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PROPERTY (w) AND QUASI-CLASS (A,k) OPERATORS

M. H. M. RASHID

ABSTRACT. In this paper, we prove the following assertions: (i) If 7" is of quasi-
class (A, k), then T is polaroid and reguloid; (ii) If 7" or T* is an algebraically
of quasi-class (A, k) operator, then Weyls theorem holds for f(T') for every
f € Hol(a(T)); (iii) If T* is an algebraically of quasi-class (A, k) operator,
then a-Weyls theorem holds for f(7T) for every f € Hol(o(T)); (iv) If T* is
algebraically of quasi-class (A, k) then property (w) holds for T.

1. INTRODUCTION

Throughout this paper let B(H), F(H), K(#), denote, respectively, the algebra
of bounded linear operators, the ideal of finite rank operators and the ideal of
compact operators acting on an infinite dimensional separable Hilbert space H.
If T € B(H) we shall write ker(T') and R(T) (or ran(T)) for the null space and
range of T, respectively. Also, let a(T) := dimker(T), 5(T) := codim R(T"), and
let 0(T),04(T),0p(T) denote the spectrum, approximate point spectrum and point
spectrum of T', respectively. An operator T' € B(H) is called Fredholm if it has
closed range, finite dimensional null space, and its range has finite codimension.
The index of a Fredholm operator is given by

i(T) := a(T) — B(T).
T is called Weyl if it is Fredholm of index 0, and Browder if it is Fredholm “of
finite ascent and descent”.

Recall that the ascent, a(T'), of an operator T is the smallest non-negative
integer p such that ker(T?) = ker(TP*!). If such integer does not exist we put
a(T) = oo. Analogously, the descent, d(T), of an operator T is the smallest non-
negative integer ¢ such that R(79) = R(T9"!) and if such integer does not exist
we put d(T') = oo. The essential spectrum o (7T'), the Weyl spectrum o,,(7) and
the Browder spectrum o3,(T") of T are defined by

op(T)={A € C:T — \is not Fredholm}
ow(T) ={\ € C:T — \is not Weyl}

and
op(T) = {X € C: T — X\is not Browder}
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respectively. Evidently
or(T) Cow(T) Cop(T) Cop(T)Uacco(T)

where we write accK for the accumulation points of K C C.

Following [6], we say that Weyl’s theorem holds for T if o(T) \ 0, (T) = Eo(T),
where Ey(T) is the set of all eigenvalues A of finite multiplicity isolated in o (7).
And Browder’s theorem holds for T if o(T') \ 0, (T") = mo(T), where mo(T) is the
set of all poles of T' of finite rank.

Let SF; (M) be the class of all upper semi-Fredholm operators, SF (H) be the
class of all T € SF} (H) with i(T) < 0, and for any T' € B(H) let

O'SF;(T) ={ANeC:T-X¢SF_(H)}.

Let Ef be the set of all eigenvalues of 7T of finite multiplicity which are iso-
lated in o,(T). According to [19], we say that T satisfies a-Weyl’s theorem if
Tsp: (T) = 04(T) \ E§(T). It follows from [19, Corollary 2.5] a-Weyl’s theorem

implies Weyl’s theorem.

Let Hol(o(T)) be the space of all functions that analytic in an open neighbor-
hoods of o(T'). Following [9] we say that T' € B(#) has the single-valued extension
property (SVEP) at point A € C if for every open neighborhood Uy of A, the only
analytic function f : Uy — H which satisfies the equation (T" — p)f(n) = 0 is
the constant function f = 0. It is well-known that 7' € B(?) has SVEP at every
point of the resolvent p(T') := C\ o(T"). Moreover, from the identity theorem for
analytic functions, it easily follows that T" € B(#) has SVEP at every point of
the boundary do(T') of the spectrum. In particular, 7' has SVEP at every isolated
point of o(T). In [17, Proposition 1.8], Laursen proved that if 7" is of finite ascent,
then T" has SVEP.

2. PROPERTIES OF QUASI-CLASS (A, k) OPERATORS

Definition 2.1. [21] An operator T is said to be a quasi-class (A, k) (and we
write T € O(A, k) ) if

T (|T% — |T>)T* >0, forkeN.

If k =0, T is said to be class A (in symbols, T € A), where T is the identity
operator and if k = 1, T is said to be quasi-class A (and we write T' € Q.A).

T. Furuta and T. Yamazaki [10], L.H. Jeon and I. H. Kim [14] and K. Tana-
hashi et al. [21] introduced class A, quasi-class A and quasi-class (A, k) operators,
respectively. It was known that these operators share many interesting properties
with hyponormal operators (see [7, 10, 13]).

In this section we prove some properties of quasi-class (A, k) operators. We need
the following lemmas.

Lemma 2.2. [21, Theorem 1.] Let T € A. Then the following assertions hold:
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(1) H|T2| - |T|2|| < HTM —T*MH < %measa(T), where T = U|T| is the
polar decomposition of T and Ty 1 = |T|U|T|. Moreover, if measo(T) = 0,
then T is normal.

(2) The operator T' has Bishop’s property (3).

(3) The restriction T'|pr to an invariant subspace M of T is also of class A.

Lemma 2.3. [21] Let T € QA. Assume that R(T*) is not dense, and decompose

T = < I T >, on H=R(TF & ker(T*).
0 T3

Then Ty = T|W’ the restriction of T to R(T*) is class A, T = 0. Furthermore,
o(T) =o(Ty)U{0}.
Lemma 2.4. (Hansen inequality, [12]) If T, S € B(H) satisfy T > 0 and
IIS]l < 1, then
(S*TS*)* > S*T*S
for all A € [0, 1].

Hoélder-McCarthy Inequality. Let T be a positive operator. Then the following
inequalities hold for all x € H :

(i) (Trz,2) < (Tx,z)" |z~ for 0 <r < 1.

(i) (TT2,z) > (Tz, )" ||z)**~) for r > 1.

Theorem 2.5. Let T € Q(A, k) for positive integer k. Then the following asser-
tions hold.

(i) HT"HwH2 < |72z || |77 for all unit vector x € H and all positive
integer n > k.

(i) || 7| < (|I7™)" r(T™) for all positive integer n > k, where r(T™) de-
notes the spectral radius of T™.

Proof. (i) Tt is obvious that if T € Q(A, k) then its Q(A, k + 1). We may assume
that £ = n. Since
(TF[TPT 2,2 ) = (T, T )

= [

Y

and

(™

T2|)Tkx,x> - <(T2*T2)%Tkx,Tkx>
< <Tk+2m, Tk+2m>% HTka (by Holder-McCarthy Inequality)
= [T 7=

But T is quasi-class (A, k). Then

2
|7 al|” < (172 |7
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(ii) We may assume that k = n, hence we prove
I < i ).

If T" = 0 for some n > k, then T* = 0 and in this case r(T*) = 0. Hence (2) is
obvious. Hence we may assume 7" # 0 for all n > k. Then
e P AR N e I
(et I (Al N (e | I (A

hold by part (1). Hence, we have

[T ki T2 |75 | |
)™ = e S e X e
Thus
[Ekaal PR
IT*] I iadls

Now, letting m — oo we have
([ (e )
O

Lemma 2.6. [21] Let T € Q(A,k) and o(T) = {A\}. Then T = X if A # 0, and
(T =Nl =04f A=0.

Lemma 2.7. Let T € Q(A, k). Then the restriction T|pyr of quasi-class (A, k) T
on H to an invariant subspace M of T is also Q(A, k).

Proof. Let P = é 8 ) be the orthogonal projection of H onto M. Put Ty =
T|p. Then TP = PTP and Ty = (PTP)|n. Since T is a Q(A, k), we have

PTF|T?|T*P > PT*
Since PT*P = T*P and PT¥ = PT* P, we have
PT¥ |T?|T*P = PT* P|T? PT*P
= PTY P(T*T*TT)? PT*P
< PT¥ (PT*T*TTP):T"*P  (By Lemma 2.4)

_ ([ T¥TRiTE o
- 0 0 )"

PTF|T)*T*P = PT* P|T|?PT*P

_( TFITPTE 0
0 0 )’

T]*T*P.

and
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we have
( Tt €12|le 8 > > PT¥'|T?|T*P > PT* |T|*T* P
| TF T PTE o
o 0 0 )"
This implies that T3 is Q(A, k) operator. O

Definition 2.8. [5] An operator T is said to have Bishop’s property (5) at A € C if
for every open neighborhood G of A, the function f,, € Hol(G) with (T —\) fn (1) —
0 uniformly on every compact subset of G implies that f,,(1z) — 0 uniformly on
every compact subset of G,where Hol(G) means the space of all analytic functions
on G. When T has Bishop’s property (5) at each A € C, simply say that T" has
property (f3).

Lemma 2.9. [15] Let G be open subset of complex plane C and let f,, € Hol(G)
be functions such that pf,(n) — 0 uniformly on every compact subset of G, then
fn(p) = 0 uniformly on every compact subset of G.

Lemma 2.10. Let T € Q(A, k). Then T has Bishop’s property (f3).

Proof. Let f,(z) be analytic on G. Let (T — z)f,(2) — 0 uniformly on each
compact subset of G. Then, using the representation of Lemma 2.3 we have

Ti—2 T far(2) \ _ (T =2)fm(2) + Tafaa(2) ) _

0 T3 -z fn2(2) (T — 2) fn2(2) '
Since T3 is nilpotent, T3 has Bishop’s property (5). Hence f2(z) — 0 uniformly
on every compact subset of G. Then (T} — 2z) fn1(z) — 0. Since T} is of class A, Ty

has Bishop’s property () by Lemma 2.2. hence f,1(z) — 0 uniformly on every
compact subset of G. Thus T has Bishop’s property (/). O

Lemma 2.11. [21, Lemma 13.] Let T € Q(Ak). If (T — XN)x =0 and X\ # 0,
then (T — \)*z = 0.

Lemma 2.12. Let T € Q(A,k). Then ker(T — Nkt = ker(T — \)**2 for all
A € C. Hence T — X has finite ascent for all A € C.

Proof. 1t follows from Theorem 2.5 that
|74 < 742 | || 74|

for all x € H, we have ker T+ = ker T**2. Let (T — \)k™22 = 0 for A # 0. Then
it follows from Lemma 2.11 that (7' — A\)*(T — A\)¥*'z = 0. Hence

(T = M| = (T = A" (T = M a, (T = NFa) = 0.
So the proof is achieved. O

Definition 2.13. ( [4]) An operator T € B(H) is called algebraically Q(A, k) if
there exists a nonconstant complex polynomial p such that p(T) is a Q(A, k).
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Lemma 2.14. Let T € B(H) be an algebraically Q(A, k) operator and o(T) =
{po}, then T — ug is nilpotent.

Proof. Assume p(T') is Q(A, k) for some nonconstant polynomial p(z). Since o(p(T))
p(a(T)) = {p(p0)} , the operator p(T') — p(uo) is nilpotent by Lemma 2.6. Let

k1

p(2) — p(po) = a(z — o)™ (z — pa)* -+ (2 — )™,

where p; # ps for j # s. Then

0= {p(T) = p(uo)}" = a™ (T — o)™ (T — pi2)™** -+ (T — pug) ™"
and hence (T — pg)™*0 = 0. O

An operator T € B(H) is said to be polaroid if isoc(T) C w(T), where m(T) is
the set of all poles of T'. In general, if T is polaroid then it is isoloid. However, the
converse is not true. Consider the following example. Let T' € £2(N) be defined by

T2 T3
T(xl,x2,~-~) = ( 573 7)
Then T is a compact quasinilpotent operator with «(7T) = 1, and so T is isoloid.
However, since T does not have finite ascent, T is not polaroid.
In [7] they showed that every Q.4 operator is isoloid. We can prove more:

Proposition 2.15. Let T be an algebraically Q(A, k) operator. Then T is polaroid.

Proof. Suppose T is an algebraically Q(A, k) operator. Then p(T) € Q(A, k) for
some nonconstant polynomial p. Let A € iso(c(T")). Using the spectral projection

P = = / (u— T)~ ' du, where D is a closed disk of center A\ which contains no

2im
other points of o(T'), we can represent T as the direct sum

T_(T(;l 792 ) and o(T1) ={\} and o(Th) =o(T)\{\}.

Since Tj is algebraically Q(A, k) operator and o(T1) = {A}. But o(Ty — AI) = {0}
it follows from Lemma 2.14 that 77 — A is nilpotent. Therefore T7 — A has finite
ascent and descent. On the other hand, since T, — AI is invertible, clearly it has
finite ascent and descent. Therefore T'— AI has finite ascent and descent. Therefore
A is a pole of the resolvent of T. Thus if A € iso(o(T")) implies A € w(T), and so
iso(o(T)) C w(T). Hence T is polaroid. O

An operator T' € B(H) is called a-isoloid if isoo,(T") C 0,(T). Clearly, if T' is a-
isoloid then it is isoloid. However, the converse is not true . Consider the following
example: Let T = U @ @, where U is the unilateral forward shift on ¢? and @ is
an injective quasinilpotent on £2, respectively. Then o(T) = {A € C: |A\| <1} and
0.(T) ={A € C: |\ =1} U{0}. Therefore T is isoloid but not a-isoloid.

Corollary 2.16. Let T' be an algebraically Q(A, k) operator. Then T is a-isoloid.

For T € B(H),\ € o(T) is said to be a regular point if there exists S € B(H)
such that T'— A = (T'— X)S(T — XI). T is is called reguloid if every isolated
point of o(T') is a regular point. It is well known [11, Theorems 4.6.4 and 8.4.4]
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that T — X = (T — M)S(T — AI) for some S € B(H) <= T — Al has a closed
range.

Since polaroid implies reguloid, we have the following corollary as a consequence
of Proposition 2.15

Corollary 2.17. Let T be an algebraically Q(A, k) operator. Then T is reguloid.

Proposition 2.18. ([16]) Let T € B(H). If T* has the SVEP, then Tsr- (T) =
ow(T).

3. WEYL’S THEOREM FOR ALGEBRAICALLY OF QUASI-CLASS (A, k) OPERATOR

Theorem 3.1. Suppose T or T* is an algebraically Q(A, k) operator. Then Weyl’s
theorem holds for f(T') for every f € Hol(o(T)).

Proof. Let p be a non-trivial polynomial such that p(T') (resp., p(T*)) is Q(A, k).
Then, see Lemma 2.7 and Proposition 2.15, T' (resp., T*) is hereditarily polaroid
(i.e., the restriction of the operator to every of its invariant subspaces is again
polaroid) [8, Example 2.5, Page 368]. Hence f(T) (resp., f(T*)) satisfies Weyl’s
theorem for every f € Hol(o(T')) [8, Theorem 3.6]. O

Proposition 3.2. Suppose T or T* is an algebraically of Q(A, k) operator. Then
ow(f(T)) = f(ow(T)) for every f € Hol(o(T)).

Proof. Let f € Hol(o(T)). To show that o, (f(T)) = f(ow(T)) it is sufficient
to show that f(o,(T)) C 0w, (f(T)). Suppose that A ¢ o, (f(T)). Then f(T) —
Al is Weyl. Since T* is algebraically of Q(A, k), it has SVEP. It follows from
Proposition 2.18 that (T — ;) > 0 for each j = 1,2,--- ,n. Since

0< 3 U —ay) = i(f(T) — AI) =0,
j=1

T — a; is Weyl for each j = 1,--- ,n. Hence A ¢ f(0,(T)), and so f(ow(T)) C
ow(f(T)). Thus f(ow(T)) = ow(f(T)) for each f € Hol(c(T)). Since Weyls
theorem holds for 7" and T is isoloid, Weyls theorem holds for f(T') for every
f € Hol(o(T)). This completes the proof. O

4. a-WEYL’S THEOREM FOR ALGEBRAICALLY OF QUASI-CLASS (A, k) OPERATOR

Let T € B(H). It is well known that the inclusion Tsp: (f(T)) < f(O'SF; (1))

holds for every f € Hol(o(T')) with no restriction on 7' [20]. The next theorem
shows that the spectral mapping theorem holds for the essential approximate point
spectrum for algebraically of quasi-class (A, k) operator.

Theorem 4.1. Suppose T* or T is an algebraically Q(A, k) operator. Then
O5p- (F(T)) = floge (D))
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Proof. Since p(T') (resp., p(T*)) has SVEP (by Lemma 2.10 or 2.12) = T (resp.,
T*) has SVEP = f(T') (resp., f(T*) ) has SVEP [18, Theorem 3.3.6]. Since the
upper Browder and the upper Weyl equal og Fr spectra of an operator with SVEP

coincide, and since the upper Browder spectrum satisfies the spectral mapping
theorem [1, Theorem 3.69], the proof follows. O

It is easily seen that quasi-nilpotent operators do not satisfy a-Weyl’s theorem,
in general. For instance, if
T2 X3
T ) = (0,22 22
(.131,1‘27 ) (52737
then T is quasi-nilpotent but a-Weyl’s theorem fails for T', since o(T) = 0,(T) =
05 (T) = {0} = E4(T).

Theorem 4.2. Suppose T* is an algebraically of quasi-class (A, k) operator. Then
a-Weyl’s theorem holds for f(T) for every f € Hol(co(T)).

Proof. P(T*) € Q(A,k) implies T* has SVEP implies f(7*) has SVEP; hence

o(f(T7)) = 0a(f(1)), ow(f(T")) = 0gp- (f(T) and Eo(f(T)) = Eg(f(T). Now
apply Theorem 3.1. O

<) (an) €4(N)

5. PROPERTY (w)

Definition 5.1. [2] A bounded operator T' € B(H) is said to satisfy property (w)
if
Eo(T) = A%(T) = 0,(T) \ oy (7).

As observed in [2], we have either of a-Weyls theorem or property (w) for T' =
Weyl’s theorem holds for T

Examples of operators satisfying Weyl’s theorem but not property (w) may be
found in [2]. Property (w) is independent from a-Weyl’s theorem: in [2] there are
examples of operators T € B(H) satisfying property (w) but not a-Weyl’s theorem
and vice versa. Generally, property (w), as well as Weyl’s theorems, does not
survive under perturbations. More can be said: Weyls theorems and property (w)
for a bounded operator T are liable to fail also under small perturbations K, if
“small” is interpreted in the sense of compact or quasi-nilpotent operators. In [3]
some sufficient conditions are given for which we have the stability of property (w),
under perturbations by finite rank operators, compact operators, or quasi-nilpotent
operator commuting with 7.

The following example shows that a-Weyls theorem and Weyls theorem does not
imply property (w).
Example 5.2. Let R € (2(N) be the unilateral right shift and let U defined by

Uz, 29, ) = (0,29, 23, ...), (z,) € L2(N).

If 7= Ra U, then o(T) = D(0,1) the closed unit disc in C, isoo(T) = ) and
0.(T) = C(0,1) U {0}, where C(0,1) is unit circle of C. Tt easily to see that
Tor: (T) = C(0,1). Moreover, we have Ey(T) = 0 and E§(T) = {0}. Hence T
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satisfies a- Weyls theorem and so T satisfies Weyls theorem. But 7" does not satisfy
property (w).

Lemma 5.3. [2] Suppose that T € B(H).

(i) If T* has the SVEP then Tsr: (T) = ou(T).

(ii) If T has the SVEP then Tor: (T*) = op(T).

Theorem 5.4. Let T € B(H).
(i) If T* is algebraically Q(A, k) then property (w) holds for T
(il) If T is algebraically Q(A, k) then property (w) holds for T*.

Proof. (i) Since T* is algebraically of quasi-class (A, k), then T™* is the SVEP and T
is polaroid by Proposition 2.15 because T is polaroid if and only if 7™* is polaroid.
Consequently o(T) = 04(T). If isoo(T) = 0, then Eo(T) = 0. We show that
oa(T) \O’SF; (T') is empty. By Lemma 5.3 we have o, (T)\ Tsp: (T) =o(T)\on(T)
and the last set is empty, since o(T") has no isolated points. Therefore, T" satisfies
property (w).

Consider the other case, isoo(T) # (). Suppose that A\ € Fo(T). Then A is
isolated in o(T') and hence, by the polaroid condition, A is a pole of the resolvent
of T ,ie a(T —X) =d(T — ) < oo. By assumption a(T — ) < oo, so by [1,
Theorem 3.1] (T — \) < oo, and hence T' — X is a Fredholm operator. Therefore,
by Lemma 5.3, A € o(T) \ 0p(T) = 04(T) \ Tsr: (T'). Conversely, if X € a,(T) \
Tsr: (T) = o(T)\op(T) then A is an isolated point of o(T). Clearly, 0 < a(T'—\) <
00, 80 A € Eo(T) and hence T satisfies property (w).

(ii) First note that since T has SVEP then o,(T*) = {A € C: T — \is not onto} =
a(T) = o(T*). Suppose first that isoc(T') = isoo(T*) = (. Then Ey(T*) = 0. By
Lemma 5.3 we have o, (T™) \O'SF; (T*) =o(T)\os(T) = 0, so T* satisfies property
w.

Suppose that isoo(T) # 0 and let A € Eo(T*). Then X is isolated in o(T) =
o(T*), hence a pole of the resolvent of T, since T is polaroid by Proposition 2.15.
By assumption a(T* — \)? < oo and since the ascent and the descent of T* — X are
both finite it then follows by [1, Theorem 3.1] that a(T — X) = 8(T — \) < oo, S0
T* — X is Browder and hence also 7' — A Browder. Therefore, A € o(T)\ 03(T) and
by Lemma 5.3 it then follows that A € oo (T*) \ Tsr: (T™).

Conversely, if A € UQ(T*)\USF; (T*) = o(T)\ op(T), then X is an isolated point
of the spectrum of o(T) = o(T*). Hence T — X is Browder, or equivalently 7% — \

is Browder. Since a(T* — \) = B(T™ — A) we then have a(T™ — A) > 0 (otherwise
A ¢ o(T)). Clearly, a(T* — \) < oo, since by assumption 7% — X\ € SF (H), so
that A € Eo(T™). Thus T satisfies property (w). O
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