ERGODIC PROPERTIES OF LINEAR OPERATORS

MARÍA ELENA BECKER

ABSTRACT. Let T be a bounded linear operator on a Banach space X. We prove some properties of $X_1 = \{z \in X : \lim_{n \to \infty} \sum_{k=1}^n \frac{T^k z}{k} \text{ exists}\}$ and we construct an operator T such that $\lim_{n \to \infty} ||T^n/n|| = 0$, but (I - T)X is not included in X_1 .

1. INTRODUCTION

Let X be a Banach space and let $\mathcal{L}(X)$ denote the Banach algebra of bounded linear operators from X to itself. An operator $T \in \mathcal{L}(X)$ is called *uniformly ergodic* if the averages $A_n(T) = n^{-1} \sum_{k=1}^n T^k$ converge in the uniform operator topology. M. Lin [3] showed that when $\lim_n ||T^n/n|| = 0$, T is uniformly ergodic if and only

if (I-T)X is closed.

In [2], S. Grabiner and J. Zemánek give the following generalization of Lin's theorem. Under the hypothesis of boundedness of $A_n(T)$ or convergence to zero of T^n/n in some operator topology, they prove that if $(I-T)^n X$ is closed for some $n \geq 2$ $(n \geq 1$ if T^n/n converges to zero in the uniform operator topology) or if $(I-T)X + \operatorname{Ker}(I-T)$ is closed for some $n \geq 1$, then X is the direct sum of the closed subspaces (I - T)X and $\operatorname{Ker}(I - T)$. In this case the sequence $A_n(T)$ converges in some operator topology if and only if T^n/n converges to zero in the same operator topology.

In [1] we proved that if $\lim_{n \to \infty} ||T^n/n|| = 0$, and $(I-T)X \subseteq X_1$ then T is uniformly ergodic if and only if X_1 is closed.

In this paper we prove the following result.

Theorem 1.1. There exists an operator $T \in \mathcal{L}(X)$ with $\lim ||T^n/n|| = 0$, for which (I-T)X is not included in X_1 . Moreover, this operator is not uniformly ergodic.

We remark that if T is Cesàro bounded (i.e. $\sup_n ||A_n(T)|| < \infty$) and if $\lim ||T^n/n|| = 0$, then $(I - T)X \subseteq X_1$. (See Proposition 2.2).

2. The Results

Proposition 2.1. Let $T \in \mathcal{L}(X)$. Then

$$X_1 \subseteq \left\{ x \in X : \lim_{n} A_n(T)x = 0 \right\} \subseteq cl(I-T)X$$

Proof. Let $x \in X_1$. For each positive integer n, put $S_n(x) = \sum_{k=1}^n \frac{T^k x}{k}$. Then the first inclusion follows from

$$A_n(T)x = S_n(x) - \frac{1}{n} \sum_{k=1}^{n-1} S_k(x).$$

Let $x \in X$. The fact that $x - A_n(T)x$ belongs to (I - T)(X) for each positive integer *n* implies the well-known second inclusion.

Proposition 2.2. If T is Cesàro bounded and $\lim_{n} ||T^n(x)/n|| = 0$ for each $x \in X$, then $(I - T)X \subseteq X_1$.

Proof. Let $z \in (I - T)X$. Then z = (I - T)x. We have

$$\sum_{k=1}^{n} \frac{T^{k} z}{k} = Tx - \frac{T^{n+1} x}{n} - \sum_{k=2}^{n} \frac{T^{k} x}{k(k-1)} .$$
(1)

Thus, it is enough to prove that $\sum_{k=2}^{n} \frac{T^{k}x}{k(k-1)}$ converges for each $x \in X$. Let $x \in X$. By writing $T^{k}x = kA_{k}(T)x - (k-1)A_{k-1}(T)x$ and making use of the partial summation formula of Abel, we obtain

$$\sum_{k=2}^{n} \frac{T^k x}{k(k-1)} = -\frac{Tx}{2} + \frac{A_n(T)x}{n-1} + \sum_{k=2}^{n-1} \frac{2A_k(T)x}{(k-1)(k+1)}$$

Since T is Cesàro bounded, the proposition is proved.

Corollary. Let $T \in \mathcal{L}(X)$ uniformly ergodic. Then X_1 is closed.

Proof. It follows from Remark 2 of [1].

The following example provides a proof of Theorem 1.1.

The Example.

Let $(a_j)_{j\geq 1}$ be any sequence of positive real numbers such that:

- (1) $\sum_{j=1}^{\infty} \frac{a_j}{j^2}$ diverges.
- (2) $\lim_{j\to\infty} \frac{a_j}{j} = 0.$

(3) There exists c > 0 such that $a_{j+k} \leq ca_j a_k$, $j, k \in \mathbb{N}$.

We can take, for example, $a_j = \frac{j+1}{\ln(j+1)}$.

Now, let $X = l^1(\mathbb{N})$ and let T be the unilateral weighted shift defined by

$$(Tx)_n = \begin{cases} 0, & \text{if } n = 1; \\ \frac{a_n}{a_{n-1}} x_{n-1}, & \text{if } n \ge 2. \end{cases}$$

By property 3, $T \in \mathcal{L}(X)$.

Lemma 2.3. There are positive constants c_1 and c_2 such that

$$c_1 a_{k+1} \le \|T^k\| \le c_2 a_k, \quad k \in \mathbb{N}.$$

Proof. Let $x = (x_n)_{n \ge 1} \in l^1(\mathbb{N})$. We have

$$(T^k x)_n = \begin{cases} 0, & \text{if } 1 \le n \le k; \\ \frac{a_n}{a_{n-k}} x_{n-k}, & \text{if } n > k. \end{cases}$$

It follows that

$$\left\|T^k\right\| \le \sup_{j\ge 1} \frac{a_{k+j}}{a_j}$$

Therefore, $||T^k|| \leq ca_k$. We also see that $T^k e_1 = \frac{a_{k+1}}{a_1} e_{k+1}$, where $(e_k)_n = \delta_{k,n}$. Thus $||T^k|| \geq \frac{a_{k+1}}{a_1}$.

This completes the proof of the lemma.

Corollary. T satisfies $\lim_{k\to\infty} \frac{||T^k||}{k} = 0$. Moreover, we can take $(a_j)_{j\geq 1}$ such that $\lim_{k\to\infty} \frac{||T^k||}{k^w} = \infty$, for $0 \leq w < 1$.

Next we prove that $(I-T)e_1$ is not in X_1 . By formula (1) stated in the proof of Proposition 2.2, we see that $(I-T)e_1 \in X_1$ if and only if $\sum_{k=2}^n \frac{T^k e_1}{k(k-1)}$ converges.

Fix $j \in \mathbb{N}, j > 2$. For $n \ge j-1$, we have $\left(\sum_{k=2}^{n} \frac{T^k e_1}{k(k-1)}\right)_j = \frac{a_j}{a_1(j-1)(j-2)}$.

Since the convergence in $l^1(\mathbb{N})$ of the sequence $\left\{\sum_{k=2}^n \frac{T^k e_1}{k(k-1)}\right\}_n$ implies the convergence of the series $\sum_{j=3}^\infty \frac{a_j}{(j-1)(j-2)}$, we conclude that $(I-T)e_1$ is not in X_1 .

Remark. By Proposition 2.2, T cannot be Cesàro bounded. Therefore T is not uniformly ergodic.

References

- [1] M. BECKER, A condition equivalent to uniform ergodicity. Studia Math., 167 (2005), 215-218.
- S. GRABINER AND J. ZEMÁNEK, Ascent, descent and ergodic properties of linear operators. J. Operator Theory, 48 (2002), 69-81.
- [3] M. LIN, On the uniform ergodic theorem. Proc. Amer. Math. Soc., 43 (1974), 337-340.

María Elena Becker Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Buenos Aires, Argentina mbecker@dm.uba.ar

Recibido: 16 de octubre de 2008 Aceptado: 21 de julio de 2009