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SOME SLATER TYPE INEQUALITIES FOR CONVEX

FUNCTIONS OF SELFADJOINT OPERATORS IN HILBERT

SPACES

S. S. DRAGOMIR

Abstract. Some inequalities of the Slater type for convex functions of selfad-
joint operators in Hilbert spaces H under suitable assumptions for the involved
operators are given. Amongst others, it is shown that if A is a positive definite
operator with Sp (A) ⊂ [m,M ] and f is convex and has a continuous deriv-
ative on [m,M ] , then for any x ∈ H with ‖x‖ = 1 the following inequality
holds:

0 ≤ f

(

〈Af ′ (A)x, x〉

〈f ′ (A)x, x〉

)

− 〈f (A)x, x〉

≤
1

4
·

√

Mf ′ (M)

mf ′ (m)
(M −m)

(

f ′ (M)− f ′ (m)
)

.

1. Introduction

Suppose that I is an interval of real numbers with interior I̊ and f : I → R is
a convex function on I. Then f is continuous on I̊ and has finite left and right
derivatives at each point of I̊. Moreover, if x, y ∈̊I and x < y, then f ′

− (x) ≤ f ′
+ (x) ≤

f ′
− (y) ≤ f ′

+ (y) which shows that both f ′
− and f ′

+ are nondecreasing function on I̊.
It is also known that a convex function must be differentiable except for at most
countably many points.

For a convex function f : I → R, the subdifferential of f denoted by ∂f is the

set of all functions ϕ : I → [−∞,∞] such that ϕ
(

I̊
)

⊂ R and

f (x) ≥ f (a) + (x− a)ϕ (a) for any x, a ∈ I.

It is also well known that if f is convex on I, then ∂f is nonempty, f ′
−, f

′
+ ∈ ∂f

and if ϕ ∈ ∂f , then

f ′
− (x) ≤ ϕ (x) ≤ f ′

+ (x) for any x ∈ I̊.

In particular, ϕ is a nondecreasing function.
If f is differentiable and convex on I̊, then ∂f = {f ′} .
The following result is well known in the literature as the Slater inequality:
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110 S. S. DRAGOMIR

Theorem 1 (Slater, 1981, [14]). If f : I → R is a nonincreasing (nondecreasing)
convex function, xi ∈ I, pi ≥ 0 with Pn :=

∑n
i=1 pi > 0 and

∑n
i=1 piϕ (xi) 6= 0,

where ϕ ∈ ∂f, then

1

Pn

n
∑

i=1

pif (xi) ≤ f

(∑n
i=1 pixiϕ (xi)
∑n

i=1 piϕ (xi)

)

. (1.1)

As pointed out in [2, p. 208], the monotonicity assumption for the derivative ϕ

can be replaced with the condition
∑n

i=1 pixiϕ (xi)
∑n

i=1 piϕ (xi)
∈ I, (1.2)

which is more general and can hold for suitable points in I and for not necessarily
monotonic functions.

2. An Operator Reverse for the Slater Inequality

Let A be a selfadjoint operator on a complex Hilbert space (H ; 〈., .〉) . The
Gelfand map establishes a ∗-isometrically isomorphism Φ between the set C (Sp (A))
of all continuous functions defined on the spectrum of A, denoted Sp (A) , an the
C∗-algebra C∗ (A) generated by A and the identity operator 1H on H as follows
(see for instance [8, p. 3]):

For any f, g ∈ C (Sp (A)) and any α, β ∈ C we have
(i) Φ (αf + βg) = αΦ (f) + βΦ (g) ;
(ii) Φ (fg) = Φ (f)Φ (g) and Φ

(

f̄
)

= Φ(f)
∗
;

(iii) ‖Φ (f)‖ = ‖f‖ := supt∈Sp(A) |f (t)| ;
(iv) Φ (f0) = 1H and Φ (f1) = A, where f0 (t) = 1 and f1 (t) = t, for t ∈ Sp (A) .
With this notation we define

f (A) := Φ (f) for all f ∈ C (Sp (A))

and we call it the continuous functional calculus for a selfadjoint operator A.
If A is a selfadjoint operator and f is a real valued continuous function on Sp (A),

then f (t) ≥ 0 for any t ∈ Sp (A) implies that f (A) ≥ 0, i.e. f (A) is a positive
operator on H. Moreover, if both f and g are real valued functions on Sp (A) then
the following important property holds:

f (t) ≥ g (t) for any t ∈ Sp (A) implies that f (A) ≥ g (A) (P)

in the operator order of B (H) .
For a recent monograph devoted to various inequalities for functions of selfad-

joint operators, see [8] and the references therein. For other results, see [11], [12],
[13], [9] and [10].

The following result holds:

Theorem 2. Let I be an interval and f : I → R be a convex and differentiable
function on I̊ (the interior of I) whose derivative f ′ is continuous on I̊. If A is a
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SOME SLATER TYPE INEQUALITIES 111

selfadjoint operator on the Hilbert space H with Sp (A) ⊆ [m,M ] ⊂̊I and f ′ (A) is
a positive definite operator on H then

0 ≤ f

( 〈Af ′ (A)x, x〉
〈f ′ (A)x, x〉

)

− 〈f (A)x, x〉

≤ B (f ′, A;x) [〈Af ′ (A) x, x〉 − 〈Ax, x〉 〈f ′ (A)x, x〉] , (2.1)

where

B (f ′, A;x) :=
1

〈f ′ (A) x, x〉 .f
′

( 〈Af ′ (A)x, x〉
〈f ′ (A)x, x〉

)

for any x ∈ H with ‖x‖ = 1.

Proof. Since f is convex and differentiable on I̊, then we have that

f ′ (s) · (t− s) ≤ f (t)− f (s) ≤ f ′ (t) · (t− s) (2.2)

for any t, s ∈ [m,M ] .
Now, if we fix t ∈ [m,M ] and apply the property (P) for the operator A, then

we have

〈f ′ (A) · (t · 1H −A) x, x〉 ≤ 〈[f (t) · 1H − f (A)]x, x〉
≤ 〈f ′ (t) · (t · 1H −A)x, x〉 (2.3)

for any t ∈ [m,M ] and any x ∈ H with ‖x‖ = 1.
The inequality (2.3) is equivalent with

t 〈f ′ (A) x, x〉 − 〈f ′ (A)Ax, x〉 ≤ f (t)− 〈f (A) x, x〉 ≤ f ′ (t) t− f ′ (t) 〈Ax, x〉 (2.4)

for any t ∈ [m,M ] any x ∈ H with ‖x‖ = 1.
Now, since A is selfadjoint with m1H ≤ A ≤ M1H and f ′ (A) is positive def-

inite, then mf ′ (A) ≤ Af ′ (A) ≤ Mf ′ (A) , i.e., m 〈f ′ (A)x, x〉 ≤ 〈Af ′ (A)x, x〉 ≤
M 〈f ′ (A) x, x〉 for any x ∈ H with ‖x‖ = 1, which shows that

t0 :=
〈Af ′ (A) x, x〉
〈f ′ (A)x, x〉 ∈ [m,M ] for any x ∈ H with ‖x‖ = 1.

Finally, if we put t = t0 in the equation (2.4), then we get the desired result
(2.1). �

Remark 1. It is important to observe that, the condition that f ′ (A) is a positive
definite operator on H can be replaced with the more general assumption that

〈Af ′ (A)x, x〉
〈f ′ (A)x, x〉 ∈ I̊ for any x ∈ H with ‖x‖ = 1, (2.5)

which may be easily verified for particular convex functions f.

We also notice that the first inequality in (2.1) is the operator version of Slater
inequality (1.1).
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112 S. S. DRAGOMIR

Remark 2. Now, if the function is concave on I̊ and the condition (2.5) holds,
then we have the inequality

0 ≤ 〈f (A)x, x〉 − f

( 〈Af ′ (A)x, x〉
〈f ′ (A)x, x〉

)

≤ B (f ′, A;x) [〈Ax, x〉 〈f ′ (A) x, x〉 − 〈Af ′ (A)x, x〉] , (2.6)

for any x ∈ H with ‖x‖ = 1.

The following examples are of interest:

Example 1. If A is a positive definite operator on H, then

(0 ≤) 〈lnAx, x〉 − ln
(

〈

A−1x, x
〉−1
)

≤ 〈Ax, x〉 ·
〈

A−1x, x
〉

− 1, (2.7)

for any x ∈ H with ‖x‖ = 1.

Indeed, we observe that if we consider the concave function f : (0,∞) → R,
f (t) = ln t, then

〈Af ′ (A)x, x〉
〈f ′ (A)x, x〉 =

1

〈A−1x, x〉 ∈ (0,∞) , for any x ∈ H with ‖x‖ = 1

and by the inequality (2.6) we deduce the desired result (2.7).
The following example concerning powers of operators is of interest as well:

Example 2. If A is a positive definite operator on H, then for any x ∈ H with
‖x‖ = 1 we have

0 ≤ 〈Apx, x〉p−1 −
〈

Ap−1x, x
〉p

≤ p 〈Apx, x〉p−2 [〈Apx, x〉 − 〈Ax, x〉
〈

Ap−1x, x
〉]

(2.8)

for p ≥ 1,

0 ≤
〈

Ap−1x, x
〉p − 〈Apx, x〉p−1

≤ p 〈Apx, x〉p−2 [〈Ax, x〉
〈

Ap−1x, x
〉

− 〈Apx, x〉
]

(2.9)

for 0 < p < 1, and

0 ≤ 〈Apx, x〉p−1 −
〈

Ap−1x, x
〉p

≤ (−p) 〈Apx, x〉p−2 [〈Ax, x〉
〈

Ap−1x, x
〉

− 〈Apx, x〉
]

(2.10)

for p < 0.

The proof follows from the inequalities (2.1) and (2.6) for the convex (concave)
function f (t) = tp, p ∈ (−∞, 0) ∪ [1,∞) (p ∈ (0, 1)) by performing the required
calculation. The details are omitted.
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SOME SLATER TYPE INEQUALITIES 113

3. Some Lemmas of Interest

In order to provide other reverses for the operator version of Slater’s inequality,
we need the following lemmas that are of interest in their own right:

Lemma 1. Let A be a selfadjoint operator on the Hilbert space (H ; 〈., .〉) and
assume that Sp (A) ⊆ [m,M ] for some scalars m < M. If f and g are continuous
on [m,M ] and γ := mint∈[m,M ] f (t) and Γ := maxt∈[m,M ] f (t) then

|〈f (A) g (A) y, y〉 − 〈f (A) y, y〉 · 〈g (A)x, x〉

−γ + Γ

2
[〈g (A) y, y〉 − 〈g (A)x, x〉]

∣

∣

∣

∣

≤ 1

2
· (Γ− γ)

[

‖g (A) y‖2 + 〈g (A)x, x〉2 − 2 〈g (A)x, x〉 〈g (A) y, y〉
]1/2

(3.1)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.

Proof. First of all, observe that, for each λ ∈ R and x, y ∈ H, ‖x‖ = ‖y‖ = 1 we
have the identity

〈(f (A)− λ · 1H) (g (A)− 〈g (A)x, x〉 · 1H) y, y〉
= 〈f (A) g (A) y, y〉 − λ · [〈g (A) y, y〉 − 〈g (A)x, x〉]− 〈g (A)x, x〉 〈f (A) y, y〉 .

(3.2)

Taking the modulus in (3.2) we have

|〈f (A) g (A) y, y〉 − λ · [〈g (A) y, y〉 − 〈g (A)x, x〉] (3.3)

−〈g (A)x, x〉 〈f (A) y, y〉|
= |〈(g (A)− 〈g (A)x, x〉 · 1H) y, (f (A)− λ · 1H) y〉|
≤ ‖g (A) y − 〈g (A)x, x〉 y‖ ‖f (A) y − λy‖

=
[

‖g (A) y‖2 + 〈g (A)x, x〉2 − 2 〈g (A) x, x〉 〈g (A) y, y〉
]1/2

× ‖f (A) y − λy‖

≤
[

‖g (A) y‖2 + 〈g (A)x, x〉2 − 2 〈g (A) x, x〉 〈g (A) y, y〉
]1/2

× ‖f (A)− λ · 1H‖
for any x, y ∈ H, ‖x‖ = ‖y‖ = 1.

Now, since γ = mint∈[m,M ] f (t) and Γ = maxt∈[m,M ] f (t) , then by the property
(P) we have that γ ≤ 〈f (A) y, y〉 ≤ Γ for each y ∈ H with ‖y‖ = 1 which is clearly
equivalent with

∣

∣

∣

∣

〈f (A) y, y〉 − γ + Γ

2
‖y‖2

∣

∣

∣

∣

≤ 1

2
(Γ− γ)

or with
∣

∣

∣

∣

〈(

f (A)− γ + Γ

2
1H

)

y, y

〉
∣

∣

∣

∣

≤ 1

2
(Γ− γ)

for each y ∈ H with ‖y‖ = 1.
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114 S. S. DRAGOMIR

Taking the supremum in this inequality we get
∥

∥

∥

∥

f (A)− γ + Γ

2
· 1H

∥

∥

∥

∥

≤ 1

2
(Γ− γ) ,

which together with the inequality (3.3) applied for λ = γ+Γ
2 produces the desired

result (3.1). �

Corollary 1. With the assumptions in Lemma 1 we have

|〈f (A) g (A) x, x〉 − 〈f (A) x, x〉 · 〈g (A)x, x〉|

≤ 1

2
· (Γ− γ)

[

‖g (A) x‖2 − 〈g (A) x, x〉2
]1/2

(

≤ 1

4
(Γ− γ) (∆− δ)

)

(3.4)

for each x ∈ H with ‖x‖ = 1, where δ := mint∈[m,M ] g (t) and ∆ := maxt∈[m,M ] g (t) .

Proof. The first inequality follows from (3.1) by putting y = x.

Now, if we write the first inequality in (3.1) for f = g we get

0 ≤ ‖g (A)x‖2 − 〈g (A)x, x〉2 =
〈

g2 (A) x, x
〉

− 〈g (A) x, x〉2

≤ 1

2
(∆− δ)

[

‖g (A) x‖2 − 〈g (A)x, x〉2
]1/2

which implies that
[

‖g (A)x‖2 − 〈g (A)x, x〉2
]1/2

≤ 1

2
(∆− δ)

for each x ∈ H with ‖x‖ = 1.
This together with the first part of (3.1) proves the desired bound (3.4). �

The following lemmas, that are of interest in their own right, collect some Grüss
type inequalities for vectors in inner product spaces obtained earlier by the author:

Lemma 2. Let (H, 〈·, ·〉) be an inner product space over the real or complex number
field K, u, v, e ∈ H, ‖e‖ = 1, and α, β, γ, δ ∈ K such that

Re 〈βe− u, u− αe〉 ≥ 0,Re 〈δe− v, v − γe〉 ≥ 0 (3.5)

or, equivalently,
∥

∥

∥

∥

u− α+ β

2
e

∥

∥

∥

∥

≤ 1

2
|β − α| ,

∥

∥

∥

∥

v − γ + δ

2
e

∥

∥

∥

∥

≤ 1

2
|δ − γ| . (3.6)

Then

|〈u, v〉 − 〈u, e〉 〈e, v〉|

≤ 1

4
· |β − α| |δ − γ| −











[Re 〈βe− u, u− αe〉Re 〈δe− v, v − γe〉]
1

2 ,

∣

∣

∣
〈u, e〉 − α+β

2

∣

∣

∣

∣

∣

∣
〈v, e〉 − γ+δ

2

∣

∣

∣
.

(3.7)
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SOME SLATER TYPE INEQUALITIES 115

The first inequality has been obtained in [3] (see also [7, p. 44]) while the second
result was established in [4] (see also [7, p. 90]). They provide refinements of the
earlier result from [1] where only the first part of the bound, i.e., 1

4 |β − α| |δ − γ|
has been given. Notice that, as pointed out in [4], the upper bounds for the Grüss
functional incorporated in (3.7) cannot be compared in general, meaning that one
is better than the other depending on appropriate choices of the vectors and scalars
involved.

Another result of this type is the following one:

Lemma 3. With the assumptions in Lemma 2 and if Re (βα) > 0,Re (δγ) > 0
then

|〈u, v〉 − 〈u, e〉 〈e, v〉|

≤



























1
4 · |β−α||δ−γ|

[Re(βα)Re(δγ)]
1

2

|〈u, e〉 〈e, v〉| ,

[(

|α+ β| − 2 [Re (βα)]
1

2

)(

|δ + γ| − 2 [Re (δγ)]
1

2

)]
1

2

· [|〈u, e〉 〈e, v〉|]
1

2 .

(3.8)

The first inequality has been established in [5] (see [7, p. 62]) while the sec-
ond one can be obtained in a canonical manner from the reverse of the Schwarz
inequality given in [6]. The details are omitted.

4. Further Reverses for the Slater’s Inequality

The following results that provide perhaps more useful upper bounds for the
nonnegative quantity

f

( 〈Af ′ (A) x, x〉
〈f ′ (A) x, x〉

)

− 〈f (A) x, x〉 for x ∈ H with ‖x‖ = 1,

can be stated:

Theorem 3. Let I be an interval and f : I → R be a convex and differentiable
function on I̊ (the interior of I) whose derivative f ′ is continuous on I̊. Assume

that A is a selfadjoint operator on the Hilbert space H with Sp (A) ⊆ [m,M ] ⊂̊I
and f ′ (A) is a positive definite operator on H. Then we have the inequalities

(0 ≤) f

( 〈Af ′ (A) x, x〉
〈f ′ (A)x, x〉

)

− 〈f (A) x, x〉

≤ B (f ′, A;x)×



















1
2 · (M −m)

[

‖f ′ (A)x‖2 − 〈f ′ (A)x, x〉2
]1/2

1
2 · (f ′ (M)− f ′ (m))

[

‖Ax‖2 − 〈Ax, x〉2
]1/2

≤ 1

4
(M −m) (f ′ (M)− f ′ (m))B (f ′, A;x) (4.1)
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116 S. S. DRAGOMIR

and

(0 ≤) f

( 〈Af ′ (A)x, x〉
〈f ′ (A)x, x〉

)

− 〈f (A)x, x〉

≤ B (f ′, A;x)×
[

1

4
(M −m) (f ′ (M)− f ′ (m))

−











[〈Mx−Ax,Ax −mx〉 〈f ′ (M)x− f ′ (A)x, f ′ (A)x− f ′ (m)x〉]
1

2 ,

∣

∣〈Ax, x〉 − M+m
2

∣

∣

∣

∣

∣
〈f ′ (A)x, x〉 − f ′(M)+f ′(m)

2

∣

∣

∣







≤ 1

4
(M −m) (f ′ (M)− f ′ (m))B (f ′, A;x) (4.2)

for any x ∈ H with ‖x‖ = 1, respectively.
Moreover, if A is a positive definite operator, then

(0 ≤) f

( 〈Af ′ (A)x, x〉
〈f ′ (A)x, x〉

)

− 〈f (A)x, x〉

≤ B (f ′, A;x)×















1
4 · (M−m)(f ′(M)−f ′(m))√

Mmf ′(M)f ′(m)
〈Ax, x〉 〈f ′ (A) x, x〉 ,

(√
M −√

m
)(

√

f ′ (M)−
√

f ′ (m)
)

[〈Ax, x〉 〈f ′ (A)x, x〉]
1

2 ,

≤ B (f ′, A;x)×















1
4 ·
√

Mf ′(M)
mf ′(m) (M −m) (f ′ (M)− f ′ (m)) ,

(√
M −√

m
)(

√

f ′ (M)−
√

f ′ (m)
)

√

Mf ′ (M),

(4.3)

for any x ∈ H with ‖x‖ = 1.

Proof. By Corollary 1 we can state that

〈Af ′ (A)x, x〉 − 〈Ax, x〉 · 〈f ′ (A)x, x〉

≤ 1

2
· (M −m)

[

‖f ′ (A) x‖2 − 〈f ′ (A)x, x〉2
]1/2

≤ 1

4
(M −m) (f ′ (M)− f ′ (m)) (4.4)

and

〈Af ′ (A)x, x〉 − 〈Ax, x〉 · 〈f ′ (A)x, x〉

≤ 1

2
· (f ′ (M)− f ′ (m))

[

‖Ax‖2 − 〈Ax, x〉2
]1/2

≤ 1

4
(M −m) (f ′ (M)− f ′ (m)) , (4.5)

for each x ∈ H with ‖x‖ = 1, which together with (2.1) provide the desired result
(4.1).
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On making use of the Lemma 2, we can state that

〈Af ′ (A)x, x〉 − 〈Ax, x〉 · 〈f ′ (A)x, x〉 ≤ 1

4
(M −m) (f ′ (M)− f ′ (m))

−











[〈Mx−Ax,Ax −mx〉 〈f ′ (M)x− f ′ (A) x, f ′ (A) x− f ′ (m)x〉]
1

2 ,

∣

∣〈Ax, x〉 − M+m
2

∣

∣

∣

∣

∣
〈f ′ (A)x, x〉 − f ′(M)+f ′(m)

2

∣

∣

∣
,

for each x ∈ H with ‖x‖ = 1, which together with (2.1) provide the desired result
(4.2).

Finally, on making use of Lemma 3 we can state that

〈Af ′ (A)x, x〉 − 〈Ax, x〉 · 〈f ′ (A)x, x〉

≤















1
4 · (M−m)(f ′(M)−f ′(m))√

Mmf ′(M)f ′(m)
〈Ax, x〉 〈f ′ (A)x, x〉 ,

(√
M −√

m
)(

√

f ′ (M)−
√

f ′ (m)
)

[〈Ax, x〉 〈f ′ (A) x, x〉]
1

2 ,

(4.6)

for each x ∈ H with ‖x‖ = 1, which together with (2.1) provide the desired result
(4.3). �

Remark 3. If A is a positive definite operator with Sp (A) ⊂ [m,M ], then obvi-
ously

B (f ′, A;x) ≤ f ′ (M)

f ′ (m)

and from (4.2) we have

(0 ≤) f

( 〈Af ′ (A) x, x〉
〈f ′ (A)x, x〉

)

− 〈f (A) x, x〉

≤ 1

4
· f

′ (M)

f ′ (m)
(M −m) (f ′ (M)− f ′ (m)) (4.7)

while from (4.3) we have

(0 ≤) f

( 〈Af ′ (A) x, x〉
〈f ′ (A)x, x〉

)

− 〈f (A) x, x〉

≤















1
4 ·
√

Mf ′(M)
mf ′(m) (M −m) (f ′ (M)− f ′ (m)) ,

(√
M −√

m
)(

√

f ′ (M)−
√

f ′ (m)
)

f ′(M)
f ′(m)

√

Mf ′ (M).

(4.8)
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In order to compare the upper bound for the difference f

(

〈Af ′(A)x,x〉
〈f ′(A)x,x〉

)

−〈f (A)x, x〉
provided by (4.7) with the first bound from (4.8), consider the quantity

K (f ′,M.m) :=

f ′(M)
f ′(m)

√

Mf ′(M)
mf ′(m)

=

√

√

√

√

f ′(M)
f ′(m)

M
m

.

For the convex function f (t) = tp, p ≥ 1 we have

K (f ′,M.m) =

(

M

m

)

p−2

2

which shows that for p ≥ 2 the bound from (4.7) is not as good as the first bound
from (4.8). The conclusion is the other way around if 1 ≤ p < 2.

Similar comments can be made for the other bounds. The details are omitted.

Problem 1. It is an open problem for the author whether or not, for a given
convex function f and a given positive definite operator A with Sp(A) ⊂ [m,M ]
there exists a vector x ∈ H with ‖x‖ = 1 realizing the equality case in either of the
above inequalities (4.7) and (4.8).

Remark 4. We observe, from the first inequality in (4.6), that

(1 ≤)
〈Af ′ (A)x, x〉

〈Ax, x〉 〈f ′ (A)x, x〉 ≤ 1

4
· (M −m) (f ′ (M)− f ′ (m))

√

Mmf ′ (M) f ′ (m)
+ 1

which implies that

f ′

( 〈Af ′ (A)x, x〉
〈f ′ (A)x, x〉

)

≤ f ′

([

1

4
· (M −m) (f ′ (M)− f ′ (m))

√

Mmf ′ (M) f ′ (m)
+ 1

]

〈Ax, x〉
)

,

for each x ∈ H with ‖x‖ = 1, since f ′ is monotonic nondecreasing and A is positive
definite.

Now, the first inequality in (4.3) implies the following result

(0 ≤) f

( 〈Af ′ (A)x, x〉
〈f ′ (A)x, x〉

)

− 〈f (A)x, x〉

≤ 1

4
· (M −m) (f ′ (M)− f ′ (m))

√

Mmf ′ (M) f ′ (m)

× f ′

([

1

4
· (M −m) (f ′ (M)− f ′ (m))

√

Mmf ′ (M) f ′ (m)
+ 1

]

〈Ax, x〉
)

〈Ax, x〉

≤ 1

4
· (M −m) (f ′ (M)− f ′ (m))

√

Mmf ′ (M) f ′ (m)
f ′

([

1

4
· (M −m) (f ′ (M)− f ′ (m))

√

Mmf ′ (M) f ′ (m)
+ 1

]

M

)

M

(4.9)

for each x ∈ H with ‖x‖ = 1.
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From the second inequality in (4.3) we also have

(0 ≤) f

( 〈Af ′ (A) x, x〉
〈f ′ (A)x, x〉

)

− 〈f (A) x, x〉

≤
(√

M −
√
m
)(

√

f ′ (M)−
√

f ′ (m)
)

× f ′

([

1

4
· (M −m) (f ′ (M)− f ′ (m))

√

Mmf ′ (M) f ′ (m)
+ 1

]

〈Ax, x〉
)

[ 〈Ax, x〉
〈f ′ (A) x, x〉

]
1

2

≤
(√

M −
√
m
)(

√

f ′ (M)−
√

f ′ (m)
)

× f ′

([

1

4
· (M −m) (f ′ (M)− f ′ (m))

√

Mmf ′ (M) f ′ (m)
+ 1

]

M

)
√

M

f ′ (m)
(4.10)

for each x ∈ H with ‖x‖ = 1.

Remark 5. If the condition that f ′ (A) is a positive definite operator on H from the
Theorem 3 is replaced by the condition (2.5), then the inequalities (4.1) and (4.2)
will still hold. Similar inequalities can be stated for concave functions. However,
the details are not provided here.
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