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PROPERTY (ω) AND QUASI-CLASS (A,k) OPERATORS

M. H. M. RASHID

Abstract. In this paper, we prove the following assertions: (i) If T is of quasi-
class (A, k), then T is polaroid and reguloid; (ii) If T or T ∗ is an algebraically
of quasi-class (A, k) operator, then Weyls theorem holds for f(T ) for every
f ∈ Hol(σ(T )); (iii) If T ∗ is an algebraically of quasi-class (A, k) operator,
then a-Weyls theorem holds for f(T ) for every f ∈ Hol(σ(T )); (iv) If T ∗ is
algebraically of quasi-class (A, k) then property (ω) holds for T .

1. Introduction

Throughout this paper let B(H), F(H), K(H), denote, respectively, the algebra
of bounded linear operators, the ideal of finite rank operators and the ideal of
compact operators acting on an infinite dimensional separable Hilbert space H.
If T ∈ B(H) we shall write ker(T ) and R(T ) (or ran(T )) for the null space and
range of T , respectively. Also, let α(T ) := dimker(T ), β(T ) := codimR(T ), and
let σ(T ), σa(T ), σp(T ) denote the spectrum, approximate point spectrum and point
spectrum of T , respectively. An operator T ∈ B(H) is called Fredholm if it has
closed range, finite dimensional null space, and its range has finite codimension.
The index of a Fredholm operator is given by

i(T ) := α(T )− β(T ).

T is called Weyl if it is Fredholm of index 0, and Browder if it is Fredholm “of
finite ascent and descent”.

Recall that the ascent, a(T ), of an operator T is the smallest non-negative
integer p such that ker(T p) = ker(T p+1). If such integer does not exist we put
a(T ) = ∞. Analogously, the descent, d(T ), of an operator T is the smallest non-
negative integer q such that R(T q) = R(T q+1) and if such integer does not exist
we put d(T ) = ∞. The essential spectrum σF (T ), the Weyl spectrum σw(T ) and
the Browder spectrum σb(T ) of T are defined by

σF (T ) = {λ ∈ C : T − λ is not Fredholm}

σw(T ) = {λ ∈ C : T − λ is not Weyl}

and
σb(T ) = {λ ∈ C : T − λ is not Browder}
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respectively. Evidently

σF (T ) ⊆ σw(T ) ⊆ σb(T ) ⊆ σF (T ) ∪ accσ(T )

where we write accK for the accumulation points of K ⊆ C.
Following [6], we say that Weyl’s theorem holds for T if σ(T ) \ σw(T ) = E0(T ),

where E0(T ) is the set of all eigenvalues λ of finite multiplicity isolated in σ(T ).
And Browder’s theorem holds for T if σ(T ) \ σw(T ) = π0(T ), where π0(T ) is the
set of all poles of T of finite rank.

Let SF+(H) be the class of all upper semi-Fredholm operators, SF−

+ (H) be the
class of all T ∈ SF+(H) with i(T ) ≤ 0, and for any T ∈ B(H) let

σSF
−

+

(T ) =
{

λ ∈ C : T − λI /∈ SF−

+ (H)
}

.

Let Ea
0 be the set of all eigenvalues of T of finite multiplicity which are iso-

lated in σa(T ). According to [19], we say that T satisfies a-Weyl’s theorem if
σSF

−

+

(T ) = σa(T ) \ Ea
0 (T ). It follows from [19, Corollary 2.5] a-Weyl’s theorem

implies Weyl’s theorem.

Let Hol(σ(T )) be the space of all functions that analytic in an open neighbor-
hoods of σ(T ). Following [9] we say that T ∈ B(H) has the single-valued extension
property (SVEP) at point λ ∈ C if for every open neighborhood Uλ of λ, the only
analytic function f : Uλ −→ H which satisfies the equation (T − µ)f(µ) = 0 is
the constant function f ≡ 0. It is well-known that T ∈ B(H) has SVEP at every
point of the resolvent ρ(T ) := C \ σ(T ). Moreover, from the identity theorem for
analytic functions, it easily follows that T ∈ B(H) has SVEP at every point of
the boundary ∂σ(T ) of the spectrum. In particular, T has SVEP at every isolated
point of σ(T ). In [17, Proposition 1.8], Laursen proved that if T is of finite ascent,
then T has SVEP.

2. Properties of quasi-class (A, k) operators

Definition 2.1. [21] An operator T is said to be a quasi-class (A, k) (and we
write T ∈ Q(A, k) ) if

T k∗

(|T 2| − |T |2)T k ≥ 0, for k ∈ N.

If k = 0, T is said to be class A (in symbols, T ∈ A), where T 0 is the identity
operator and if k = 1, T is said to be quasi-class A (and we write T ∈ QA).

T. Furuta and T. Yamazaki [10], I.H. Jeon and I. H. Kim [14] and K. Tana-
hashi et al. [21] introduced class A, quasi-class A and quasi-class (A, k) operators,
respectively. It was known that these operators share many interesting properties
with hyponormal operators (see [7, 10, 13]).

In this section we prove some properties of quasi-class (A, k) operators. We need
the following lemmas.
Lemma 2.2. [21, Theorem 1.] Let T ∈ A. Then the following assertions hold:
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(1)
∥

∥|T 2| − |T |2
∥

∥ ≤
∥

∥

∥
T̃1,1 − T̃ ∗

1,1

∥

∥

∥
≤ 1

π
meas σ(T ), where T = U |T | is the

polar decomposition of T and T1,1 = |T |U |T |. Moreover, if meas σ(T ) = 0,
then T is normal.

(2) The operator T has Bishop’s property (β).
(3) The restriction T |M to an invariant subspace M of T is also of class A.

Lemma 2.3. [21] Let T ∈ QA. Assume that R(T k) is not dense, and decompose

T =

(

T1 T2

0 T3

)

, on H = R(T k)⊕ ker(T k∗

).

Then T1 = T |
R(Tk)

, the restriction of T to R(T k) is class A, T k
3 = 0. Furthermore,

σ(T ) = σ(T1) ∪ {0}.

Lemma 2.4. (Hansen inequality, [12]) If T, S ∈ B(H) satisfy T ≥ 0 and

‖S‖ ≤ 1, then

(S∗TS∗)λ ≥ S∗T λS

for all λ ∈ [0, 1].

Hölder-McCarthy Inequality. Let T be a positive operator. Then the following
inequalities hold for all x ∈ H :

(i) 〈T rx, x〉 ≤ 〈Tx, x〉r ‖x‖2(1−r) for 0 < r ≤ 1.

(ii) 〈T rx, x〉 ≥ 〈Tx, x〉r ‖x‖2(1−r)
for r ≥ 1.

Theorem 2.5. Let T ∈ Q(A, k) for positive integer k. Then the following asser-

tions hold.

(i)
∥

∥T n+1x
∥

∥

2
≤

∥

∥T n+2x
∥

∥ ‖T nx‖ for all unit vector x ∈ H and all positive

integer n ≥ k.
(ii)

∥

∥T n+1
∥

∥

n
≤ ‖T n‖n r(T n) for all positive integer n ≥ k, where r(T n) de-

notes the spectral radius of T n.

Proof. (i) It is obvious that if T ∈ Q(A, k) then its Q(A, k + 1). We may assume
that k = n. Since

〈

T k∗

|T |2T kx, x
〉

=
〈

T k+1x, T k+1x
〉

=
∥

∥T k+1x
∥

∥

2
,

and
〈

T k∗

(|T 2|)T kx, x
〉

=
〈

(T 2∗T 2)
1
2T kx, T kx

〉

≤
〈

T k+2x, T k+2x
〉

1
2
∥

∥T kx
∥

∥ (by Hölder-McCarthy Inequality)

=
∥

∥T k+2
∥

∥

∥

∥T kx
∥

∥ .

But T is quasi-class (A, k). Then

∥

∥T k+1x
∥

∥

2
≤

∥

∥T k+2
∥

∥

∥

∥T kx
∥

∥ .
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(ii) We may assume that k = n, hence we prove
∥

∥T k+1
∥

∥

k
≤

∥

∥T k
∥

∥

k
r(T k).

If T n = 0 for some n > k, then T k = 0 and in this case r(T k) = 0. Hence (2) is
obvious. Hence we may assume T n 6= 0 for all n ≥ k. Then

∥

∥T k+1
∥

∥

‖T k‖
≤

∥

∥T k+2
∥

∥

‖T k+1‖
≤

∥

∥T k+3
∥

∥

‖T k+2‖
≤ · · · ≤

∥

∥T km
∥

∥

‖T km−1‖

hold by part (1). Hence, we have

(

∥

∥T k+1
∥

∥

‖T k‖
)mk−k−2 ≤

∥

∥T k+2
∥

∥

‖T k+1‖
× ≤

∥

∥T k+3
∥

∥

‖T k+2‖
× · · · ×

∥

∥T km
∥

∥

‖T km−1‖
=

∥

∥T km
∥

∥

‖T k‖
.

Thus

(

∥

∥T k+1
∥

∥

‖T k‖
)k−

k

m
−

2
m ≤

∥

∥T km
∥

∥

1
m

‖T k‖
1
m

.

Now, letting m −→ ∞ we have
∥

∥T k+1
∥

∥

k
≤

∥

∥T k
∥

∥

k
r(T k).

�

Lemma 2.6. [21] Let T ∈ Q(A, k) and σ(T ) = {λ}. Then T = λ if λ 6= 0, and
(T − λ)k+1 = 0 if λ = 0.

Lemma 2.7. Let T ∈ Q(A, k). Then the restriction T |M of quasi-class (A, k) T
on H to an invariant subspace M of T is also Q(A, k).

Proof. Let P =

(

1 0
0 0

)

be the orthogonal projection of H onto M. Put T1 =

T |M . Then TP = PTP and T1 = (PTP )|M . Since T is a Q(A, k), we have

PT k∗

|T 2|T kP ≥ PT k∗

|T |2T kP.

Since PT kP = T kP and PT k∗

= PT k∗

P, we have

PT k∗

|T 2|T kP = PT k∗

P |T 2|PT kP

= PT k∗

P (T ∗T ∗TT )
1
2PT kP

≤ PT k∗

(PT ∗T ∗TTP )
1
2T kP (By Lemma 2.4)

=

(

T k∗

1 |T 2
1 |T

k
1 0

0 0

)

,

and

PT k∗

|T |2T kP = PT k∗

P |T |2PT kP

=

(

T k∗

1 |T1|2T k
1 0

0 0

)

,
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we have
(

T k∗

1 |T 2
1 |T

k
1 0

0 0

)

≥ PT k∗

|T 2|T kP ≥ PT k∗

|T |2T kP

=

(

T k∗

1 |T1|2T k
1 0

0 0

)

.

This implies that T1 is Q(A, k) operator. �

Definition 2.8. [5] An operator T is said to have Bishop’s property (β) at λ ∈ C if
for every open neighborhoodG of λ, the function fn ∈ Hol(G) with (T−λ)fn(µ) →
0 uniformly on every compact subset of G implies that fn(µ) → 0 uniformly on
every compact subset of G,where Hol(G) means the space of all analytic functions
on G. When T has Bishop’s property (β) at each λ ∈ C, simply say that T has
property (β).

Lemma 2.9. [15] Let G be open subset of complex plane C and let fn ∈ Hol(G)
be functions such that µfn(µ) → 0 uniformly on every compact subset of G, then

fn(µ) → 0 uniformly on every compact subset of G.

Lemma 2.10. Let T ∈ Q(A, k). Then T has Bishop’s property (β).

Proof. Let fn(z) be analytic on G. Let (T − z)fn(z) −→ 0 uniformly on each
compact subset of G. Then, using the representation of Lemma 2.3 we have

(

T1 − z T2

0 T3 − z

)(

fn1(z)
fn2(z)

)

=

(

(T1 − z)fn1(z) + T2fn2(z)
(T3 − z)fn2(z)

)

−→ 0.

Since T3 is nilpotent, T3 has Bishop’s property (β). Hence fn2(z) −→ 0 uniformly
on every compact subset of G. Then (T1−z)fn1(z) −→ 0. Since T1 is of class A, T1

has Bishop’s property (β) by Lemma 2.2. hence fn1(z) −→ 0 uniformly on every
compact subset of G. Thus T has Bishop’s property (β). �

Lemma 2.11. [21, Lemma 13.] Let T ∈ Q(A, k). If (T − λ)x = 0 and λ 6= 0,
then (T − λ)∗x = 0.

Lemma 2.12. Let T ∈ Q(A, k). Then ker(T − λ)k+1 = ker(T − λ)k+2 for all

λ ∈ C. Hence T − λ has finite ascent for all λ ∈ C.

Proof. It follows from Theorem 2.5 that
∥

∥T k+1x
∥

∥

2
≤

∥

∥T k+2x
∥

∥

∥

∥T kx
∥

∥

for all x ∈ H, we have kerT k+1 = kerT k+2. Let (T − λ)k+2x = 0 for λ 6= 0. Then
it follows from Lemma 2.11 that (T − λ)∗(T − λ)k+1x = 0. Hence

∥

∥(T − λ)k+1x
∥

∥

2
=

〈

(T − λ)∗(T − λ)k+1x, (T − λ)kx
〉

= 0.

So the proof is achieved. �

Definition 2.13. ( [4]) An operator T ∈ B(H) is called algebraically Q(A, k) if
there exists a nonconstant complex polynomial p such that p(T ) is a Q(A, k).
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Lemma 2.14. Let T ∈ B(H) be an algebraically Q(A, k) operator and σ(T ) =
{µ0} , then T − µ0 is nilpotent.

Proof. Assume p(T ) isQ(A, k) for some nonconstant polynomial p(z). Since σ(p(T )) =
p(σ(T )) = {p(µ0)} , the operator p(T )− p(µ0) is nilpotent by Lemma 2.6. Let

p(z)− p(µ0) = a(z − µ0)
k0(z − µ1)

k1 · · · (z − µt)
kt ,

where µj 6= µs for j 6= s. Then

0 = {p(T )− p(µ0)}
m

= am(T − µ0)
mk0(T − µ1)

mk1 · · · (T − µt)
mkt

and hence (T − µ0)
mk0 = 0. �

An operator T ∈ B(H) is said to be polaroid if isoσ(T ) ⊆ π(T ), where π(T ) is
the set of all poles of T . In general, if T is polaroid then it is isoloid. However, the
converse is not true. Consider the following example. Let T ∈ ℓ2(N) be defined by

T (x1, x2, · · · ) = (
x2

2
,
x3

3
, · · · ).

Then T is a compact quasinilpotent operator with α(T ) = 1, and so T is isoloid.
However, since T does not have finite ascent, T is not polaroid.

In [7] they showed that every QA operator is isoloid. We can prove more:

Proposition 2.15. Let T be an algebraically Q(A, k) operator. Then T is polaroid.

Proof. Suppose T is an algebraically Q(A, k) operator. Then p(T ) ∈ Q(A, k) for
some nonconstant polynomial p. Let λ ∈ iso(σ(T )). Using the spectral projection

P := 1
2iπ

∫

∂D

(µ− T )−1 dµ, where D is a closed disk of center λ which contains no

other points of σ(T ), we can represent T as the direct sum

T =

(

T1 0
0 T2

)

, and σ(T1) = {λ} and σ(T2) = σ(T ) \ {λ} .

Since T1 is algebraically Q(A, k) operator and σ(T1) = {λ}. But σ(T1 − λI) = {0}
it follows from Lemma 2.14 that T1 − λI is nilpotent. Therefore T1 − λ has finite
ascent and descent. On the other hand, since T2 − λI is invertible, clearly it has
finite ascent and descent. Therefore T−λI has finite ascent and descent. Therefore
λ is a pole of the resolvent of T . Thus if λ ∈ iso(σ(T )) implies λ ∈ π(T ), and so
iso(σ(T )) ⊂ π(T ). Hence T is polaroid. �

An operator T ∈ B(H) is called a-isoloid if isoσa(T ) ⊆ σp(T ). Clearly, if T is a-
isoloid then it is isoloid. However, the converse is not true . Consider the following
example: Let T = U ⊕ Q, where U is the unilateral forward shift on ℓ2 and Q is
an injective quasinilpotent on ℓ2, respectively. Then σ(T ) = {λ ∈ C : |λ| ≤ 1} and
σa(T ) = {λ ∈ C : |λ| = 1} ∪ {0} . Therefore T is isoloid but not a-isoloid.

Corollary 2.16. Let T be an algebraically Q(A, k) operator. Then T is a-isoloid.

For T ∈ B(H),λ ∈ σ(T ) is said to be a regular point if there exists S ∈ B(H)
such that T − λI = (T − λI)S(T − λI). T is is called reguloid if every isolated
point of σ(T ) is a regular point. It is well known [11, Theorems 4.6.4 and 8.4.4]
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PROPERTY (ω) AND QUASI-CLASS (A,k) OPERATORS 139

that T − λI = (T − λI)S(T − λI) for some S ∈ B(H) ⇐⇒ T − λI has a closed
range.

Since polaroid implies reguloid, we have the following corollary as a consequence
of Proposition 2.15

Corollary 2.17. Let T be an algebraically Q(A, k) operator. Then T is reguloid.

Proposition 2.18. ([16]) Let T ∈ B(H). If T ∗ has the SVEP, then σSF
−

+

(T ) =

σw(T ).

3. Weyl’s theorem for algebraically of quasi-class (A, k) operator

Theorem 3.1. Suppose T or T ∗ is an algebraically Q(A, k) operator. Then Weyl’s

theorem holds for f(T ) for every f ∈ Hol(σ(T )).

Proof. Let p be a non-trivial polynomial such that p(T ) (resp., p(T ∗)) is Q(A, k).
Then, see Lemma 2.7 and Proposition 2.15, T (resp., T ∗) is hereditarily polaroid
(i.e., the restriction of the operator to every of its invariant subspaces is again
polaroid) [8, Example 2.5, Page 368]. Hence f(T ) (resp., f(T ∗)) satisfies Weyl’s
theorem for every f ∈ Hol(σ(T )) [8, Theorem 3.6]. �

Proposition 3.2. Suppose T or T ∗ is an algebraically of Q(A, k) operator. Then

σw(f(T )) = f(σw(T )) for every f ∈ Hol(σ(T )).

Proof. Let f ∈ Hol(σ(T )). To show that σw(f(T )) = f(σw(T )) it is sufficient
to show that f(σw(T )) ⊆ σw(f(T )). Suppose that λ /∈ σw(f(T )). Then f(T ) −
λI is Weyl. Since T ∗ is algebraically of Q(A, k), it has SVEP. It follows from
Proposition 2.18 that i(T − αj) ≥ 0 for each j = 1, 2, · · · , n. Since

0 ≤
n
∑

j=1

i(T − αj) = i(f(T )− λI) = 0,

T − αj is Weyl for each j = 1, · · · , n. Hence λ /∈ f(σw(T )), and so f(σw(T )) ⊆
σw(f(T )). Thus f(σw(T )) = σw(f(T )) for each f ∈ Hol(σ(T )). Since Weyls
theorem holds for T and T is isoloid, Weyls theorem holds for f(T ) for every
f ∈ Hol(σ(T )). This completes the proof. �

4. a-Weyl’s theorem for algebraically of quasi-class (A, k) operator

Let T ∈ B(H). It is well known that the inclusion σSF
−

+

(f(T )) ⊆ f(σSF
−

+

(T ))

holds for every f ∈ Hol(σ(T )) with no restriction on T [20]. The next theorem
shows that the spectral mapping theorem holds for the essential approximate point
spectrum for algebraically of quasi-class (A, k) operator.

Theorem 4.1. Suppose T ∗ or T is an algebraically Q(A, k) operator. Then

σSF
−

+

(f(T )) = f(σSF
−

+

(T ))
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Proof. Since p(T ) (resp., p(T ∗)) has SVEP (by Lemma 2.10 or 2.12) =⇒ T (resp.,
T ∗) has SVEP =⇒ f(T ) (resp., f(T ∗) ) has SVEP [18, Theorem 3.3.6]. Since the
upper Browder and the upper Weyl equal σSF

−

+

spectra of an operator with SVEP

coincide, and since the upper Browder spectrum satisfies the spectral mapping
theorem [1, Theorem 3.69], the proof follows. �

It is easily seen that quasi-nilpotent operators do not satisfy a-Weyl’s theorem,
in general. For instance, if

T (x1, x2, · · · ) = (0,
x2

2
,
x3

3
, · · · ), (xn) ∈ ℓ2(N)

then T is quasi-nilpotent but a-Weyl’s theorem fails for T , since σ(T ) = σa(T ) =
σSF

−

+

(T ) = {0} = Ea
0 (T ).

Theorem 4.2. Suppose T ∗ is an algebraically of quasi-class (A, k) operator. Then

a-Weyl’s theorem holds for f(T ) for every f ∈ Hol(σ(T )).

Proof. P (T ∗) ∈ Q(A, k) implies T ∗ has SVEP implies f(T ∗) has SVEP; hence

σ(f(T ∗)) = σa(f(T )), σw(f(T
∗)) = σSF

−

+

(f(T ) and E0(f(T
∗)) = Ea

0 (f(T ). Now

apply Theorem 3.1. �

5. Property (ω)

Definition 5.1. [2] A bounded operator T ∈ B(H) is said to satisfy property (ω)
if

E0(T ) = ∆a(T ) = σa(T ) \ σSF
−

+

(T ).

As observed in [2], we have either of a-Weyls theorem or property (ω) for T ⇒
Weyl’s theorem holds for T .

Examples of operators satisfying Weyl’s theorem but not property (ω) may be
found in [2]. Property (ω) is independent from a-Weyl’s theorem: in [2] there are
examples of operators T ∈ B(H) satisfying property (ω) but not a-Weyl’s theorem
and vice versa. Generally, property (ω), as well as Weyl’s theorems, does not
survive under perturbations. More can be said: Weyls theorems and property (ω)
for a bounded operator T are liable to fail also under small perturbations K, if
“small” is interpreted in the sense of compact or quasi-nilpotent operators. In [3]
some sufficient conditions are given for which we have the stability of property (ω),
under perturbations by finite rank operators, compact operators, or quasi-nilpotent
operator commuting with T .

The following example shows that a-Weyls theorem and Weyls theorem does not
imply property (ω).

Example 5.2. Let R ∈ ℓ2(N) be the unilateral right shift and let U defined by

U(x1, x2, · · · ) = (0, x2, x3, ...), (xn) ∈ ℓ2(N).

If T = R ⊕ U, then σ(T ) = D(0, 1) the closed unit disc in C, isoσ(T ) = ∅ and
σa(T ) = C(0, 1) ∪ {0} , where C(0, 1) is unit circle of C. It easily to see that
σSF

−

+

(T ) = C(0, 1). Moreover, we have E0(T ) = ∅ and Ea
0 (T ) = {0} . Hence T
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satisfies a- Weyls theorem and so T satisfies Weyls theorem. But T does not satisfy
property (ω).
Lemma 5.3. [2] Suppose that T ∈ B(H).
(i) If T ∗ has the SVEP then σSF

−

+

(T ) = σb(T ).

(ii) If T has the SVEP then σSF
−

+

(T ∗) = σb(T ).

Theorem 5.4. Let T ∈ B(H).

(i) If T ∗ is algebraically Q(A, k) then property (ω) holds for T .
(ii) If T is algebraically Q(A, k) then property (ω) holds for T ∗.

Proof. (i) Since T ∗ is algebraically of quasi-class (A, k), then T ∗ is the SVEP and T
is polaroid by Proposition 2.15 because T is polaroid if and only if T ∗ is polaroid.
Consequently σ(T ) = σa(T ). If isoσ(T ) = ∅, then E0(T ) = ∅. We show that
σa(T )\σSF

−

+

(T ) is empty. By Lemma 5.3 we have σa(T )\σSF
−

+

(T ) = σ(T )\σb(T )

and the last set is empty, since σ(T ) has no isolated points. Therefore, T satisfies
property (ω).

Consider the other case, isoσ(T ) 6= ∅. Suppose that λ ∈ E0(T ). Then λ is
isolated in σ(T ) and hence, by the polaroid condition, λ is a pole of the resolvent
of T , i.e. a(T − λ) = d(T − λ) < ∞. By assumption α(T − λ) < ∞, so by [1,
Theorem 3.1] β(T − λ) < ∞, and hence T − λ is a Fredholm operator. Therefore,
by Lemma 5.3, λ ∈ σ(T ) \ σb(T ) = σa(T ) \ σSF

−

+

(T ). Conversely, if λ ∈ σa(T ) \

σSF
−

+

(T ) = σ(T )\σb(T ) then λ is an isolated point of σ(T ). Clearly, 0 < α(T−λ) <

∞, so λ ∈ E0(T ) and hence T satisfies property (ω).
(ii) First note that since T has SVEP then σa(T

∗) = {λ ∈ C : T − λ is not onto} =
σ(T ) = σ(T ∗). Suppose first that isoσ(T ) = isoσ(T ∗) = ∅. Then E0(T

∗) = ∅. By
Lemma 5.3 we have σa(T

∗)\σSF
−

+

(T ∗) = σ(T )\σb(T ) = ∅, so T ∗ satisfies property
ω.

Suppose that isoσ(T ) 6= ∅ and let λ ∈ E0(T
∗). Then λ is isolated in σ(T ) =

σ(T ∗), hence a pole of the resolvent of T ∗, since T ∗ is polaroid by Proposition 2.15.

By assumption α(T ∗−λ)p < ∞ and since the ascent and the descent of T ∗−λ are
both finite it then follows by [1, Theorem 3.1] that α(T − λ) = β(T − λ) < ∞, so

T ∗−λ is Browder and hence also T −λ Browder. Therefore, λ ∈ σ(T ) \σb(T ) and
by Lemma 5.3 it then follows that λ ∈ σa(T

∗) \ σSF
−

+

(T ∗).

Conversely, if λ ∈ σa(T
∗)\σSF

−

+

(T ∗) = σ(T )\σb(T ), then λ is an isolated point

of the spectrum of σ(T ) = σ(T ∗). Hence T − λ is Browder, or equivalently T ∗ − λ

is Browder. Since α(T ∗ − λ) = β(T ∗ − λ) we then have α(T ∗ − λ) > 0 (otherwise
λ /∈ σ(T ∗)). Clearly, α(T ∗ − λ) < ∞, since by assumption T ∗ − λ ∈ SF−

+ (H), so
that λ ∈ E0(T

∗). Thus T ∗ satisfies property (ω). �
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