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APPROXIMATION AND SHAPE PRESERVING PROPERTIES

OF THE TRUNCATED BASKAKOV OPERATOR OF

MAX-PRODUCT KIND

BARNABÁS BEDE, LUCIAN COROIANU AND SORIN G. GAL

Abstract. Starting from the study of the Shepard nonlinear operator of max-

prod type in [2], [3], in the recent monograph [4], Open Problem 5.5.4, pp.
324-326, the Baskakov max-prod type operator is introduced and the question
of the approximation order by this operator is raised. The aim of this note is
to obtain the order of uniform approximation Cω1(f ;

1
√

n

) (with the explicit

constant C = 24) of another operator called the truncated max-prod Baskakov

operator and to prove by a counterexample that in some sense, for arbitrary
f this type of order of approximation with respect to ω1(f ;

1
√

n

) cannot be

improved. However, for some subclasses of functions including for example the
nondecreasing concave functions, the essentially better order of approximation
ω1(f ;

1

n
) is obtained. Finally, some shape preserving properties are proved.

1. Introduction

Starting from the study of the Shepard nonlinear operator of max-prod type in
[2], [3], by the Open Problem 5.5.4, pp. 324-326 in the recent monograph [4],
the following nonlinear Baskakov operator of max-prod type is introduced (here

∨

means maximum)

V (M)
n (f)(x) =

∞∨
k=0

bn,k(x)f
(
k
n

)

∞∨
k=0

bn,k(x)
,

where bn,k(x) =
(
n+k−1

k

)
xk/(1+x)n+k, n ≥ 1, x ∈ [0, 1]. Note that bn,0(x) =

1
(1+x)n

for 0 < x ≤ 1 and bn,0(0) = 1 by convention.
The aim of this note is to obtain the order of uniform approximation of f :

[0, 1] → R by the so-called truncated Baskakov operator of max-product kind, de-
fined as follows :

U (M)
n (f)(x) =

n∨
k=0

bn,k(x)f
(
k
n

)

n∨
k=0

bn,k(x)
, x ∈ [0, 1], n ∈ N, n ≥ 1.
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We will prove that the order of uniform approximation is ω1(f ; 1/
√
n) with ex-

plicit constant in front of it and that in some sense, in general this type of order
of approximation with respect to ω1(f ; ·) cannot be improved. However, for some
subclasses of functions, including for example the nondecreasing concave functions,
the essentially better order ω1(f ; 1/n) is obtained. This allows us to put in evi-
dence large classes of functions (e.g. nondecreasing concave polygonal lines) for
which the order of approximation is essentially better than the order given by the
most sequences of linear Bernstein-type operators. Finally, some shape preserving
properties are presented.

Section 2 presents some general results on nonlinear operators, in Section 3 we
prove several auxiliary lemmas, Section 4 contains the approximation results while
in Section 5 we present some shape preserving properties.

2. Preliminaries

For the proof of the main result we need some general considerations on the
so-called nonlinear operators of max-prod kind. Over the set of positive reals, R+,
we consider the operations ∨ (maximum) and ·, product. Then (R+,∨, ·) has a
semiring structure and we call it as Max-Product algebra.

Let I ⊂ R be a closed bounded or unbounded interval, and

CB+(I) = {f : I → R+; f continuous and bounded on I}.
The general form of Ln : CB+(I) → CB+(I), (called here a discrete max-product
type approximation operator) studied in the paper will be

Ln(f)(x) =
n∨

i=0

Kn(x, xi) · f(xi),

or

Ln(f)(x) =

∞∨

i=0

Kn(x, xi) · f(xi),

where n ∈ N, f ∈ CB+(I), Kn(·, xi) ∈ CB+(I) and xi ∈ I, for all i. These
operators are nonlinear, positive operators and moreover they satisfy a pseudo-
linearity condition of the form

Ln(α · f ∨ β · g)(x) = α · Ln(f)(x) ∨ β · Ln(g)(x), ∀α, β ∈ R+, f, g : I → R+.

In this section we present some general results on these kinds of operators which
will be useful later in the study of the truncated Baskakov max-product kind op-
erator considered in Introduction.

Lemma 2.1. ([1]) Let I ⊂ R be a bounded or unbounded interval,

CB+(I) = {f : I → R+; f continuous and bounded on I},
and Ln : CB+(I) → CB+(I), n ∈ N be a sequence of operators satisfying the
following properties :

(i) if f, g ∈ CB+(I) satisfy f ≤ g then Ln(f) ≤ Ln(g) for all n ∈ N ;
(ii) Ln(f + g) ≤ Ln(f) + Ln(g) for all f, g ∈ CB+(I).
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Then for all f, g ∈ CB+(I), n ∈ N and x ∈ I we have

|Ln(f)(x)− Ln(g)(x)| ≤ Ln(|f − g|)(x).
Proof. Since it is very simple, we reproduce here the proof in [1]. Let f, g ∈
CB+(I). We have f = f − g + g ≤ |f − g|+ g, which by the conditions (i) − (ii)
successively implies Ln(f)(x) ≤ Ln(|f − g|)(x) + Ln(g)(x), that is Ln(f)(x) −
Ln(g)(x) ≤ Ln(|f − g|)(x).

Writing now g = g − f + f ≤ |f − g| + f and applying the above reasonings,
it follows Ln(g)(x) − Ln(f)(x) ≤ Ln(|f − g|)(x), which combined with the above
inequality gives |Ln(f)(x) − Ln(g)(x)| ≤ Ln(|f − g|)(x). �

Remarks. 1) It is easy to see that the truncated Baskakov max-product oper-
ator satisfy the conditions in Lemma 2.1, (i), (ii). In fact, instead of (i) it satisfies
the stronger condition

Ln(f ∨ g)(x) = Ln(f)(x) ∨ Ln(g)(x), f, g ∈ CB+(I).

Indeed, taking in the above equality f ≤ g, f, g ∈ CB+(I), it easily follows
Ln(f)(x) ≤ Ln(g)(x).

2) In addition, it is immediate that the truncated Baskakov max-product oper-
ator is positive homogenous, that is Ln(λf) = λLn(f) for all λ ≥ 0.

3) Since in the main results of the present paper in fact we take I = [0, 1], the
following two corollaries are stated just for the case when I is bounded.

Corollary 2.2. ([1]) Let I be a bounded interval, Ln : CB+(I) → CB+(I),
n ∈ N be a sequence of operators satisfying the conditions (i)-(ii) in Lemma 1 and
in addition being positively homogenous. Then for all f ∈ CB+(I), n ∈ N and
x ∈ I we have

|f(x)−Ln(f)(x)| ≤
[
1

δ
Ln(ϕx)(x) + Ln(e0)(x)

]
ω1(f ; δ)I + |f(x)| · |Ln(e0)(x)− 1|,

where δ > 0, e0(t) = 1 for all t ∈ I, ϕx(t) = |t − x| for all t ∈ I, x ∈ I,
ω1(f ; δ)I = max{|f(x)− f(y)|;x, y ∈ I, |x− y| ≤ δ}.

Proof. The proof is identical with that for positive linear operators and because
of its simplicity we reproduce it below. Indeed, from the identity

Ln(f)(x) − f(x) = [Ln(f)(x) − f(x) · Ln(e0)(x)] + f(x)[Ln(e0)(x)− 1],

it follows (by the positive homogeneity and by Lemma 2.1)

|f(x)− Ln(f)(x)| ≤ |Ln(f(x))(x) − Ln(f(t))(x)| + |f(x)| · |Ln(e0)(x) − 1| ≤

Ln(|f(t)− f(x)|)(x) + |f(x)| · |Ln(e0)(x) − 1|.
Now, since for all t, x ∈ I we have

|f(t)− f(x)| ≤ ω1(f ; |t− x|)I ≤
[
1

δ
|t− x|+ 1

]
ω1(f ; δ)I ,

replacing above we immediately obtain the estimate in the statement. �

An immediate consequence of Corollary 2.2 is the following.
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Corollary 2.3. ([1]) Suppose that in addition to the conditions in Corollary 2.2,
the sequence (Ln)n satisfies Ln(e0) = e0, for all n ∈ N . Then for all f ∈ CB+(I),
n ∈ N and x ∈ I we have

|f(x)− Ln(f)(x)| ≤
[
1 +

1

δ
Ln(ϕx)(x)

]
ω1(f ; δ)I .

The truncated max-product operator U
(M)
n (f)(x) satisfies the following useful

result.
Lemma 2.4. For any arbitrary function f : [0, 1] → R+, U

(M)
n (f)(x) is positive,

continuous on [0, 1] and satisfies U
(M)
n (f)(0) = f(0), for all n ∈ N, n ≥ 2.

Proof. Since bn,k(x) > 0 for all x ∈ (0, 1], n ∈ N, n ≥ 2, k ∈ {0, . . . , n}, it
follows that the denominator

n∨
k=0

bn,k(x) > 0 for all x ∈ (0, 1] and n ∈ N, n ≥ 2.

But the numerator is a maximum of finite number of continuous functions on [0, 1],

so it is a continuous function on [0, 1] and this implies that U
(M)
n (f)(x) is continuous

on (0, 1]. To prove now the continuity of U
(M)
n (f)(x) at x = 0, we observe that

bn,k(0) = 0 for all k ∈ {1, 2, . . . , n} and bn,k(0) = 1 for k = 0, which implies that
n∨

k=0

bn,k(x) = 1 in the case of x = 0. The fact that U
(M)
n (f)(x) coincides with

f(x) at x = 0 immediately follows from the above considerations, which proves the
lemma. �

Remark. From the above considerations, it is clear that U
(M)
n (f)(x) satisfies

all the conditions in Lemma 2.1, Corollary 2.2 and Corollary 2.3 for I = [0, 1]

3. Auxiliary Results

For the proofs of the main results we need some notations and auxiliary results,
as follows.

Remark. Note that since by Lemma 2.4 we have U
(M)
n (f)(0)− f(0) = 0 for all

n, it follows that in the notations, proofs and statements of the all approximation
results, that is in Lemmas 3.1-3.3, Theorem 4.1, Lemma 4.2, Corollaries 4.4, 4.5,
in fact we always may suppose that x > 0.

For each n ∈ N, n ≥ 2, k ∈ {0, 1, 2, . . . , n}, j ∈ {0, 1, 2, . . . , n − 2} and x ∈
[ j
n−1 ,

j+1
n−1 ], let us denote

Mk,n,j(x) = mk,n,j(x)

∣∣∣∣
k

n
− x

∣∣∣∣ ,

where mk,n,j(x) =
bn,k(x)
bn,j(x)

for x ∈ (0, 1], m0,n.0(0) = 1 and mk,n,0(0) = 0 for all

k ∈ {1, 2, . . . , n}.
It is clear that if k ≥ j + 2 then

Mk,n,j(x) = mk,n,j(x)(
k

n
− x)

and if k ≤ j then

Mk,n,j(x) = mk,n,j(x− k

n
).
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Also, for each n ∈ N, n ≥ 2, k ∈ {0, 1, . . . , n}, j ∈ {0, 1, . . . , n − 2}, k ≥ j + 3

and x ∈ [ j
n−1 ,

j+1
n−1 ], let us denote

Mk,n,j(x) = mk,n,j(x)(
k

n − 1
− x)

and for each n ∈ N, n ≥ 2, k ∈ {0, 1, . . . , n}, j ∈ {0, 1, . . . , n − 2}, k ≤ j − 1 and

x ∈ [ j
n−1 ,

j+1
n−1 ] let us denote

Mk,n,j(x) = mk,n,j(x)(x − k

n− 1
).

Lemma 3.1. Let x ∈ [ j
n−1 ,

j+1
n−1 ] and n ∈ N, n ≥ 2.

(i) For all k ∈ {0, 1, 2, . . . , n}, j ∈ {0 , 1 , 2 , . . . , n − 2}, k ≥ j + 3 we have

Mk,n,j(x) ≤ Mk,n,j(x) ≤ 2Mk,n,j(x).

(ii) For all k ∈ {0, 1, 2, . . . , n}, j ∈ {0 , 1 , 2 , . . . , n − 2}, k ≤ j − 1 we have

Mk,n,j(x) ≤ Mk,n,j(x) ≤ 2Mk,n,j(x).

Proof. (i) The inequality Mk,n,j(x) ≤ Mk,n,j(x) is immediate.

On the other hand, taking account of the fact that the function h(x) =
k

n−1−x
k
n
−x

is nondecreasing on [ j
n−1 ,

j+1
n−1 ] we get

Mk,n,j(x) = Mk,n,j(x) ·
k

n−1 − x
k
n − x

≤ Mk,n,j(x) ·
k

n−1 − j+1
n−1

k
n − j+1

n−1

= Mk,n,j(x) ·
n(k − j − 1)

kn− k − nj − n
.

We have n(k−j−1)
kn−k−nj−n ≤ n(k−j−1)

kn−n−nj−n = k−j−1
k−j−2 = 1 + 1

k−j−2 ≤ 2 which proves (i).

(ii) The inequality Mk,n,j(x) ≤ Mk,n,j(x) is immediate.

On the other hand, taking account of the fact that the function h(x) =
x− k

n

x− k
n−1

is nonincreasing on [ j
n−1 ,

j+1
n−1 ] we get

Mk,n,j(x) = Mk,n,j(x) ·
x− k

n

x− k
n−1

≤ Mk,n,j(x) ·
j

n−1 − k
n

j
n−1 − k

n−1

= Mk,n,j(x) ·
nj − nk + k

n(j − k)
.

We have nj−nk+k
n(j−k) ≤ nj−nk+n

n(j−k) = j−k+1
j−k = 1 + 1

j−k ≤ 2 which proves (ii). �

Lemma 3.2. Let n ∈ N, n ≥ 2. For all k ∈ {0, 1, 2, . . . , n}, j ∈ {0, 1, 2, . . . , n−
2} and x ∈ [ j

n−1 ,
j+1
n−1 ] we have

mk,n,j(x) ≤ 1.

Proof. First let us notice that for x = 0 we necessarilly have j = 0 which implies
m0,n,0(x) = 1 and mk,n,0(x) = 0 for all k ∈ {1, 2, . . . , n}.
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Suppose now that x > 0 when clearly mk,n,j(x) > 0. We have two cases: 1)
k ≥ j and 2) k ≤ j.

Case 1). Since clearly the function h(x) = 1+x
x is nonincreasing on [j/n−1, (j+

1)/n− 1] (or (0, 1
n−1 ] for j = 0) it follows

mk,n,j(x)

mk+1,n,j(x)
=

k + 1

n+ k
· 1 + x

x
≥ k + 1

n+ k
· n+ j

j + 1

=
(n+ k)(j + 1) + (n− 1)(k − j)

(n+ k)(j + 1)
≥ 1

which implies mj,n,j(x) ≥ mj+1,n,j(x) ≥ mj+2,n,j(x) ≥ . . . ≥ mn,n,j(x).
Case 2). We get

mk,n,j(x)

mk−1,n,j(x)
=

n+ k − 1

k
· x

x+ 1
≥ n+ k − 1

k
· j

n+ j − 1

=
k(n+ j − 1) + (n− 1)(j − k)

k(n+ j − 1)
≥ 1,

which immediately implies

mj,n,j(x) ≥ mj−1,n,j(x) ≥ mj−2,n,j(x) ≥ . . . ≥ m0,n,j(x).

Since mj,n,j(x) = 1, the conclusion of the lemma is immediate. �

Lemma 3.3. Let x ∈ [ j
n−1 ,

j+1
n−1 ] and n ∈ N, n ≥ 2.

(i) If k ∈ {j+3, j+4, . . . , n−1} is such that k−
√
2(k + 1) ≥ j, then Mk,n,j(x) ≥

Mk+1,n,j(x).
(ii) If k ∈ {1, 2, . . . , j − 1} is such that j − √

2j ≥ k, then Mk,n,j(x) ≥
Mk−1,n,j(x).

Proof. (i) We observe that

Mk+1,n,j(x) = Mk,n,j(x) ·
n+ k

k + 1
· x

x+ 1
·

k+1
n−1 − x
k

n−1 − x
.

Since the function g(x) = x
x+1 ·

k+1
n−1−x
k

n−1−x
clearly is nondecreasing, it follows that

g(x) ≤ g( j+1
n−1 ) =

j+1
n+j · k−j

k−j−1 for all x ∈ [ j
n−1 ,

j+1
n−1 ].

Then

Mk+1,n,j(x) ≤ Mk,n,j(x) ·
n+ k

k + 1
· j + 1

n+ j
· k − j

k − j − 1
.

By simple calculations and taking into account the fact that k−
√
2(k + 1) ≥ j we

obtain

(k + 1)(n+ j)(k − j − 1)− (n+ k)(j + 1)(k − j)

= n[(k − j)2 − (k + 1)] + kj − j2 − k2 − j

≥ n[2(k + 1)− k − 1] + kj − j2 − k2 − n

= kn+ kj − j2 − k2 > 0,

which proves (i).

Rev. Un. Mat. Argentina, Vol 52-1



TRUNCATED BASKAKOV OPERATOR OF MAX-PRODUCT KIND 95

(ii) We observe that

Mk,n,j(x) = Mk−1,n,j(x) ·
n+ k − 1

k
· x

x+ 1
·
x− k

n−1

x− k−1
n

.

Since the function h(x) = x
x+1 · x− k

n−1

x− k−1
n−1

is nondecreasing, it follows that h(x) ≥
h( j

n−1 ) =
j

n+j−1 · j−k
j−k+1 for all x ∈ [ j

n−1 ,
j+1
n−1 ].

Then

Mk,n,j(x) ≥ Mk−1,n,j(x) ·
n+ k − 1

k
· j

n+ j − 1
· j − k

j − k + 1
.

By simple calculations and taking into account the fact that j−√
2j ≥ k we obtain

j(n+ k − 1)(j − k)− k(n+ j − 1)(j − k + 1)

= n[(j − k)2 − k] + kj − j2 − k2 + k] ≥ n(2j − k) + kj − j2 − k2 + k

≥ nj + kj − j2 − k2 + k > 0

which proves (ii) and the lemma. �

Also, a key result in the proofs of the main results is the following.
Lemma 3.4. Let n ∈ N, n ≥ 2. We have

n∨

k=0

bn,k(x) = bn,j(x), for all x ∈
[

j

n− 1
,
j + 1

n− 1

]
, j = 0, 1, . . . , n− 2.

Proof. First we show that for fixed n ∈ N, n ≥ 2 and 0 ≤ k < k + 1 ≤ n we have

0 ≤ bn,k+1(x) ≤ bn,k(x), if and only if x ∈ [0, (k + 1)/(n− 1)].

Indeed, the inequality one reduces to

0 ≤
(
n+ k

k + 1

)
xk+1

(1 + x)n+k+1
≤

(
n+ k − 1

k

)
xk

(1 + x)n+k
,

which after simple calculus is obviously equivalent to

0 ≤ x ≤ k + 1

n− 1
.

By taking k = 0, 1, .., n− 1 in the inequality just proved above, we get

bn,1(x) ≤ bn,0(x), if and only if x ∈ [0, 1/(n− 1)],

bn,2(x) ≤ bn,1(x), if and only if x ∈ [0, 2/(n− 1)],

bn,3(x) ≤ bn,2(x), if and only if x ∈ [0, 3/(n− 1)],

so on,

bn,k+1(x) ≤ bn,k(x), if and only if x ∈ [0, (k + 1)/(n− 1)],

and so on until finally

bn,n−1(x) ≤ bn,n−2(x), if and only if x ∈ [0, 1]

and

bn,n(x) ≤ bn,n−1(x), if and only if x ∈ [0, 1].

Rev. Un. Mat. Argentina, Vol 52-1
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From all these inequalities, reasoning by recurrence we easily obtain:

if x ∈ [0, 1/(n− 1)] then bn,k(x) ≤ bn,0(x), for all k = 0, 1, . . . , n,

if x ∈ [1/(n− 1), 2/(n− 1)] then bn,k(x) ≤ bn,1(x), for all k = 0, 1, . . . , n,

if x ∈ [2/(n− 1), 3/(n− 1)] then bn,k(x) ≤ bn,2(x), for all k = 0, 1, . . . , n,

and so on, in general

if x ∈ [j/(n− 1), (j + 1)/(n− 1)] then bn,k(x) ≤ bn,j(x), for all k = 0, 1, . . . , n.

Combining these last implications with the above “if and only if” equivalences and
writing

n∨

k=0

bn,k(x) = max






j−1∨

k=0

bn,k(x),

n∨

k=j

bn,k(x)




 ,

the lemma is immediate. �

4. Approximation Results

If U
(M)
n (f)(x) represents the truncated Baskakov operator of max-product kind

defined in the Introduction, then the first main result of this section is the following.
Theorem 4.1. Let f : [0, 1] → R+ be continuous. Then we have the estimate

|U (M)
n (f)(x) − f(x)| ≤ 24ω1

(
f,

1√
n+ 1

)
, n ∈ N, n ≥ 2, x ∈ [0, 1],

where

ω1(f, δ) = sup{|f(x)− f(y)|;x, y ∈ [0, 1], |x− y| ≤ δ}.
Proof. It is easy to check that the truncated max-product Baskakov operator
fulfils the conditions in Corollary 2.3 and we have

|U (M)
n (f)(x)− f(x)| ≤

(
1 +

1

δn
U (M)
n (ϕx)(x)

)
ω1(f, δn), (1)

where ϕx(t) = |t− x|. So, it is enough to estimate

En(x) := U (M)
n (ϕx)(x) =

n∨
k=0

bn,k(x)
∣∣ k
n − x

∣∣

n∨
k=0

bn,k(x)
, x ∈ [0, 1].

Let x ∈ [j/(n− 1), (j+1)/(n− 1)], where j ∈ {0, 1, . . . , n− 2} is fixed. By Lemma
3.4 we easily obtain

En(x) = max
k=0,1,...,n

{Mk,n,j(x)}, x ∈ [j/(n− 1), (j + 1)/(n− 1)].

So it remains to obtain an upper estimate for eachMk,n,j(x) when j ∈ {1, . . . , n−
2} is fixed, x ∈ [j/(n − 1), (j + 1)/(n − 1)] and k ∈ {0, 1, . . . , n}. In fact we will
prove that

Mk,n,j(x) ≤
2
√
3(
√
2 + 2)√

n+ 1
, for all x ∈

[
j

n− 1
,
j + 1

n− 1

]
, k = 0, 1, . . . , n, (2)
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which immediately will imply that

En(x) ≤
2
√
3(
√
2 + 2)√

n+ 1
, for all x ∈ [0, 1], n ∈ N,

and taking δn = 2
√
3(

√
2+2)√

n+1
in (1), since [2

√
3(
√
2 + 2)] = 11, from the property

ω1(f ;λδ) ≤ ([λ]+1)ω1(f ; δ), we immediately obtain the estimate in the statement.
In order to prove (2) we distinguish the following cases:
1) k ∈ {j, j + 1, j + 2} ; 2) k ≥ j + 3 and 3) k ≤ j − 1.

Case 1). If k = j then Mj,n,j(x) =
∣∣ j
n − x

∣∣ = x − j
n . Since x ∈ [ j

n−1 ,
j+1
n−1 ], it

easily follows that Mj,n,j(x) ≤ 2
n .

If k = j + 1 then Mj+1,n,j(x) = mj+1,n,j(x)
∣∣ j+1

n − x
∣∣ . Since by Lemma 3.2 we

have mj+1,n,j(x) ≤ 1, we obtain Mj+1,n,j(x) ≤
∣∣ j+1

n − x
∣∣ . Because x ∈ [ j

n−1 ,
j+1
n−1 ],

it easily follows that
∣∣ j+1

n − x
∣∣ ≤ 1

n which implies Mj+1,n,j(x) ≤ 1
n .

If k = j+2 thenMj+2,n,j(x) = mj+2,n,j(x)(
j+2
n −x) ≤ j+2

n − j
n−1 = 2n−j−2

n(n−1) ≤ 2
n .

Case 2). Subcase a). Suppose first that k −
√
2(k + 1) < j. We get

Mk,n,j(x) = mk,n,j(x)(
k

n− 1
− x) ≤ k

n− 1
− x ≤ k

n− 1
− j

n− 1
≤

k

n− 1
− k −

√
2(k + 1)

n− 1
=

√
2(k + 1)

n− 1
≤ 3

√
2√

n+ 1
.

Subcase b). Suppose now that k −
√
2(k + 1) ≥ j. Since the function g(x) =

x −
√
2(x+ 1) is nondecreasing on the interval [0,∞) it follows that there exists

k ∈ {0, 1, 2, . . . , n}, of maximum value, such that k −
√
2(k + 1) < j. Then for

k1 = k + 1 we get k1 −
√
2(k1 + 1) ≥ j. Then

Mk+1,n,j(x) = mk+1,n,j(x)(
k + 1

n− 1
− x) ≤ k + 1

n− 1
− x

≤ k + 1

n− 1
− j

n− 1
≤ k + 1

n− 1
−

k −
√
2(k + 1)

n− 1

=

√
2(k + 1) + 1

n− 1
≤ 3

√
2 +

√
3√

n+ 1
.

Also we have k1 ≥ j + 3. Indeed, this is a consequence of the fact that g is nonde-
creasing on the interval [0,∞) and because through simple calculus we get g(j+2) <
j. By Lemma 3.3, (i) it follows that Mk+1,n,j(x) ≥ Mk+2,n,j(x) ≥ . . . ≥ Mn,n,j(x).

We thus obtain Mk,n,j(x) ≤ 3
√
2+

√
3√

n+1
for any k ∈ {k + 1, k + 2, . . . , n}.

Therefore, in both subcases, by Lemma 3.1, (i), we get Mk,n,j(x) ≤ 3
√
2+

√
3√

n+1
.
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Case 3). Subcase a). Suppose first that j −√
2j < k. Then we obtain

Mk,n,j(x) = mk,n,j(x)(x − k

n− 1
) ≤ j + 1

n− 1
− k

n− 1

≤ j + 1

n− 1
− j −√

2j

n− 1
=

√
2j + 1

n− 1
≤

√
2 + 1√
n− 1

.

Subcase b). Suppose now that j−√
2j ≥ k. Let k̃ ∈ {0, 1, 2, . . . , n} be the minimum

value such that j −√
2j < k̃. Then k2 = k̃ − 1 satisfies j −√

2j ≥ k2. Then

M k̃−1,n,j(x) = mk̃−1,n,j(x)(x − k̃ − 1

n− 1
) ≤ j + 1

n− 1
− k̃ − 1

n− 1

≤ j + 1

n− 1
− j −√

2j − 1

n− 1
=

√
2j + 2

n− 1
≤

√
2 + 2√
n− 1

.

Also, because in this case j ≥ 1 it is immediate that k2 ≤ j − 1. By Lemma
3.3, (ii) it follows that M k̃−1,n,j(x) ≥ M k̃−2,n,j(x) ≥ . . . ≥ M0,n,j(x). We obtain

Mk,n,j(x) ≤
√
2+2√
n−1

for any k ≤ j − 1 and x ∈ [ j
n−1 ,

j+1
n−1 ].

In both subcases, by Lemma 3.1, (ii), we get Mk,n,j(x) ≤ 2(
√
2+2)√
n−1

≤ 2
√
3(

√
2+2)√

n+1
.

In conclusion, collecting all the estimates in the above cases and subcases we
easily get the relationship (2), which completes the proof. �

Remark. The order of approximation in terms of ω1 in Theorem 4.1 cannot be
improved, in the sense that the order of the expression maxx∈[0,1]{En(x)} is exactly

1√
n+1

(here En(x) is defined in the proof of Theorem 4.1). Indeed, for n ∈ N let us

take jn = [n2 ], kn = jn − [
√
n] and xn = jn+1

n−1 . Then by simple calculation, for all
n ≥ 2 we get

Mkn,n,jn(xn) =

(
n+kn−1

kn

)
xkn
n /(1 + xn)

n+kn

(
n+jn−1

jn

)
xjn
n /(1 + xn)n+jn

(
xn − kn

n− 1

)

=
(n+ kn − 1)!

(n+ jn − 1)!
· jn!
kn!

(
xn

1 + xn

)kn−jn (
xn − kn

n− 1

)

=
(kn + 1)(kn + 2) . . . jn

(n+ kn)(n+ kn + 1) . . . (n+ jn − 1)

(
1 + [n/2]

n+ [n/2]

)kn−jn [
√
n] + 1

n− 1

≥
(

kn + 1

n+ jn − 1

)jn−kn
(
1 + [n/2]

n+ [n/2]

)kn−jn

· 1√
n

=

(
[n/2]− [

√
n] + 1

n+ [n/2]− 1

)[
√
n] (

n+ [n/2]

1 + [n/2]

)[
√
n]

· 1√
n

≥
(
[n/2]− [

√
n] + 1

1 + [n/2]

)[
√

n]

· 1√
n
≥

(
n/2−√

n

1 + n/2

)√
n

· 1√
n
.
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Because lim
n→∞

(
n/2−

√
n

1+n/2

)√
n

= e−2, there exists n0 ∈ N such that

(
1 + [n/2]

[n/2] + [
√
n]

)[
√
n]

≥ e−3, for all n ≥ max{n0, 2}.

It follows

Mkn,n,jn(xn) ≥
e−3

√
n

≥ e−3

√
n+ 1

,

for all n ≥ max{n0, 2}. Taking into account Lemma 3.1, (ii) too, it follows that

for all n ≥ max{n0, 2} we have Mkn,n,jn(xn) ≥ e−3
√
n+1

, which implies the desired

conclusion.
In what follows we will prove that for large subclasses of functions f , the order

of approximation ω1(f ; 1/
√
n+ 1) in Theorem 4.1 can essentially be improved to

ω1(f ; 1/n).
For this purpose, for any n ∈ N, n ≥ 2, k ∈ {0, 1, . . . , n} and j ∈ {0, 1, . . . , n−2},

let us define the functions fk,n,j : [
j

n−1 ,
j+1
n−1 ] → R,

fk,n,j(x) = mk,n,j(x)f

(
k

n

)
=

bn,k(x)

bn,j(x)
f

(
k

n

)
=

(
n+k−1

k

)
(
n+j−1

j

)
(

x

1 + x

)k−j

f

(
k

n

)
.

For any j ∈ {0, 1, . . . , n− 2} and x ∈ [ j
n−1 ,

j+1
n−1 ] we can write

U (M)
n (f)(x) =

n∨

k=0

fk,n,j(x).

Also, we need the following auxiliary lemmas.
Lemma 4.2. Let f : [0, 1] → [0,∞) be such that

U (M)
n (f)(x) = max{fj,n,j(x), fj+1,n,j(x), fj+2,n,j(x)},

for all x ∈ [j/(n− 1), (j + 1)/(n− 1)] and n ∈ N, n ≥ 2. Then
∣∣∣U (M)

n (f)(x) − f(x)
∣∣∣ ≤ 2ω1

(
f ;

1

n

)
, for all x ∈ [j/(n− 1), (j + 1)/(n− 1)].

Proof. We distinguish three cases:

Case (i). Let x ∈ [j/(n− 1), (j + 1)/(n − 1)] be fixed such that U
(M)
n (f)(x) =

fj,n,j(x). By simple calculation we have

0 ≤ x− j

n
≤ j + 1

n− 1
− j

n
=

n+ j

n(n− 1)
≤ 2

n

and fj,n,j(x) = f( j
n ), it follows that

∣∣∣U (M)
n (f)(x)− f(x)

∣∣∣ ≤ 2ω1

(
f ;

1

n

)
.

Case (ii). Let x ∈ [j/(n − 1), (j + 1)/(n − 1)] be such that U
(M)
n (f)(x) =

fj+1,n,j(x). We have two subcases:
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(iia) U
(M)
n (f)(x) ≤ f(x), when evidently fj,n,j(x) ≤ fj+1,n,j(x) ≤ f(x) and we

immediately get
∣∣∣U (M)

n (f)(x) − f(x)
∣∣∣ = |fj+1,n,j(x)− f(x)|

= f(x)− fj+1,n,j(x) ≤ f(x)− f(j/n) ≤ 2ω1

(
f ;

1

n

)
.

(iib) U
(M)
n (f)(x) > f(x), when

∣∣∣U (M)
n (f)(x)− f(x)

∣∣∣ = fj+1,n,j(x) − f(x) = mj+1,n,j(x)f(
j + 1

n
)− f(x)

≤ f(
j + 1

n
)− f(x).

Since 0 ≤ j+1
n −x ≤ j+1

n − j
n−1 = n−(j+1)

n(n−1) ≤ 1
n it follows f( j+1

n )−f(x) ≤ ω1

(
f ; 1

n

)
.

Case (iii). Let x ∈ [j/(n − 1), (j + 1)/(n − 1)] be such that U
(M)
n (f)(x) =

fj+2,n,j(x). We have two subcases:

(iiia) U
(M)
n (f)(x) ≤ f(x), when evidently fj,n,j(x) ≤ fj+2,n,j(x) ≤ f(x) and we

immediately get
∣∣∣U (M)

n (f)(x) − f(x)
∣∣∣ = |fj+2,n,j(x)− f(x)|

= f(x)− fj+2,n,j(x) ≤ f(x)− f(j/n) ≤ 2ω1

(
f ;

1

n

)
.

(iiib) U
(M)
n (f)(x) > f(x), when

∣∣∣U (M)
n (f)(x)− f(x)

∣∣∣ = fj+2,n,j(x) − f(x) = mj+2,n,j(x)f(
j + 2

n
)− f(x)

≤ f(
j + 2

n
)− f(x).

Since 0 ≤ j+2
n − x ≤ j+2

n − j
n−1 = 2n−(j+2)

n(n−1) ≤ 2
n it follows f( j+2

n ) − f(x) ≤
2ω1

(
f ; 1

n

)
, which proves the lemma. �

Lemma 4.3. Let f : [0, 1] → [0,∞) be concave. Then the function g : (0, 1] →
[0,∞), g(x) = f(x)

x is nonincreasing.
Proof. Let x, y ∈ (0, 1] be with x ≤ y. Then

f(x) = f

(
x

y
y +

y − x

y
0

)
≥ x

y
f(y) +

y − x

y
f(0) ≥ x

y
f(y),

which implies f(x)
x ≥ f(y)

y . �

Corollary 4.4. Let f : [0, 1] → [0,∞) be a nondecreasing function such that

the function g : (0, 1] → [0,∞), g(x) = f(x)
x is nonincreasing, then

∣∣∣U (M)
n (f)(x) − f(x)

∣∣∣ ≤ 2ω1

(
f ;

1

n

)
, for all x ∈ [0, 1], and n ∈ N, n ≥ 2.
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Proof. Since f is nondecreasing it follows (see the proof of Theorem 5.3 in the
next section)

U (M)
n (f)(x) =

n∨

k≥j

fk,n,j(x), for all x ∈ [j/(n− 1), (j + 1)/(n− 1)].

Let x ∈ [0, 1] and j ∈ {0, 1, . . . , n − 2} such that x ∈ [ j
n−1 ,

j+1
n−1 ]. Let k ∈

{0, 1, . . . , n} be with k ≥ j. Then

fk+1,n,j(x) =

(
n+k
k+1

)
(
n+j−1

j

) ( x

1 + x
)k+1−jf(

k + 1

n
)

=

(
n+k−1

k

)
(
n+j−1

j

) · n+ k

k + 1
(

x

1 + x
)k−j x

1 + x
f(

k + 1

n
).

Since g(x) is nonincreasing we get
f( k+1

n
)

k+1
n

≤ f( k
n
)

k
n

that is f(k+1
n ) ≤ k+1

k f( kn ). From

x ≤ j+1
n−1 it follows

fk+1,n,j(x) ≤
(
n+k−1

k

)
(
n+j−1

j

) ( x

1 + x
)k−j j + 1

n+ j
· n+ k

k + 1
· k + 1

k
f(

k

n
)

= fk,n,j(x)
j + 1

n+ j
· n+ k

k
=

(n+ j)k + n(j + 1− k) + k

(n+ j)k
· fk,n,j(x).

It is immediate that for k ≥ j + 2 we have fk,n,j(x) ≥ fk+1,n,j(x). Thus we obtain

fj+2,n,j(x) ≥ fj+3,n,j(x) ≥ . . . ≥ fn,j,n(x),

that is

U (M)
n (f)(x) = max{fj,n,j(x), fj+1,n,j(x), fj+2,n,j(x)},

for all x ∈ [j/(n− 1), (j + 1)/(n− 1)], and from Lemma 4.2 we obtain
∣∣∣U (M)

n (f)(x)− f(x)
∣∣∣ ≤ 2ω1

(
f ;

1

n

)
.

�

Corollary 4.5. Let f : [0, 1] → [0,∞) be a nondecreasing concave function.
Then ∣∣∣U (M)

n (f)(x) − f(x)
∣∣∣ ≤ 2ω1

(
f ;

1

n

)
, for all x ∈ [0, 1].

Proof. The proof is immediate by Lemma 4.3 and by Corollary 4.4. �

Remarks. 1) It is easy to see that if f : [0, 1] → [0,∞) is a convex, non-

decreasing function satisfying f(x)
x ≥ f(1) for all x ∈ [0, 1], then the function

g : (0, 1] → [0,∞), g(x) = f(x)
x is nonincreasing and as a consequence for f is

valid the conclusion of Corollary 4.4. Indeed, for simplicity let us suppose that

f ∈ C1[0, 1] and denote F (x) = xf ′(x) − f(x), x ∈ [0, 1]. Then g′(x) = F (x)
x2 , for

all x ∈ (0, 1]. Since the inequality f(x)
x ≥ f(1) can be written as f(1)−f(x)

1−x ≤ f(1),
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for all x ∈ [0, 1), passing to limit with x → 1 it follows f ′(1) ≤ f(1), which implies
(since f ′ is nondecreasing)

F (x) ≤ xf ′(1)− f(x) ≤ xf ′(1)− xf(1) = x[f ′(1)− f(1)] ≤ 0, for all x ∈ (0, 1],

which means that g(x) is nonincreasing.
An example of function satisfying the above conditions is f(x) = ex, x ∈ [0, 1].
2) It is known that for the most sequences of linear Bernstein-type opera-

tors Ln(f)(x), n ∈ N, x ∈ [0, 1], the uniform estimate cannot be better than
ωϕ
2 (f ; 1/

√
n), where ωϕ

2 (f ; δ) is the Ditzian-Totik second order modulus of smooth-
ness given by

ωϕ
2 (f ; δ) = sup{sup{|f(x+ hϕ(x)) − 2f(x) + f(x− hϕ(x))|;x ∈ Ih}, h ∈ [0, δ]},

with ϕ(x) =
√
x(1− x), δ ≤ 1 and Ih =

[
h2

1+h2 ,
1

1+h2

]
.

Now, if f is, for example, a nondecreasing concave polygonal line on [0, 1], then
we get that ωϕ

2 (f ; δ) ∼ δ for δ ≤ 1, which shows that the order of approximation
obtained in this case for the most sequences of linear Bernstein-type operators is
exactly 1√

n
. On the other hand, since such of function f obviously is a Lipschitz

function on [0, 1] (as having bounded all the derivative numbers) by Corollary 4.5
we get that the order of approximation by the truncated max-product Baskakov
operator is less than 1

n , which is essentially better than 1√
n
. In a similar man-

ner, by Corollary 4.4 and by Remark 1 after Corollary 4.5, we can produce many
subclasses of functions for which the order of uniform approximation given by the
truncated max-product Baskakov operator, is essentially better than the order of
approximation given by the most sequences of linear Bernstein-type operators.

In fact, the Corollaries 4.4 and 4.5 have no corespondent in the case of these
linear and positive operators. All these prove the advantages we may have in
some cases, by using the truncated max-product Baskakov operator. Intuitively,
the truncated max-product Baskakov operator has better approximation properties
than any linear Benstein-type operator, for non-differentiable functions in a finite
number of points (with the graphs having some “corners”), as for example for
functions defined as a maximum of a finite number of continuous functions on
[0, 1].

5. Shape Preserving Properties

Remark. By the continuity of U
(M)
n (f)(x) on [0, 1] in Lemma 2.4, it will suffice

to prove the shape properties of U
(M)
n (f)(x) only on (0, 1]. As a consequence, in

the notations and proofs below we always may suppose that x > 0.
In this section we will present some shape preserving properties. In what follows,

as in Section 4 for any k ∈ {0, 1, . . . , n} and j ∈ {0, 1, . . . , n − 2}, let us consider

the functions fk,n,j : [
j

n−1 ,
j+1
n−1 ] → R,

fk,n,j(x) = mk,n,j(x)f

(
k

n

)
=

bn,k(x)

bn,j(x)
f

(
k

n

)
=

(
n+k−1

k

)
(
n+j−1

j

) ·
(

x

1 + x

)k−j

f

(
k

n

)
.
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For any j ∈ {0, 1, . . . , n− 2} and x ∈ [ j
n−1 ,

j+1
n−1 ] we can write

U (M)
n (f)(x) =

n∨

k=0

fk,n,j(x).

Lemma 5.1. Let n ∈ N, n ≥ 2. If f : [0, 1] → R+ is a nondecreasing function

then for any k ∈ {0, 1, . . . , n}, j ∈ {0, 1, . . . , n− 2} with k ≤ j and x ∈ [ j
n−1 ,

j+1
n−1 ]

we have fk,n,j(x) ≥ fk−1,n,j(x).
Proof. Since k ≤ j, by the proof of Lemma 3.1, case 2), it follows that

mk,n,j(x) ≥ mk−1,n,j(x). From the monotonicity of f we get f
(
k
n

)
≥ f

(
k−1
n

)
.

Thus we obtain

mk,n,j(x)f

(
k

n

)
≥ mk−1,n,j(x)f

(
k − 1

n

)
,

which proves the lemma. �

Corollary 5.2. Let n ∈ N, n ≥ 2. If f : [0, 1] → R+ is nonincreasing then
fk,n,j(x) ≥ fk+1,n,j(x) for any k ∈ {0, 1, . . . , n}, j ∈ {0, 1, . . . , n − 2} with k ≥ j

and x ∈ [ j
n−1 ,

j+1
n−1 ].

Proof. Since k ≥ j, by the proof of Lemma 3.1, case 1), it follows that
mk,n,j(x) ≥ mk+1,n,j(x). From the monotonicity of f we get f

(
k
n

)
≥ f

(
k+1
n

)
.

Thus we obtain

mk,n,j(x)f

(
k

n

)
≥ mk+1,n,j(x)f

(
k + 1

n

)
,

which proves the corollary. �

Theorem 5.3. If f : [0, 1] → R+ is nondecreasing then U
(M)
n (f) is nondecreas-

ing, for any n ∈ N with n ≥ 2.

Proof. Since U
(M)
n (f) is continuous on [0, 1], it suffices to prove that on each

subinterval of the form [ j
n−1 ,

j+1
n−1 ], with j ∈ {0, 1, . . . , n − 2}, U (M)

n (f) is nonde-
creasing.

So let j ∈ {0, 1, . . . , n − 2} and x ∈ [ j
n−1 ,

j+1
n−1 ]. As f is nondecreasing, from

Lemma 5.1 it follows that

fj,n,j(x) ≥ fj−1,n,j(x) ≥ fj−2,n,j(x) ≥ . . . ≥ f0,n,j(x).

Then it is immediate that

U (M)
n (f)(x) =

n∨

k≥j

fk,n,j(x),

for all x ∈ [ j
n−1 ,

j+1
n−1 ]. Clearly that for k ≥ j the function fk,n,j is nondecreasing

and since U
(M)
n (f) is defined as the maximum of nondecreasing functions, it follows

that it is nondecreasing. �

Corollary 5.4. If f : [0, 1] → R+ is nonincreasing then U
(M)
n (f) is nonincreas-

ing, for any n ∈ N with n ≥ 2.
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Proof. Since U
(M)
n (f) is continuous on [0, 1], it suffices to prove that on each

subinterval of the form [ j
n−1 ,

j+1
n−1 ], with j ∈ {0, 1, . . . , n − 2}, U (M)

n (f) is nonin-
creasing.

So let j ∈ {0, 1, . . . , n − 2} and x ∈ [ j
n−1 ,

j+1
n−1 ]. As f is nonincreasing, from

Corollary 5.2 it follows that

fj,n,j(x) ≥ fj+1,n,j(x) ≥ fj+2,n,j(x) ≥ . . . ≥ fn,n,j(x).

Then it is immediate that

U (M)
n (f)(x) =

j∨

k≥0

fk,n,j(x),

for all x ∈ [ j
n−1 ,

j+1
n−1 ]. Clearly that for k ≤ j the function fk,n,j is nonincreasing

and since U
(M)
n (f) is defined as the maximum of nonincreasing functions, it follows

that it is nonincreasing. �

In what follows, let us consider the following concept generalizing the mono-
tonicity and convexity.

Definition 5.5. Let f : [0, 1] → R be continuous on [0, 1]. One says that f is
quasi-convex on [0, 1] if it satisfies the inequality

f(λx + (1− λ)y) ≤ max{f(x), f(y)}, for all x, y, λ ∈ [0, 1].

(see e.g. the book [4], p. 4, (iv)).
Remark. By [5], the continuous function f is quasi-convex on [0, 1] equivalently

means that there exists a point c ∈ [0, 1] such that f is nonincreasing on [0, c]
and nondecreasing on [c, 1]. The class of quasi-convex functions includes the both
classes of nondecreasing functions and of nonincreasing functions (obtained from
the class of quasi-convex functions by taking c = 0 and c = 1, respectively). Also,
it obviously includes the class of continuous convex functions on [0, 1].

Corollary 5.6. If f : [0, 1] → R+ is continuous and quasi-convex on [0, 1] then

for all n ∈ N,n ≥ 2 , U
(M)
n (f) is quasi-convex on [0, 1].

Proof. If f is nonincreasing (or nondecreasing) on [0, 1] (that is the point
c = 1 (or c = 0) in the above Remark) then by the Corollary 5.4 (or Theorem

5.3, respectively) it follows that for all n ∈ N, n ≥ 2, U
(M)
n (f) is nonincreasing (or

nondecreasing) on [0, 1].
Suppose now that there exists c ∈ (0, 1), such that f is nonincreasing on [0, c]

and nondecreasing on [c, 1]. Define the functions F,G : [0, 1] → R+ by F (x) = f(x)
for all x ∈ [0, c], F (x) = f(c) for all x ∈ [c, 1] and G(x) = f(c) for all x ∈ [0, c],
G(x) = f(x) for all x ∈ [c, 1].

It is clear that F is nonincreasing and continuous on [0, 1], G is nondecreasing
and continuous on [0, 1] and that f(x) = max{F (x), G(x)}, for all x ∈ [0, 1].

But it is easy to show (see also Remark 1 after the proof of Lemma 2.1) that

U (M)
n (f)(x) = max{U (M)

n (F )(x), U (M)
n (G)(x)}, for all x ∈ [0, 1],

where by the Corollary 5.4 and Theorem 5.3 , U
(M)
n (F )(x) is nonincreasing and

continuous on [0, 1] and U
(M)
n (G)(x) is nondecreasing and continuous on [0, 1]. We
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have two cases : 1) U
(M)
n (F )(x) and U

(M)
n (G)(x) do not intersect each other ; 2)

U
(M)
n (F )(x) and U

(M)
n (G)(x) intersect each other.

Case 1). We have max{U (M)
n (F )(x), U

(M)
n (G)(x)} = U

(M)
n (F )(x) for all x ∈

[0, 1] or max{U (M)
n (F )(x), U

(M)
n (G)(x)} = U

(M)
n (G)(x) for all x ∈ [0, 1], which

obviously proves that U
(M)
n (f)(x) is quasi-convex on [0, 1].

Case 2). In this case it is clear that there exists a point c′ ∈ [0, 1] such that

U
(M)
n (f)(x) is nonincreasing on [0, c′] and nondecreasing on [c′, 1], which by the

result in [5] implies that U
(M)
n (f)(x) is quasiconvex on [0, 1] and proves the corollary.

�

It is of interest to exactly calculate U
(M)
n (f) for f(x) = e0(x) = 1 and for

f(x) = e1(x) = x. In this sense we can state the following.

Lemma 5.7. For all x ∈ [0, 1] and n ∈ N,n ≥ 2 we have U
(M)
n (e0)(x) = 1 and

U (M)
n (e1)(x) = x · bn+1,0(x)

bn,0(x)
=

x

1 + x
, if x ∈ [0, 1/n],

U (M)
n (e1)(x) = x · bn+1,1(x)

bn,0(x)
=

(n+ 1)x2

(1 + x)2
, if x ∈ [1/n, 1/(n− 1)],

U (M)
n (e1)(x) = x · bn+1,1(x)

bn,1(x)
=

x

1 + x
· n+ 1

n
, if x ∈ [1/(n− 1), 2/n],

U (M)
n (e1)(x) = x · bn+1,2(x)

bn,1(x)
=

x2

(1 + x)2
· (n+ 1)(n+ 2)

2n
, if x ∈ [2/n, 2/(n− 1)],

U (M)
n (e1)(x) = x · bn+1,2(x)

bn,2(x)
=

x

1 + x
· n+ 2

n
, if x ∈ [2/(n− 1), 3/n],

U (M)
n (e1)(x) = x · bn+1,3(x)

bn,2(x)
=

x2

(1 + x)2
· (n+ 2)(n+ 3)

3n
, if x ∈ [3/n, 3/(n− 1)],

and so on, in general we have

U (M)
n (e1)(x) =

x

1 + x
· n+ j

n
, if x ∈ [j/(n− 1), (j + 1)/n],

U (M)
n (e1)(x) =

x2

(1 + x)2
· (n+ j)(n+ j + 1)

n(j + 1)
, if x ∈ [(j + 1)/n, (j + 1)/(n− 1)],

for j ∈ {0, 1, . . . , n− 2}.
Proof. The formula U

(M)
n (e0)(x) = 1 is immediate by the definition of U

(M)
n (f)(x).

To find the formula for U
(M)
n (e1)(x) we will use the explicit formula in Lemma

3.4 which says that
n∨

k=0

bn,k(x) = bn,j(x), for all x ∈
[

j

n− 1
,
j + 1

n− 1

]
, j = 0, 1, . . . , n− 2,

where bn,k(x) =
(
n+k−1

k

)
xk/(1 + x)n+k.
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Since

max
k=0,...,n

{
bn,k(x)

k

n

}
= max

k=1,...,n

{
bn,k(x)

k

n

}
= x · max

k=0,...,n−1
{bn+1,k(x)},

and because from the proof of Lemma 3.4 we have bn,n(x) ≤ bn,n−1(x) ≤ bn,n−2(x)
for all x ∈ [0, 1] we obtain

U (M)
n (e1)(x) = x ·

n+1∨
k=0

bn+1,k(x)

n∨
k=0

bn,k(x)

Now the conclusion of the lemma is immediate by applying Lemma 3.4 to both

expressions
n+1∨
k=0

bn+1,k(x),
n∨

k=0

bn,k(x), taking into account that we get the following

division of the interval [0, 1]

0 <
1

n
≤ 1

n− 1
≤ 2

n
≤ 2

n− 1
≤ 3

n
≤ 3

n− 1
≤ 4

n
≤ 4

n− 1
≤ . . .

�

Remarks. 1) The convexity of f on [0, 1] is not preserved by U
(M)
n (f) as can

be seen from Lemma 5.7. Indeed, while f(x) = e1(x) = x is obviously convex on

[0, 1], it is easy to see that U
(M)
n (e1) is not convex on [0, 1].

2) Also, if f is supposed to be starshaped on [0, 1] (that is f(λx) ≤ λf(x) for all

x, λ ∈ [0, 1]), then again by Lemma 5.7 it follows that U
(M)
n (f) for f(x) = e1(x) is

not starshaped on [0, 1], although e1(x) obviously is starshaped on [0, 1].
Despite of the absence of the preservation of the convexity, we can prove the

interesting property that for any arbitrary nonincreasing function f , the max-

product Baskakov operator U
(M)
n (f) is piecewise convex on [0, 1]. We present the

following.
Theorem 5.8. Let n ∈ N be with n ≥ 2. For any nonincreasing function

f : [0, 1] → [0,∞), U
(M)
n (f) is convex on any interval of the form [ j

n−1 ,
j+1
n−1 ],

j = 0, 1, . . . , n− 2.
Proof. For any k ∈ {0, 1, . . . , n} and j ∈ {0, 1, . . . , n − 2} let us consider the

functions fk,n,j : [
j

n−1 ,
j+1
n−1 ] → R,

fk,n,j(x) = mk,n,j(x)f(
k

n
) =

(
n+k−1

k

)
(
n+j−1

j

) ·
(

x

1 + x

)k−j

f(
k

n
).

From the proof of Corollary 5.4 we have

U (M)
n (f)(x) =

j∨

k≥0

fk,n,j(x),

for any j ∈ {0, 1, . . . , n− 2} and x ∈ [ j
n−1 ,

j+1
n−1 ].
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We will prove that for any fixed j and k ≤ j, each function fk,n,j(x) is convex on

[ j
n−1 ,

j+1
n−1 ], which will imply that U

(M)
n (f) can be written as a maximum of some

convex functions on [ j
n−1 ,

j+1
n−1 ].

Since f ≥ 0 it suffices to prove that the functions gk,j : [0, 1] → R+, gk,j(x) =(
x

1+x

)k−j

are convex on [ j
n−1 ,

j+1
n−1 ].

For k = j, gj,j is constant so is convex.

For k = j−1 it follows gj−1,j(x) =
x+1
x for any x ∈ [ j

n−1 ,
j+1
n−1 ]. Then g′′j−1,j(x) =

2
x3 > 0 for any x ∈ [ j

n−1 ,
j+1
n−1 ].

If k ≤ j− 2 then g′′k,j(x) = (k− j)
(

x
1+x

)k−j−2

· 1
(x+1)4 · (k− j − 1− 2x) > 0, for

any x ∈ [ j
n−1 ,

j+1
n−1 ].

Since all the functions gk,j are convex on [ j
n−1 ,

j+1
n−1 ], we get that U

(M)
n (f) is

convex on [ j
n−1 ,

j+1
n−1 ] as maximum of these functions, which proves the theorem.

�
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