of a quantum module E measuring a conformal embedding, the following properties
hold: 1) Both EL and ER are isomorphic with E (which has indeed self-fusion: it is
quantum subgroup), 2) The set J of modular vertices of E can be identified with
the simple objects of the subcategory J of O(E), 3) J itself, with global dimension
|J | (called ambichiral dimension of |E|) can be identified with the fusion category,
at level 1, of the Lie group in which G is conformally embedded. This explains the
notation J , that we chose to denote it, since J = A1(J). Details about the above
more general result describing the structure of the ring of O(E), in the general case,
are unfortunately unavailable, so we decided to present a simpler argument since
we are anyway only concerned in this paper with calculating global dimensions
for conformally exceptional quantum subgroups. Notice that

√
|Ak(G)| coincides

with the inverse 1/S00 of the first matrix element of the modular S matrix. The
conclusion is that |E| can be obtained without having to calculate independently
the quantum dimensions of the simple objects (even without knowing how many
there are). Let us summarize:

Theorem 4. Consider a conformal embedding of the simple or semi-simple Lie
group G, at level k, in the simple Lie group J . This embedding is associated (or
“measured by”) a module-category E, with an action of the fusion category Ak(G).
Its global dimension is given by the formula:

|E| =
√
|Ak(G)| × |J |

where |J | is the global dimension of A1(J).

Discussion (illustrated with an example of type SU(2)). Calculating the global di-
mension |E| can be done in many ways, the best strategy depends about what
is actually known on the example at hand. We shall mention several possibili-
ties and illustrate the discussion with the example of E8 = E28(SU(2)) associated
with the fusion category A29 = A28(SU(2)). The latter has 29 simple objects n,
with quantum dimensions qdim(n) = [n]q, q = exp(2iπ/30), for n = 1, 2, . . . , 29.
The Perron-Frobenius norm is [2]q = 2 cos π

30 . The global dimension |A29| =

30(12 + 5
√
5 +

√
3(85 + 38

√
5)) can be obtained by summing squares, or from

general formulae (first section).

• Possibility 1: The fusion graphs are known (or equivalently, the adjacency
matrices). In our example, the adjacency matrix is F1 = C − 2 l1 where
C is the Cartan matrix of E8. The Perron-Frobenius eigenvalue is [2]q.
The quantum dimensions qdim(a) of the 8 simple objects are given by
the F1 eigenvector ([1]q, [2]q, [3]q, [4]q, [5]q, [7]q/[2]q, [5]q/[3]q; [5]q/[2]q). The
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global dimension is obtained from its definition: |E8| =
∑

a qdim(a)2 =
1

2
(15(3 +

√
5) +

√
30(65 + 29

√
5)).

• Possibility 2: Quantum dimensions can also be read from the induction
rules (given by the columns of the essential matrix E0). One evaluates,
in turns, qdim(Γa) =

∑
n↑Γa

qdim(n), in particular |F| = qdim(Γ0),

then qdim(a) = qdim(Γa)/qdim(Γ0). Finally |E| is obtained by sum-
ming squares. Actually, if we are only interested in the last result, it
is enough to calculate |F| since |E| = |Ak|/|F|. In our case, |F| =

[1]q + [11]q + [19]q + [29]q =
1

2
(3(5 +

√
5) +

√
150 + 66

√
5). One recov-

ers |E8| = |A29|/|F|.
• If the partition function Z is known and if it is block diagonal (like in our
example), it determines the induction rules for the set J of modular points,
in particular for the origin. This is enough to determine |E| since only the
first block is needed. Calculating the quantum dimensions of the modular
points, via the formula qdim(a) = qdim(Γa)/qdim(Γ0) provides a check
since |E| can also be obtained from |Ak| and |J | = ∑

a∈J qdim(a)2. In our

case, Z = (χ1 + χ11 + χ19 + χ29)
2 + (χ7 + χ13 + χ17 + χ23)

2. Here, the
labels n denoting the simple objects of A29 have been shifted by 1. There
are two modular points (the two extremal vertices of the longest branches

of E8) with q-dimensions [1] and [5]q/[3]q, so that |J | = 1

2
(5 +

√
5). One

recovers |E8| =
√
|A29||J |.

• If we a priori know that the chosen example is defined by a conformal
embedding, like in the last example which can indeed be obtained as the
conformally exceptional quantum subgroup measuring the embedding of
SU(2) at level 28 in G2, the easiest is to determine |F| from the “over-

group”. Here it is equal to the global dimension |A1(G2)| = (5 +
√
5)/2.

One again recovers the value |E8|.
The reader willing to play with this example may use the induction rules given
below: they are non-zero entries of the essential matrix E0. Lines are labelled by
simple objects of A29 and columns by simple objects of E8 (the vertex belonging
to the shortest branch is at the end. Modular vertices are in position 1 and 7. For
typesetting reasons we display it horizontally (so we give the transpose of E0).




1 · · · · · · · · · 1 · · · · · · · 1 · · · · · · · · · 1
· 1 · · · · · · · 1 · 1 · · · · · 1 · 1 · · · · · · · 1 ·
· · 1 · · · · · 1 · 1 · 1 · · · 1 · 1 · 1 · · · · · 1 · ·
· · · 1 · · · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · · · 1 · · ·
· · · · 1 · 1 · 1 · 1 · 1 · 2 · 1 · 1 · 1 · 1 · 1 · · · ·
· · · · · 1 · 1 · · · 1 · 1 · 1 · 1 · · · 1 · 1 · · · · ·
· · · · · · 1 · · · · · 1 · · · 1 · · · · · 1 · · · · · ·
· · · · · 1 · · · 1 · · · 1 · 1 · · · 1 · · · 1 · · · · ·




3.5. Examples.

Global dimensions for Lie groups at level 1. In order to make use of the formula
3.4 for |E|, we need to know, for each Lie group, the global dimensions |A1(G)|,
that we just call |A1| here. We give below the list of representations existing
when k = 1, the corresponding vector Q of quantum dimensions, and the global

Rev. Un. Mat. Argentina, Vol 51-2



38 R. COQUEREAUX

dimension |A1|. It can be calculated as |Q|2 or from the general results of the first
part. As usual, we call basic representations those fundamental representations of
smallest classical dimension: for E6 they are of highest weight (1, 0, 0, 0, 0; 0) and
(0, 0, 0, 0, 1; 0), both of classical dimension 26; for G2, this is the representation of
highest weight (0, 1) and classical dimension 7; etc.

• Type Ar: The trivial and all the fundamental. Q = {1, 1, . . .1}. |A1| =
r + 1.

• Type Dr: The trivial, the two half-spinorial and the vectorial. Q =
{1, 1, 1, 1}. |A1| = 4.

• Type E6: The trivial and the two basic representations. Q = {1, 1, 1}.
|A1| = 3.

• Type E7: The trivial and the basic representation. Q = {1, 1}. |A1| = 2.
• Type E8: Only the trivial representation. Q = {1}. |A1| = 1.

• Type Br: The trivial, the spinorial and the vectorial. Q = {1,
√
2, 1}.

|A1| = 4.

• Type F4: Q = {1, 12 (1 +
√
5)}. |A1| = 1

2 (5 +
√
5).

• Type G2: The trivial and the basic representation. Q = {1, 12 (1 +
√
5)}.

|A1| = 1
2 (5 +

√
5).

• Type Cr: The trivial and all the fundamental. No simple closed for-
mulae in general. We give results for low rank. C2 is like B2. Type
C3: Q = {1, 1, (1 +

√
5)/2, (1 +

√
5)/2}. |A1| = (5 +

√
5). Type C4:

Q = {1, 1,
√
3, 2,

√
3}. |A1| = 12.

Using both the above results, giving |A1(J)|, and the general formulae of the first
part, expressing global dimensions of |Ak(G)| as quantum superfactorials of type
G, we can now find explicit results for global dimensions of |E| by using formula
3.4.

ADE trigonometric identities for quantum subgroups of type SU(2). For confor-
mally exceptional quantum subgroups of type SU(2), we recover the known results:

D4 : |A4| = 12 and |J | = 3,

so |D4| = 6,

E6 : |A10| = 24(2 +
√
3) and |J | = 4,

so |E6| = 4(3 +
√
3),

E8 : |A28| = 30(12 + 5
√
5 +

√
3(85 + 38

√
5)) and |J | = (5 +

√
5)/2,

so |E8| =
1

2
(15(3 +

√
5) +

√
30(65 + 29

√
5)).

Given E , and its partition function Z, it should be clear that any identity of the
type Q.Z.Q = |Ak(G)|, where Q is the dimension vector of Ak(G), can be inter-
preted as a trigonometric identity. For SU(2) we have a family of ADE trigono-
metric identities since its module-categories are classified by simply laced Dynkin
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diagrams. For any quantum module of SU(2) at level k, setting κ = k + 2, and
after simplification by a common denominator, those identities read:

r∑

m,n=1

(Z)m,n sin(mπ/κ) sin(nπ/κ) = κ/2

At level 28 for example, i.e., at the altitude κ = 28 + 2 = 30 interpreted here as a
dual Coxeter number, we have three identities, one for the fusion category itself,
A29 = A28(SU(2)), with Z = 1, one for the quantum module D16 = D28(SU(2)),
and one for the (conformally) exceptional quantum subgroup E8 = E28(SU(2)).
For instance one obtains in the case E8 (notice the appearance of exponents of E8,
and the two modular blocks reminiscent of the conformal embedding of SU(2) at
level 28 in G2, since A1(G2) has only two simple objects):

{
sin(7

π

30
) + sin(13

π

30
) + sin(17

π

30
) + sin(23

π

30
)
}2

+

{
sin(1

π

30
) + sin(11

π

30
) + sin(19

π

30
) + sin(29

π

30
)
}2

= 15

Regular conformal embeddings for unitary groups. To illustrate the formula ex-
pressing |E| in terms of |Ak(G)| and |J | , we give the global dimensions of the first
few exceptional quantum subgroups measuring regular conformal embeddings of
type SU(g):

• Regular antisymmetric series (k = g − 2, g = 4, 5, . . .). Using |J | = g(g −
1)/2, one finds

|Eg−2(SU(g))| =
{
12, 20

(
2 +

√
2
)
, 60

(
5 + 2

√
5
)
, 504

(
7 + 4

√
3
)
, . . .

}

• Regular adjoint series (k = g, g = 3, 4, 5, . . .). Using |J | = 4, one finds

|Eg(SU(g))| =
{
12, 16

(
2 +

√
2
)
, 40

(
5 + 2

√
5
)
, 288

(
7 + 4

√
3
)
, . . .

}

• Regular symmetric series (k = g + 2, g = 2, 3, 4, 5, . . .). Using |J | = g(g +
1)/2, one finds

|Eg+2(SU(g))| =
{
6, 12

(
2 +

√
2
)
, 40

(
5 + 2

√
5
)
, 360

(
7 + 4

√
3
)
, . . .

}

Members of the regular adjoint series are rank-level self-dual, but the rank-level
dual of a conformally exceptional quantum subgroup of SU(g−2) belonging to the
regular symmetric series is a conformally exceptional quantum subgroup of SU(g)
belonging to the regular antisymmetric series, and reciprocally. The ratio of their
dimensions is:

|Eg−2(SU(g))|
|Eg(SU(g − 2))| =

g

g − 2
.

Indeed this ratio is obtained as the product of two terms
√

|Ag−2(SU(g))|
|Ag(SU(g−2))| and

√
g(g−1)/2

(g−2)(g−1)/2 , both giving a contribution
√

g
g−2 , hence the result.

The biggest exceptional of the biggest exceptional. Let us conclude this section by
giving the global dimension of the biggest conformally exceptional quantum sub-
group of the exceptional Lie group E8. It occurs at level 30 (an altitude κ =
30 + 30 = 60) and it measures the adjoint embedding of E8 in D124 ∼ Spin(248).
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The associated fusion-category A30(E8) has 20956 simple objects and we did not
calculate the number of simple objects of its module-category E30(E8). Neverthe-
less, with q = exp iπ

60 and |A1(D124)| = 4, one finds immediately the following
global dimension by using Theorem 4:

|E30(E8)| = 2× 604

2120 [1]!q [7]!q [11]!q [13]!q [17]!q [19]!q [23]!q [29]!q sin
[

π

60

]120 ∼ 5.57902× 1022

4. Geometrical and physical considerations: Chern-Simons theory

and strings

As it is known since [35], a Chern-Simons gauge theory in three dimensions can
be viewed as a string theory. The Chern-Simons partition function, with simply
connected gauge group G, on the closed orientable 3-manifoldM , with k an integer,
is formally given by the following functional integral over the space of connections
defined on a G principal bundle over M :

ZCS[M,G, k] =

∫
DA exp[ik × 1

4π

∫

M

d3xTr(AdA+
2

3
A3)]

Using a normalization ZCS [S
2 × S1, G, k] = 1, it was shown in [34] that, with

M = S3, ZCS [S
3, G, k] = S00. where S is the matrix representing the modu-

lar generator τ 7→ −1/τ of SL(2,Z) for G at level k. Still in [34], it was shown
that Z[T 3, SU(N), k] counts the number of integrable irreducible highest-weight
representations of the affine Kac-Moody algebra at level k, i.e., with another ter-
minology, the number of simple objects in the fusion category Ak(SU(N)). This
last number, equal to 1

kB(k,N) , where B is the Euler Beta function, was obtained

by [30]. The value of Z[S3, SU(N), k] was calculated in [17]:

ZCS [S
3, SU(N), k] = (N + k)−N/2

√
N + k

N

N−1∏

j=1

2N−j sinN−j

(
πj

N + k

)

The result can of course be expressed in terms of global dimensions for fusion
categories of SU(N) at level k since |Ak(SU(N))| = 1/S2

00. The quantum Lie
superfactorials of type G defined in the first part of this paper, for all simple
Lie groups G can, in turn, be used to evaluate explicitly Chern-Simon partition
functions on S3.

As mentioned in the introduction, simple objects of module-categories E asso-
ciated with Ak(G) can be interpreted in terms of boundaries for conformal field
theories (Wess-Zumino-Witten models), simple objects of O(E) = EndAk(G)E in
terms of defects, and presumably objects of HomAk(G)(E1, E2) in terms of layers
or interfaces, but when E 6= Ak(G), we are not aware of any precise interpreta-
tion, in terms of differential geometry, or in terms of string theory, for the global
dimensions.
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Appendix

Tables of long indices and Coxeter numbers. For convenience we remind the
reader the values of Coxeter numbers γ, dual Coxeter numbers g, and the “long
index” for all Lie groups. The quantity ∆, used in the text, is the determinant of
the fundamental quadratic form, i.e., the inverse of the long index.

Ar Br Cr Dr E6 E7 E8 F4 G2

γ : r + 1 2r 2r 2r − 2 12 18 30 12 6
g : r + 1 2r − 1 r + 1 2r − 2 12 18 30 9 4

∆−1 : r + 1 4 2r 4 3 2 1 4 3
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