PROPERTY (ω) AND QUASI-CLASS (A,k) OPERATORS

M. H. M. RASHID

ABSTRACT. In this paper, we prove the following assertions: (i) If T is of quasiclass (A, k), then T is polaroid and reguloid; (ii) If T or T^* is an algebraically of quasi-class (A, k) operator, then Weyls theorem holds for f(T) for every $f \in Hol(\sigma(T))$; (iii) If T^* is an algebraically of quasi-class (A, k) operator, then *a*-Weyls theorem holds for f(T) for every $f \in Hol(\sigma(T))$; (iv) If T^* is algebraically of quasi-class (A, k) then property (ω) holds for T.

1. INTRODUCTION

Throughout this paper let $\mathbf{B}(\mathcal{H})$, $\mathbf{F}(\mathcal{H})$, $\mathbf{K}(\mathcal{H})$, denote, respectively, the algebra of bounded linear operators, the ideal of finite rank operators and the ideal of compact operators acting on an infinite dimensional separable Hilbert space \mathcal{H} . If $T \in \mathbf{B}(\mathcal{H})$ we shall write ker(T) and $\mathcal{R}(T)$ (or ran(T)) for the null space and range of T, respectively. Also, let $\alpha(T) := \dim \ker(T)$, $\beta(T) := co \dim \mathcal{R}(T)$, and let $\sigma(T), \sigma_a(T), \sigma_p(T)$ denote the spectrum, approximate point spectrum and point spectrum of T, respectively. An operator $T \in \mathbf{B}(\mathcal{H})$ is called *Fredholm* if it has closed range, finite dimensional null space, and its range has finite codimension. The index of a Fredholm operator is given by

$$i(T) := \alpha(T) - \beta(T).$$

T is called *Weyl* if it is Fredholm of index 0, and *Browder* if it is Fredholm "of finite ascent and descent".

Recall that the *ascent*, a(T), of an operator T is the smallest non-negative integer p such that $\ker(T^p) = \ker(T^{p+1})$. If such integer does not exist we put $a(T) = \infty$. Analogously, the *descent*, d(T), of an operator T is the smallest nonnegative integer q such that $\mathcal{R}(T^q) = \mathcal{R}(T^{q+1})$ and if such integer does not exist we put $d(T) = \infty$. The essential spectrum $\sigma_F(T)$, the Weyl spectrum $\sigma_w(T)$ and the Browder spectrum $\sigma_b(T)$ of T are defined by

$$\sigma_F(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Fredholm} \}$$
$$\sigma_w(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Weyl} \}$$

and

$$\sigma_b(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Browder}\}\$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 47A55,47A53, 47B20; secondary 47A10, 47A11.

Key words and phrases. Quasi-class (A, k) operators, Weyl's theorem, Weyl spectrum, Polaroid operators, Property (ω) .

respectively. Evidently

$$\sigma_F(T) \subseteq \sigma_w(T) \subseteq \sigma_b(T) \subseteq \sigma_F(T) \cup acc\sigma(T)$$

where we write accK for the accumulation points of $K \subseteq \mathbb{C}$.

Following [6], we say that Weyl's theorem holds for T if $\sigma(T) \setminus \sigma_w(T) = E_0(T)$, where $E_0(T)$ is the set of all eigenvalues λ of finite multiplicity isolated in $\sigma(T)$. And Browder's theorem holds for T if $\sigma(T) \setminus \sigma_w(T) = \pi_0(T)$, where $\pi_0(T)$ is the set of all poles of T of finite rank.

Let $SF_+(\mathcal{H})$ be the class of all upper semi-Fredholm operators, $SF_+^-(\mathcal{H})$ be the class of all $T \in SF_+(\mathcal{H})$ with $i(T) \leq 0$, and for any $T \in \mathbf{B}(\mathcal{H})$ let

$$\sigma_{SF_{-}^{-}}(T) = \left\{ \lambda \in \mathbb{C} : T - \lambda I \notin SF_{+}^{-}(\mathcal{H}) \right\}$$

Let E_0^a be the set of all eigenvalues of T of finite multiplicity which are isolated in $\sigma_a(T)$. According to [19], we say that T satisfies *a*-Weyl's theorem if $\sigma_{SF_+^-}(T) = \sigma_a(T) \setminus E_0^a(T)$. It follows from [19, Corollary 2.5] *a*-Weyl's theorem implies Weyl's theorem.

Let $Hol(\sigma(T))$ be the space of all functions that analytic in an open neighborhoods of $\sigma(T)$. Following [9] we say that $T \in \mathbf{B}(\mathcal{H})$ has the single-valued extension property (SVEP) at point $\lambda \in \mathbb{C}$ if for every open neighborhood U_{λ} of λ , the only analytic function $f: U_{\lambda} \longrightarrow \mathcal{H}$ which satisfies the equation $(T - \mu)f(\mu) = 0$ is the constant function $f \equiv 0$. It is well-known that $T \in \mathbf{B}(\mathcal{H})$ has SVEP at every point of the resolvent $\rho(T) := \mathbb{C} \setminus \sigma(T)$. Moreover, from the identity theorem for analytic functions, it easily follows that $T \in \mathbf{B}(\mathcal{H})$ has SVEP at every point of the boundary $\partial \sigma(T)$ of the spectrum. In particular, T has SVEP at every isolated point of $\sigma(T)$. In [17, Proposition 1.8], Laursen proved that if T is of finite ascent, then T has SVEP.

2. Properties of quasi-class (A, k) operators

Definition 2.1. [21] An operator T is said to be a *quasi-class* (A, k) (and we write $T \in \mathcal{Q}(A, k)$) if

$$T^{k^*}(|T^2| - |T|^2)T^k \ge 0, \text{ for } k \in \mathbb{N}.$$

If k = 0, T is said to be class A (in symbols, $T \in A$), where T^0 is the identity operator and if k = 1, T is said to be quasi-class A (and we write $T \in QA$).

T. Furuta and T. Yamazaki [10], I.H. Jeon and I. H. Kim [14] and K. Tanahashi et al. [21] introduced class A, quasi-class A and quasi-class (A, k) operators, respectively. It was known that these operators share many interesting properties with hyponormal operators (see [7, 10, 13]).

In this section we prove some properties of quasi-class (A, k) operators. We need the following lemmas.

Lemma 2.2. [21, Theorem 1.] Let $T \in A$. Then the following assertions hold:

- (1) $|||T^2| |T|^2|| \le ||\tilde{T}_{1,1} \tilde{T^*}_{1,1}|| \le \frac{1}{\pi} meas \, \sigma(T), \text{ where } T = U|T| \text{ is the } T = U|T|$ polar decomposition of T and $T_{1,1} = |T|U|T|$. Moreover, if meas $\sigma(T) = 0$, then T is normal.
- (2) The operator T has Bishop's property (β) .
- (3) The restriction $T|_M$ to an invariant subspace M of T is also of class A.

Lemma 2.3. [21] Let $T \in \mathcal{QA}$. Assume that $\mathcal{R}(T^k)$ is not dense, and decompose

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}, \quad on \quad \mathcal{H} = \overline{\mathcal{R}(T^k)} \oplus \ker(T^{k^*}).$$

Then $T_1 = T|_{\overline{\mathcal{R}(T^k)}}$, the restriction of T to $\overline{\mathcal{R}(T^k)}$ is class A, $T_3^k = 0$. Furthermore, $\sigma(T) = \sigma(T_1) \cup \{0\}.$

Lemma 2.4. (Hansen inequality, [12]) If $T, S \in \mathbf{B}(\mathcal{H})$ satisfy $T \ge 0$ and $||S|| \leq 1$, then

$$(S^*TS^*)^{\lambda} \ge S^*T^{\lambda}S$$

for all $\lambda \in [0, 1]$.

Hölder-McCarthy Inequality. Let T be a positive operator. Then the following inequalities hold for all $x \in \mathcal{H}$:

(i) $\langle T^r x, x \rangle \leq \langle Tx, x \rangle^r ||x||^{2(1-r)}$ for $0 < r \leq 1$. (ii) $\langle T^r x, x \rangle \geq \langle Tx, x \rangle^r ||x||^{2(1-r)}$ for $r \geq 1$.

Theorem 2.5. Let $T \in \mathcal{Q}(A, k)$ for positive integer k. Then the following assertions hold.

- (i) ||Tⁿ⁺¹x||² ≤ ||Tⁿ⁺²x|| ||Tⁿx|| for all unit vector x ∈ H and all positive integer n ≥ k.
 (ii) ||Tⁿ⁺¹||ⁿ ≤ ||Tⁿ||ⁿ r(Tⁿ) for all positive integer n ≥ k, where r(Tⁿ) de-
- notes the spectral radius of T^n .

Proof. (i) It is obvious that if $T \in \mathcal{Q}(A, k)$ then its $\mathcal{Q}(A, k+1)$. We may assume that k = n. Since

$$\left\langle T^{k^*} |T|^2 T^k x, x \right\rangle = \left\langle T^{k+1} x, T^{k+1} x \right\rangle$$
$$= \left\| T^{k+1} x \right\|^2,$$

and

$$\begin{split} \left\langle T^{k^*}(|T^2|)T^kx,x\right\rangle &= \left\langle (T^{2^*}T^2)^{\frac{1}{2}}T^kx,T^kx\right\rangle \\ &\leq \left\langle T^{k+2}x,T^{k+2}x\right\rangle^{\frac{1}{2}} \left\|T^kx\right\| \quad \text{(by Hölder-McCarthy Inequality)} \\ &= \left\|T^{k+2}\right\| \left\|T^kx\right\|. \end{split}$$

But T is quasi-class (A, k). Then

$$||T^{k+1}x||^2 \le ||T^{k+2}|| ||T^kx||.$$

(ii) We may assume that k = n, hence we prove

$$||T^{k+1}||^k \le ||T^k||^k r(T^k).$$

If $T^n = 0$ for some n > k, then $T^k = 0$ and in this case $r(T^k) = 0$. Hence (2) is obvious. Hence we may assume $T^n \neq 0$ for all $n \geq k$. Then

$$\frac{\|T^{k+1}\|}{\|T^k\|} \le \frac{\|T^{k+2}\|}{\|T^{k+1}\|} \le \frac{\|T^{k+3}\|}{\|T^{k+2}\|} \le \dots \le \frac{\|T^{km}\|}{\|T^{km-1}\|}$$

hold by part (1). Hence, we have

$$\left(\frac{\|T^{k+1}\|}{\|T^k\|}\right)^{mk-k-2} \le \frac{\|T^{k+2}\|}{\|T^{k+1}\|} \times \le \frac{\|T^{k+3}\|}{\|T^{k+2}\|} \times \dots \times \frac{\|T^{km}\|}{\|T^{km-1}\|} = \frac{\|T^{km}\|}{\|T^k\|}.$$

Thus

$$\left(\frac{\left\|T^{k+1}\right\|}{\|T^{k}\|}\right)^{k-\frac{k}{m}-\frac{2}{m}} \le \frac{\left\|T^{km}\right\|^{\frac{1}{m}}}{\|T^{k}\|^{\frac{1}{m}}}.$$

Now, letting $m \longrightarrow \infty$ we have

$$||T^{k+1}||^k \le ||T^k||^k r(T^k)$$

Lemma 2.6. [21] Let $T \in \mathcal{Q}(A, k)$ and $\sigma(T) = \{\lambda\}$. Then $T = \lambda$ if $\lambda \neq 0$, and $(T - \lambda)^{k+1} = 0$ if $\lambda = 0$.

 \Box

Lemma 2.7. Let $T \in \mathcal{Q}(A, k)$. Then the restriction $T|_M$ of quasi-class (A, k) T on \mathcal{H} to an invariant subspace M of T is also $\mathcal{Q}(A,k)$.

Proof. Let $P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ be the orthogonal projection of \mathcal{H} onto M. Put $T_1 =$ $T|_M$. Then TP = PTP and $T_1 = (PTP)|_M$. Since T is a $\mathcal{Q}(A, k)$, we have $DT^{k^*}|T^2|T^k D > DT^{k^*}|T|^2T^k D$

$$PT^{m} | T^{2} | T^{m} P \ge PT^{m} | T |^{2} T^{m} P$$

Since $PT^kP = T^kP$ and $PT^{k^*} = PT^{k^*}P$, we have

$$PT^{k^*} |T^2| T^k P = PT^{k^*} P |T^2| PT^k P$$

= $PT^{k^*} P (T^*T^*TT)^{\frac{1}{2}} PT^k P$
 $\leq PT^{k^*} (PT^*T^*TTP)^{\frac{1}{2}} T^k P$ (By Lemma 2.4)
= $\begin{pmatrix} T_1^{k^*} |T_1^2| T_1^k & 0\\ 0 & 0 \end{pmatrix}$,

and

$$PT^{k^*}|T|^2T^kP = PT^{k^*}P|T|^2PT^kP$$
$$= \begin{pmatrix} T_1^{k^*}|T_1|^2T_1^k & 0\\ 0 & 0 \end{pmatrix},$$

Rev. Un. Mat. Argentina, Vol 52-1

136

we have

$$\begin{pmatrix} T_1^{k^*} |T_1^2| T_1^k & 0\\ 0 & 0 \end{pmatrix} \ge P T^{k^*} |T^2| T^k P \ge P T^{k^*} |T|^2 T^k P$$
$$= \begin{pmatrix} T_1^{k^*} |T_1|^2 T_1^k & 0\\ 0 & 0 \end{pmatrix}.$$

This implies that T_1 is $\mathcal{Q}(A, k)$ operator.

Definition 2.8. [5] An operator T is said to have *Bishop's property* (β) at $\lambda \in \mathbb{C}$ if for every open neighborhood G of λ , the function $f_n \in Hol(G)$ with $(T-\lambda)f_n(\mu) \to 0$ uniformly on every compact subset of G implies that $f_n(\mu) \to 0$ uniformly on every compact subset of G, where Hol(G) means the space of all analytic functions on G. When T has Bishop's property (β) at each $\lambda \in \mathbb{C}$, simply say that T has property (β).

Lemma 2.9. [15] Let G be open subset of complex plane \mathbb{C} and let $f_n \in Hol(G)$ be functions such that $\mu f_n(\mu) \to 0$ uniformly on every compact subset of G, then $f_n(\mu) \to 0$ uniformly on every compact subset of G.

Lemma 2.10. Let $T \in \mathcal{Q}(A, k)$. Then T has Bishop's property (β) .

Proof. Let $f_n(z)$ be analytic on G. Let $(T-z)f_n(z) \to 0$ uniformly on each compact subset of G. Then, using the representation of Lemma 2.3 we have

$$\begin{pmatrix} T_1-z & T_2 \\ 0 & T_3-z \end{pmatrix} \begin{pmatrix} f_{n1}(z) \\ f_{n2}(z) \end{pmatrix} = \begin{pmatrix} (T_1-z)f_{n1}(z)+T_2f_{n2}(z) \\ (T_3-z)f_{n2}(z) \end{pmatrix} \longrightarrow 0.$$

Since T_3 is nilpotent, T_3 has Bishop's property (β) . Hence $f_{n2}(z) \longrightarrow 0$ uniformly on every compact subset of G. Then $(T_1 - z)f_{n1}(z) \longrightarrow 0$. Since T_1 is of class A, T_1 has Bishop's property (β) by Lemma 2.2. hence $f_{n1}(z) \longrightarrow 0$ uniformly on every compact subset of G. Thus T has Bishop's property (β) .

Lemma 2.11. [21, Lemma 13.] Let $T \in \mathcal{Q}(A, k)$. If $(T - \lambda)x = 0$ and $\lambda \neq 0$, then $(T - \lambda)^* x = 0$.

Lemma 2.12. Let $T \in \mathcal{Q}(A,k)$. Then $\ker(T-\lambda)^{k+1} = \ker(T-\lambda)^{k+2}$ for all $\lambda \in \mathbb{C}$. Hence $T - \lambda$ has finite ascent for all $\lambda \in \mathbb{C}$.

Proof. It follows from Theorem 2.5 that

$$||T^{k+1}x||^2 \le ||T^{k+2}x|| ||T^kx||$$

for all $x \in \mathcal{H}$, we have ker $T^{k+1} = \ker T^{k+2}$. Let $(T - \lambda)^{k+2}x = 0$ for $\lambda \neq 0$. Then it follows from Lemma 2.11 that $(T - \lambda)^*(T - \lambda)^{k+1}x = 0$. Hence

$$\left\| (T-\lambda)^{k+1}x \right\|^2 = \left\langle (T-\lambda)^* (T-\lambda)^{k+1}x, (T-\lambda)^k x \right\rangle = 0.$$

So the proof is achieved.

Definition 2.13. ([4]) An operator $T \in \mathbf{B}(\mathcal{H})$ is called algebraically $\mathcal{Q}(A, k)$ if there exists a nonconstant complex polynomial p such that p(T) is a $\mathcal{Q}(A, k)$.

 \Box

Lemma 2.14. Let $T \in \mathbf{B}(\mathcal{H})$ be an algebraically $\mathcal{Q}(A, k)$ operator and $\sigma(T) = {\mu_0}$, then $T - \mu_0$ is nilpotent.

Proof. Assume p(T) is $\mathcal{Q}(A, k)$ for some nonconstant polynomial p(z). Since $\sigma(p(T)) = p(\sigma(T)) = \{p(\mu_0)\}$, the operator $p(T) - p(\mu_0)$ is nilpotent by Lemma 2.6. Let

$$p(z) - p(\mu_0) = a(z - \mu_0)^{k_0}(z - \mu_1)^{k_1} \cdots (z - \mu_t)^{k_t},$$

where $\mu_j \neq \mu_s$ for $j \neq s$. Then

$$0 = \{p(T) - p(\mu_0)\}^m = a^m (T - \mu_0)^{mk_0} (T - \mu_1)^{mk_1} \cdots (T - \mu_t)^{mk_t}$$

ace $(T - \mu_0)^{mk_0} = 0.$

and hence $(T - \mu_0)^{mk_0} = 0.$

An operator $T \in \mathbf{B}(\mathcal{H})$ is said to be polaroid if $iso\sigma(T) \subseteq \pi(T)$, where $\pi(T)$ is the set of all poles of T. In general, if T is polaroid then it is isoloid. However, the converse is not true. Consider the following example. Let $T \in \ell^2(\mathbb{N})$ be defined by

$$T(x_1, x_2, \cdots) = (\frac{x_2}{2}, \frac{x_3}{3}, \cdots).$$

Then T is a compact quasinilpotent operator with $\alpha(T) = 1$, and so T is isoloid. However, since T does not have finite ascent, T is not polaroid.

In [7] they showed that every \mathcal{QA} operator is isoloid. We can prove more:

Proposition 2.15. Let T be an algebraically Q(A, k) operator. Then T is polaroid.

Proof. Suppose T is an algebraically $\mathcal{Q}(A, k)$ operator. Then $p(T) \in \mathcal{Q}(A, k)$ for some nonconstant polynomial p. Let $\lambda \in iso(\sigma(T))$. Using the spectral projection $P := \frac{1}{2i\pi} \int_{\partial D} (\mu - T)^{-1} d\mu$, where D is a closed disk of center λ which contains no other points of $\sigma(T)$, we can represent T as the direct sum

$$T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}, \text{ and } \sigma(T_1) = \{\lambda\} \text{ and } \sigma(T_2) = \sigma(T) \setminus \{\lambda\}.$$

Since T_1 is algebraically $\mathcal{Q}(A, k)$ operator and $\sigma(T_1) = \{\lambda\}$. But $\sigma(T_1 - \lambda I) = \{0\}$ it follows from Lemma 2.14 that $T_1 - \lambda I$ is nilpotent. Therefore $T_1 - \lambda$ has finite ascent and descent. On the other hand, since $T_2 - \lambda I$ is invertible, clearly it has finite ascent and descent. Therefore $T - \lambda I$ has finite ascent and descent. Therefore $T - \lambda I$ has finite ascent and descent. Therefore λ is a pole of the resolvent of T. Thus if $\lambda \in iso(\sigma(T))$ implies $\lambda \in \pi(T)$, and so $iso(\sigma(T)) \subset \pi(T)$. Hence T is polaroid.

An operator $T \in \mathbf{B}(\mathcal{H})$ is called *a*-isoloid if $iso\sigma_a(T) \subseteq \sigma_p(T)$. Clearly, if *T* is *a*-isoloid then it is isoloid. However, the converse is not true. Consider the following example: Let $T = U \oplus Q$, where *U* is the unilateral forward shift on ℓ^2 and *Q* is an injective quasinilpotent on ℓ^2 , respectively. Then $\sigma(T) = \{\lambda \in \mathbb{C} : |\lambda| \leq 1\}$ and $\sigma_a(T) = \{\lambda \in \mathbb{C} : |\lambda| = 1\} \cup \{0\}$. Therefore *T* is isoloid but not *a*-isoloid.

Corollary 2.16. Let T be an algebraically $\mathcal{Q}(A, k)$ operator. Then T is a-isoloid.

For $T \in \mathbf{B}(\mathcal{H}), \lambda \in \sigma(T)$ is said to be a regular point if there exists $S \in \mathbf{B}(\mathcal{H})$ such that $T - \lambda I = (T - \lambda I)S(T - \lambda I)$. T is is called reguloid if every isolated point of $\sigma(T)$ is a regular point. It is well known [11, Theorems 4.6.4 and 8.4.4] that $T - \lambda I = (T - \lambda I)S(T - \lambda I)$ for some $S \in \mathbf{B}(\mathcal{H}) \iff T - \lambda I$ has a closed range.

Since polaroid implies reguloid, we have the following corollary as a consequence of Proposition 2.15

Corollary 2.17. Let T be an algebraically $\mathcal{Q}(A, k)$ operator. Then T is reguloid.

Proposition 2.18. ([16]) Let $T \in \mathbf{B}(\mathcal{H})$. If T^* has the SVEP, then $\sigma_{SF_+}(T) = \sigma_w(T)$.

3. Weyl's theorem for algebraically of quasi-class (A, k) operator

Theorem 3.1. Suppose T or T^* is an algebraically $\mathcal{Q}(A, k)$ operator. Then Weyl's theorem holds for f(T) for every $f \in Hol(\sigma(T))$.

Proof. Let p be a non-trivial polynomial such that p(T) (resp., $p(T^*)$) is $\mathcal{Q}(A, k)$. Then, see Lemma 2.7 and Proposition 2.15, T (resp., T^*) is hereditarily polaroid (i.e., the restriction of the operator to every of its invariant subspaces is again polaroid) [8, Example 2.5, Page 368]. Hence f(T) (resp., $f(T^*)$) satisfies Weyl's theorem for every $f \in Hol(\sigma(T))$ [8, Theorem 3.6].

Proposition 3.2. Suppose T or T^* is an algebraically of $\mathcal{Q}(A, k)$ operator. Then $\sigma_w(f(T)) = f(\sigma_w(T))$ for every $f \in Hol(\sigma(T))$.

Proof. Let $f \in Hol(\sigma(T))$. To show that $\sigma_w(f(T)) = f(\sigma_w(T))$ it is sufficient to show that $f(\sigma_w(T)) \subseteq \sigma_w(f(T))$. Suppose that $\lambda \notin \sigma_w(f(T))$. Then $f(T) - \lambda I$ is Weyl. Since T^* is algebraically of $\mathcal{Q}(A, k)$, it has SVEP. It follows from Proposition 2.18 that $i(T - \alpha_j) \geq 0$ for each $j = 1, 2, \dots, n$. Since

$$0 \le \sum_{j=1}^{n} i(T - \alpha_j) = i(f(T) - \lambda I) = 0,$$

 $T - \alpha_j$ is Weyl for each $j = 1, \dots, n$. Hence $\lambda \notin f(\sigma_w(T))$, and so $f(\sigma_w(T)) \subseteq \sigma_w(f(T))$. Thus $f(\sigma_w(T)) = \sigma_w(f(T))$ for each $f \in Hol(\sigma(T))$. Since Weyls theorem holds for T and T is isoloid, Weyls theorem holds for f(T) for every $f \in Hol(\sigma(T))$. This completes the proof.

4. a-Weyl's theorem for algebraically of quasi-class (A, k) operator

Let $T \in \mathbf{B}(\mathcal{H})$. It is well known that the inclusion $\sigma_{SF_{+}^{-}}(f(T)) \subseteq f(\sigma_{SF_{+}^{-}}(T))$ holds for every $f \in Hol(\sigma(T))$ with no restriction on T [20]. The next theorem shows that the spectral mapping theorem holds for the essential approximate point spectrum for algebraically of quasi-class (A, k) operator.

Theorem 4.1. Suppose T^* or T is an algebraically $\mathcal{Q}(A, k)$ operator. Then

$$\sigma_{SF_{\perp}^{-}}(f(T)) = f(\sigma_{SF_{\perp}^{-}}(T))$$

M. H. M. RASHID

Proof. Since p(T) (resp., $p(T^*)$) has SVEP (by Lemma 2.10 or 2.12) $\Longrightarrow T$ (resp., T^*) has SVEP $\Longrightarrow f(T)$ (resp., $f(T^*)$) has SVEP [18, Theorem 3.3.6]. Since the upper Browder and the upper Weyl equal σ_{SF_+} spectra of an operator with SVEP coincide, and since the upper Browder spectrum satisfies the spectral mapping theorem [1, Theorem 3.69], the proof follows.

It is easily seen that quasi-nilpotent operators do not satisfy a-Weyl's theorem, in general. For instance, if

$$T(x_1, x_2, \cdots) = (0, \frac{x_2}{2}, \frac{x_3}{3}, \cdots), \qquad (x_n) \in \ell^2(\mathbb{N})$$

then T is quasi-nilpotent but a-Weyl's theorem fails for T, since $\sigma(T) = \sigma_a(T) = \sigma_{SF_1^-}(T) = \{0\} = E_0^a(T)$.

Theorem 4.2. Suppose T^* is an algebraically of quasi-class (A, k) operator. Then a-Weyl's theorem holds for f(T) for every $f \in Hol(\sigma(T))$.

Proof. $P(T^*) \in \mathcal{Q}(A, k)$ implies T^* has SVEP implies $f(T^*)$ has SVEP; hence $\sigma(f(T^*)) = \overline{\sigma_a(f(T))}, \ \sigma_w(f(T^*)) = \overline{\sigma_{SF^-_+}(f(T))}$ and $E_0(f(T^*)) = \overline{E^a_0(f(T))}$. Now apply Theorem 3.1.

5. Property (ω)

Definition 5.1. [2] A bounded operator $T \in \mathbf{B}(\mathcal{H})$ is said to satisfy *property* (ω) if

$$E_0(T) = \Delta^a(T) = \sigma_a(T) \setminus \sigma_{SF_+}(T).$$

As observed in [2], we have either of *a*-Weyls theorem or property (ω) for $T \Rightarrow$ Weyl's theorem holds for T.

Examples of operators satisfying Weyl's theorem but not property (ω) may be found in [2]. Property (ω) is independent from *a*-Weyl's theorem: in [2] there are examples of operators $T \in \mathbf{B}(\mathcal{H})$ satisfying property (ω) but not *a*-Weyl's theorem and vice versa. Generally, property (ω) , as well as Weyl's theorems, does not survive under perturbations. More can be said: Weyls theorems and property (ω) for a bounded operator T are liable to fail also under small perturbations K, if "small" is interpreted in the sense of compact or quasi-nilpotent operators. In [3] some sufficient conditions are given for which we have the stability of property (ω) , under perturbations by finite rank operators, compact operators, or quasi-nilpotent operator commuting with T.

The following example shows that *a*-Weyls theorem and Weyls theorem does not imply property (ω) .

Example 5.2. Let $R \in \ell^2(\mathbb{N})$ be the unilateral right shift and let U defined by

 $U(x_1, x_2, \cdots) = (0, x_2, x_3, \ldots), (x_n) \in \ell^2(\mathbb{N}).$

If $T = R \oplus U$, then $\sigma(T) = D(0,1)$ the closed unit disc in \mathbb{C} , $iso\sigma(T) = \emptyset$ and $\sigma_a(T) = C(0,1) \cup \{0\}$, where C(0,1) is unit circle of \mathbb{C} . It easily to see that $\sigma_{SF_+^-}(T) = C(0,1)$. Moreover, we have $E_0(T) = \emptyset$ and $E_0^a(T) = \{0\}$. Hence T

satisfies a- Weyls theorem and so T satisfies Weyls theorem. But T does not satisfy property (ω).

Lemma 5.3. [2] Suppose that $T \in \mathbf{B}(\mathcal{H})$.

(i) If T^* has the SVEP then $\sigma_{SF_{\perp}^-}(T) = \sigma_b(T)$.

(ii) If T has the SVEP then $\sigma_{SF_{-}}^{T}(T^*) = \sigma_b(T)$.

Theorem 5.4. Let $T \in \mathbf{B}(\mathcal{H})$.

- (i) If T^* is algebraically $\mathcal{Q}(A, k)$ then property (ω) holds for T.
- (ii) If T is algebraically $\mathcal{Q}(A,k)$ then property (ω) holds for T^* .

Proof. (i) Since T^* is algebraically of quasi-class (A, k), then T^* is the SVEP and T is polaroid by Proposition 2.15 because T is polaroid if and only if T^* is polaroid. Consequently $\sigma(T) = \sigma_a(T)$. If $iso\sigma(T) = \emptyset$, then $E_0(T) = \emptyset$. We show that $\sigma_a(T) \setminus \sigma_{SF_+}(T)$ is empty. By Lemma 5.3 we have $\sigma_a(T) \setminus \sigma_{SF_+}(T) = \sigma(T) \setminus \sigma_b(T)$ and the last set is empty, since $\sigma(T)$ has no isolated points. Therefore, T satisfies property (ω) .

Consider the other case, $iso\sigma(T) \neq \emptyset$. Suppose that $\lambda \in E_0(T)$. Then λ is isolated in $\sigma(T)$ and hence, by the polaroid condition, λ is a pole of the resolvent of T, i.e. $a(T - \lambda) = d(T - \lambda) < \infty$. By assumption $\alpha(T - \lambda) < \infty$, so by [1, Theorem 3.1] $\beta(T - \lambda) < \infty$, and hence $T - \lambda$ is a Fredholm operator. Therefore, by Lemma 5.3, $\lambda \in \sigma(T) \setminus \sigma_b(T) = \sigma_a(T) \setminus \sigma_{SF_+}(T)$. Conversely, if $\lambda \in \sigma_a(T) \setminus \sigma_{SF_+}(T) = \sigma(T) \setminus \sigma_b(T)$ then λ is an isolated point of $\sigma(T)$. Clearly, $0 < \alpha(T - \lambda) < \infty$, so $\lambda \in E_0(T)$ and hence T satisfies property (ω).

(ii) First note that since T has SVEP then $\sigma_a(T^*) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not onto}\} = \sigma(T) = \sigma(T^*)$. Suppose first that $iso\sigma(T) = iso\sigma(T^*) = \emptyset$. Then $E_0(T^*) = \emptyset$. By Lemma 5.3 we have $\sigma_a(T^*) \setminus \sigma_{SF_+}(T^*) = \sigma(T) \setminus \sigma_b(T) = \emptyset$, so T^* satisfies property ω .

Suppose that $iso\sigma(T) \neq \emptyset$ and let $\lambda \in E_0(T^*)$. Then λ is isolated in $\sigma(T) = \sigma(T^*)$, hence a pole of the resolvent of T^* , since T^* is polaroid by Proposition 2.15. By assumption $\alpha(T^* - \overline{\lambda})^p < \infty$ and since the ascent and the descent of $T^* - \overline{\lambda}$ are both finite it then follows by [1, Theorem 3.1] that $\alpha(T - \lambda) = \beta(T - \lambda) < \infty$, so $T^* - \overline{\lambda}$ is Browder and hence also $T - \lambda$ Browder. Therefore, $\lambda \in \sigma(T) \setminus \sigma_b(T)$ and by Lemma 5.3 it then follows that $\lambda \in \sigma_a(T^*) \setminus \sigma_{SF_1^-}(T^*)$.

Conversely, if $\lambda \in \sigma_a(T^*) \setminus \sigma_{SF^+_+}(T^*) = \sigma(T) \setminus \sigma_b(T)$, then λ is an isolated point of the spectrum of $\sigma(T) = \sigma(T^*)$. Hence $T - \lambda$ is Browder, or equivalently $T^* - \overline{\lambda}$ is Browder. Since $\alpha(T^* - \overline{\lambda}) = \beta(T^* - \overline{\lambda})$ we then have $\alpha(T^* - \overline{\lambda}) > 0$ (otherwise $\lambda \notin \sigma(T^*)$). Clearly, $\alpha(T^* - \overline{\lambda}) < \infty$, since by assumption $T^* - \overline{\lambda} \in SF^-_+(\mathcal{H})$, so that $\lambda \in E_0(T^*)$. Thus T^* satisfies property (ω).

Acknowledgements. The author would like to express his appreciation to the referees for their careful and kind comments.

References

[1] P. Aiena, Fredholm and local spectral theory with applications to multipliers, Kluwer, 2004.

M. H. M. RASHID

- [2] P. Aiena and P. Peña, Variations on Weyls theorem, J. Math. Anal. Appl. 324 (1)(2006), 566-579.
- [3] P. Aiena, M.T. Biondi, Property (ω) and perturbations, J. Math. Anal. Appl. **336** (2007), 683-692.
- [4] I. J. An, Y. M. Han, Weyls theorem for algebraically quasi-class A Operators, Integral Equation Operator Theory 62(2008), 1–10.
- [5] E. Bishop, A duality theorem for an arbitrary operator, Pacific J. Math. 9 (2)(1959): 379– 397.
- [6] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J 13(1966), 285–288.
- [7] B. P. Duggal, I. H. Jeon, I. H. Kim, On Weyl's theorem for quasi-class A operators, J. Korean Math. Soc. 43(4)(2006), 899–909.
- [8] B. P. Duggal, Hereditarily polaroid operators, SVEP and Weyls theorem, J. Math. Anal. Appl. 340(2008), 366–373.
- [9] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58(1975), 61–69.
- [10] T. Furuta, M. Ito and Yamazaki T., A subclass of paranormal operators including class of log-hyponormal and several related classes, Sci. math. 1 (1998), 389-403.
- [11] R.E. Harte, Invertibility and Singularity for Bounded Linear Operators, Dekker, New York, 1988.
- [12] F. Hansen, An operator inequality, Math. Ann. 246(1980), 249-250.
- M. Ito, Some classes of operators associated with generalized Aluthge transformation, Sut. J. Math. 35 (1999), 149–165.
- [14] I. H. Jeon and I. H. Kim , On operators satisfying $T^*|T^2|T \ge T^*|T|^2T^*$, Linear Alg. Appl. **418**(2006), 854–862.
- [15] F. Kimura, Analysis of non-normal operators via Aluthge transformation. Integral Equations and Operator Theory 50 (3)(1995), 375–384.
- [16] M. Lahrouz, M. Zohry, Weyl type theorems and the approximate point spectrum, Irish Math. Soc. Bulletin 55(2005), 41–51.
- [17] K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152(1992), 323-336.
- [18] K. B. Laursen, M. M. Neumann, An introduction to local spectral theory, Oxford. Clarendon, 2000.
- [19] V. Rakočević, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 10(1986), 915–919.
- [20] V. Rakočević, Semi-Browder operators and perturbations, Studia Math. 122(1997), 131–137
- [21] K. Tanahashi, I.H. Jeon, I. H. Kim and A. Uchiyama, Quasinilpotent part of class A or (p, k)-quasihyponormal operators, Operator Theory: Advances and Applications 187(2008), 199–210.

M. H. M. Rashid Department of Mathematics & Statistics Faculty of Science P.O.Box(7) Mu'tah University Al-Karak, Jordan malik_okasha@yahoo.com

Recibido: 21 de diciembre de 2009 Aceptado: 11 de noviembre de 2011